JPS6322172B2 - - Google Patents

Info

Publication number
JPS6322172B2
JPS6322172B2 JP58239899A JP23989983A JPS6322172B2 JP S6322172 B2 JPS6322172 B2 JP S6322172B2 JP 58239899 A JP58239899 A JP 58239899A JP 23989983 A JP23989983 A JP 23989983A JP S6322172 B2 JPS6322172 B2 JP S6322172B2
Authority
JP
Japan
Prior art keywords
glass surface
transparent conductive
conductive film
viewing port
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58239899A
Other languages
Japanese (ja)
Other versions
JPS60132636A (en
Inventor
Hiroshi Yanagida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP23989983A priority Critical patent/JPS60132636A/en
Publication of JPS60132636A publication Critical patent/JPS60132636A/en
Publication of JPS6322172B2 publication Critical patent/JPS6322172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/004Sight-glasses therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 この発明は、真空装置のビユーイングポートに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a viewing port of a vacuum device.

真空装置では真空を破ることなしにその内部か
ら外部へまたはその逆に可視光線、赤外線などの
光線を導くため、透明なガラス板を備えたビユー
イングポートが使用される。しかしながら、真空
装置の内部に蒸気圧の高い物質が存する場合に
は、これがビユーイングポートの真空側ガラス表
面に沈積してこれをくもらせる。
In vacuum devices, a viewing port with a transparent glass plate is used to guide visible light, infrared light, etc. from the inside to the outside and vice versa without breaking the vacuum. However, if there is a substance with a high vapor pressure inside the vacuum device, it will deposit on the glass surface on the vacuum side of the viewing port and cloud it.

例えば分子線エピタキシヤル成長装置では基板
の温度測定、分子線強度測定および成長プロセス
監視などのために赤外線温度計、偏光解析モニ
タ、原子吸光式蒸着速度モニタなどが使用されま
た肉眼による覗き監視が行なわれ、それらのため
にビユーイングポートのガラス板を光線が透過す
る必要がある。しかしながら、分子線エピタキシ
ヤル成長装置で達成される化合物半導体成長にお
いて取扱われる元素には、V族元素のP、As、
族のSe、Sなどの蒸気圧の高い物質が多い。
これらの物質はまわり込みによつてビユーイング
ポートに沈積しその真空側ガラス表面をくもらせ
る。
For example, in molecular beam epitaxial growth equipment, infrared thermometers, polarimetry monitors, atomic absorption deposition rate monitors, etc. are used to measure substrate temperature, molecular beam intensity, and monitor the growth process. For these reasons, the light beam must pass through the glass plate of the viewing port. However, the elements handled in compound semiconductor growth achieved by molecular beam epitaxial growth equipment include group V elements P, As,
There are many substances with high vapor pressure such as Se and S in the group.
These substances accumulate in the viewing port due to wraparound and cloud the glass surface on the vacuum side.

これに対する対策として、従来はビユーイング
ポートの真空側内側に機械的シヤツタを別に取付
けて、ビユーイングポートを使用しない場合には
シヤツタを閉じるようにしていた。しかしなが
ら、かかる対策ではビユーイングポートを使用す
る際の沈積は防止できず、真空側ガラス表面に沈
積によるくもりが生じた場合には真空槽などを開
けてビユーイングポートの真空側ガラス表面を清
掃する必要があつた。
As a countermeasure against this, conventionally, a mechanical shutter was separately installed inside the viewing port on the vacuum side, and the shutter was closed when the viewing port was not in use. However, such measures cannot prevent sedimentation when using the viewing port, and if the glass surface on the vacuum side becomes cloudy due to sedimentation, it is necessary to open the vacuum chamber and clean the glass surface on the vacuum side of the viewing port. The need arose.

よつて、この発明は上述したような従来の欠点
を除去した新規な真空装置のビユーイングポート
を提供することを主な目的とする。
Therefore, the main object of the present invention is to provide a new viewing port for a vacuum device that eliminates the above-mentioned drawbacks of the prior art.

この目的の達成のため、この発明によるビユー
イングポートは、(1)その真空側ガラス表面に、透
明導電膜を蒸着によつて付着させ、透明導電膜に
通電することによつて前記ガラス表面を加熱でき
るようにしたこと、を第1の特色とし、(2)前記ガ
ラス表面にさらに、薄膜サーミスタを蒸着によつ
て付着させ、前記ガラス表面の加熱温度を制御で
きるようにしたこと、を第2の特色とする。
To achieve this objective, the viewing port according to the present invention has the following features: (1) A transparent conductive film is attached to the glass surface on the vacuum side by vapor deposition, and the glass surface is heated by applying electricity to the transparent conductive film. The first feature is that the glass surface can be heated, and the second feature is that (2) a thin film thermistor is further attached to the glass surface by vapor deposition, making it possible to control the heating temperature of the glass surface. Features:

前記の第1の特色によれば、透明導電膜の通電
による抵抗加熱によつて、ガラス表面が高温にで
き、このようにすると、真空装置の内部に存する
蒸気圧の高い物質が真空側ガラス表面に到着して
も、この物質が真空側ガラス表面から蒸発してし
まうから、この物質が真空側ガラス表面に沈積し
てこれをくもらせるおそれは解消される。
According to the first feature, the glass surface can be heated to a high temperature by resistance heating caused by electricity passing through the transparent conductive film, and in this way, substances with high vapor pressure existing inside the vacuum device are heated to a high temperature on the glass surface on the vacuum side. Even if the substance reaches the glass surface on the vacuum side, the substance evaporates from the glass surface on the vacuum side, so there is no possibility that this substance will deposit on the glass surface on the vacuum side and cloud it.

さらに前記の第2の特色によれば、薄膜サーミ
スタによつて、真空側ガラス表面の加熱温度が制
御できるので、このガラス表面の温度は、この表
面に到着する蒸気圧の高い物質をこの表面から蒸
発させられる程度には高いけれども、ビユーイン
グポートの耐熱温度よりも低い値に維持できる。
Furthermore, according to the second feature, since the heating temperature of the glass surface on the vacuum side can be controlled by the thin film thermistor, the temperature of this glass surface can be controlled to prevent substances with high vapor pressure that arrive at this surface from being removed from this surface. Although it is high enough to be evaporated, it can be maintained at a lower temperature than the viewing port's heat resistance temperature.

なお、前記第1の特色に従つてガラス表面に付
着した透明導電膜は、もちろん、光線のガラス板
透過を一般に阻止しないが、その光線に対する透
明導電膜の光透過度が低い場合であつても、透明
導電膜が付着しないガラス表面部分を光線が通過
するようにすればよい。
Note that, of course, the transparent conductive film attached to the glass surface according to the first feature generally does not block light rays from passing through the glass plate, but even if the transparent conductive film has low light transmittance to the light rays, , the light rays may be allowed to pass through the portion of the glass surface to which the transparent conductive film is not attached.

以下、図面を参照しながらこの発明の実施例に
ついて詳述する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

図示の実施例において、ビユーイングポートは
円形のガラス板10を有し、その真空側ガラス表
面11には透明導電膜12としてIn2O3が抵抗加
熱蒸発による蒸着によつて5000Åすなわち0.5μm
の厚さに付着される。その際にパターンニングに
よつて第1図図示のようなパターン幅3mmの蛇行
状長尺体に透明導電膜12は形成される。この場
合に透明導電膜12の抵抗は100オーム程度であ
りこれに30mA程度の電流を流せばガラス表面1
1の温度は300℃以上になる。なお、ビユーイン
グポートの耐熱温度は450℃であり、In2O3は500
℃まで安定である。通電のため、蛇行状長尺体の
透明導電膜12の両端からは導線13が引出され
る。In2O3透明導電膜12の上には保護膜14と
してSiO2がスパツタリング蒸着によつて1μmの
厚さに付着される。ガラス表面11の温度の制御
には薄膜サーミスタ15が使用される。このサー
ミスタ15は、Pt引出導線16をそれぞれ有し
ガラス表面11に付着させられた2個のPt−Au
電極17の間を架橋するようにガラス表面11に
付着された薄膜18からなり、この薄膜18は
SiCの化学気相蒸着によつて形成される。導線1
3および16はビユーイングポートの大気側に取
付けられた兼用コンセント(図示なし)に導かれ
る。
In the illustrated embodiment, the viewing port has a circular glass plate 10, and a transparent conductive film 12 of In 2 O 3 is deposited on the vacuum side glass surface 11 to a thickness of 5000 Å or 0.5 μm by resistive heating evaporation.
It is attached to the thickness of . At this time, by patterning, the transparent conductive film 12 is formed into a meandering elongated body having a pattern width of 3 mm as shown in FIG. In this case, the resistance of the transparent conductive film 12 is about 100 ohms, and if a current of about 30 mA is passed through it, the glass surface 1
The temperature of 1 will be over 300℃. The viewing port has a heat resistance temperature of 450℃, and In 2 O 3 is 500℃.
Stable up to ℃. For power supply, conductive wires 13 are drawn out from both ends of the meandering elongated transparent conductive film 12. On the In 2 O 3 transparent conductive film 12, SiO 2 is deposited as a protective film 14 to a thickness of 1 μm by sputtering vapor deposition. A thin film thermistor 15 is used to control the temperature of the glass surface 11. This thermistor 15 consists of two Pt-Au wires each having a Pt lead wire 16 attached to the glass surface 11.
It consists of a thin film 18 attached to the glass surface 11 so as to bridge between the electrodes 17;
Formed by chemical vapor deposition of SiC. Conductor 1
3 and 16 are led to a dual-purpose outlet (not shown) attached to the atmosphere side of the viewing port.

In2O3透明導電膜12を付着させたパイレツク
スガラス板10の透過率Tおよび反射率Rはほぼ
第4図に示す通りであり、これから判るように、
この発明に従つてIn2O3透明導電膜12を付着さ
せたビユーイングポートのガラス板10は、可視
光領域の波長、偏光解析モニタのレーザ波長
(0.6μm)および原子吸光式蒸着速度モニタの吸
収波長(アルミニウムで0.4μm、ガリウムで
0.3μm)のいずれについても大きな透過率を有す
る。従つて、これら波長については透明導電膜1
2を付着させてもビユーイングポートの光透過性
が実質上低下しない。赤外線温度計に採用される
2μmの波長の赤外線では光透過性がかなり低下す
るが、この場合には所要の赤外線が透明導電膜1
2の付着されないガラス表面11の部分を通過す
るようにすればよい。
The transmittance T and reflectance R of the Pyrex glass plate 10 to which the In 2 O 3 transparent conductive film 12 is attached are approximately as shown in FIG. 4, and as can be seen from this,
The glass plate 10 of the viewing port to which the In 2 O 3 transparent conductive film 12 is attached according to the present invention has a wavelength in the visible light region, a laser wavelength (0.6 μm) of the ellipsometric monitor, and a wavelength of the atomic absorption vapor deposition rate monitor. Absorption wavelength (0.4 μm for aluminum, 0.4 μm for gallium
0.3μm) has large transmittance. Therefore, for these wavelengths, the transparent conductive film 1
2 does not substantially reduce the light transmittance of the viewing port. Adopted for infrared thermometers
Infrared rays with a wavelength of 2 μm considerably reduce the light transmittance, but in this case, the required infrared rays are transmitted through the transparent conductive film 1.
It is only necessary to pass through the portion of the glass surface 11 that is not attached.

上述したIn2O3の抵抗加熱蒸発による蒸着の代
りとして、SnO2を5〜10重量%含有するIn2O3
焼結体をターゲツトとする高周波スパツタリング
蒸着によつても透明導電膜12は形成できる。ま
たSnO2だけからなる透明導電膜も使用できる。
サーミスタの薄膜18はSiCの代わりにTaNによ
つても構成できる。
Instead of the above-described vapor deposition of In 2 O 3 by resistance heating evaporation, the transparent conductive film 12 can also be formed by high frequency sputtering vapor deposition targeting a sintered body of In 2 O 3 containing 5 to 10% by weight of SnO 2 . Can be formed. A transparent conductive film made only of SnO 2 can also be used.
The thermistor thin film 18 can also be made of TaN instead of SiC.

かくして構成されたこの発明によるビユーイン
グポートは、真空側ガラス表面だけを加熱するよ
うに構成されているから、真空装置例えば分子線
エピタキシヤル成長装置の作動中に透明導電膜に
通電してガラス表面への蒸気圧の高い物質の沈積
を阻止できる。真空装置の作動中に沈積した蒸気
圧の高い物質を、作動後の透明導電膜通電による
真空側ガラス表面の加熱によつて蒸発除去するこ
とも勿論可能である。
The viewing port according to the present invention thus constructed is configured to heat only the glass surface on the vacuum side. Therefore, during operation of a vacuum device, for example, a molecular beam epitaxial growth device, current is applied to the transparent conductive film to heat the glass surface. can prevent the deposition of substances with high vapor pressure on Of course, it is also possible to evaporate and remove substances with high vapor pressure deposited during the operation of the vacuum device by heating the vacuum side glass surface by energizing the transparent conductive film after the operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるビユーイングポートの
ガラス板の図解的正面図、第2図は第1図の−
線に沿う拡大断面図、第3図は第1図の−
線に沿う拡大断面図、第4図はIn2O3透明膜を付
着させたガラス材の波長による透過率および反射
率の変化を示すグラフである。 図面において、10はガラス板、11は真空側
ガラス表面、12は透明導電膜、15は薄膜サー
ミスタを示す。
FIG. 1 is a schematic front view of the glass plate of the viewing port according to the present invention, and FIG.
An enlarged sectional view along the line, Figure 3 is - of Figure 1.
FIG. 4, an enlarged cross-sectional view taken along the line, is a graph showing changes in transmittance and reflectance with wavelength of a glass material to which an In 2 O 3 transparent film is attached. In the drawings, 10 is a glass plate, 11 is a glass surface on the vacuum side, 12 is a transparent conductive film, and 15 is a thin film thermistor.

Claims (1)

【特許請求の範囲】[Claims] 1 真空装置のビユーイングポートの真空側ガラ
ス表面に、透明導電膜を蒸着によつて付着させ、
透明導電膜に通電することによつて前記ガラス表
面を加熱できるようにすると共に、前記ガラス表
面にさらに、薄膜サーミスタを蒸着によつて付着
させ、前記ガラス表面の加熱温度を制御できるよ
うにしたこと、を特徴とする真空装置のビユーイ
ングポート。
1. Attach a transparent conductive film to the vacuum side glass surface of the viewing port of the vacuum device by vapor deposition,
The glass surface can be heated by applying electricity to the transparent conductive film, and a thin film thermistor is further attached to the glass surface by vapor deposition, so that the heating temperature of the glass surface can be controlled. A viewing port of a vacuum device characterized by .
JP23989983A 1983-12-21 1983-12-21 Viewing port of vacuum apparatus Granted JPS60132636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23989983A JPS60132636A (en) 1983-12-21 1983-12-21 Viewing port of vacuum apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23989983A JPS60132636A (en) 1983-12-21 1983-12-21 Viewing port of vacuum apparatus

Publications (2)

Publication Number Publication Date
JPS60132636A JPS60132636A (en) 1985-07-15
JPS6322172B2 true JPS6322172B2 (en) 1988-05-11

Family

ID=17051510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23989983A Granted JPS60132636A (en) 1983-12-21 1983-12-21 Viewing port of vacuum apparatus

Country Status (1)

Country Link
JP (1) JPS60132636A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261345A (en) * 1975-11-17 1977-05-20 Anthony S Mfg Co Multiple glass window structure for insulation
JPS5620036U (en) * 1979-07-25 1981-02-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261345A (en) * 1975-11-17 1977-05-20 Anthony S Mfg Co Multiple glass window structure for insulation
JPS5620036U (en) * 1979-07-25 1981-02-21

Also Published As

Publication number Publication date
JPS60132636A (en) 1985-07-15

Similar Documents

Publication Publication Date Title
KR100188492B1 (en) Alkali metal diffusion barrier layer
US5754297A (en) Method and apparatus for monitoring the deposition rate of films during physical vapor deposition
EP1232407A2 (en) Heat-absorbing filter and method for making same
Khan et al. Optical properties at the metal‐insulator transition in thermochromic VO2− x F x thin films
KR20070036058A (en) Waveguide type light control element and manufacturing method thereof
FR2532428A1 (en) DEVICE FOR MEASURING THE ROSEE POINT
Barr The production of low scattering dielectric mirrors using rotating vane particle filtration
Andersson et al. Zirconium nitride based transparent heat mirror coatings—preparation and characterisation
JPH0473129B2 (en)
JPS6322172B2 (en)
KR0179462B1 (en) Alkali metal diffusion barrier layer
US3935458A (en) Method for monitoring the surface resistivity of metallized film
Evans Optical properties of antimony tri-iodide
US3743995A (en) Two color detector
JPH0892733A (en) Method and apparatus for depositing thin metal oxide layer
JPS5948786B2 (en) Molecular beam crystal growth method
JPH046895B2 (en)
Liu et al. Deposition of amorphous BaTiO3 optical films at low temperature
JP2687362B2 (en) Optical switching element
Brückner et al. Measurements of the optical constants of solid and molten gold and tin at λ= 10.6 μm
JP2591695Y2 (en) Thin film forming equipment with radiation thermometer
Karim Thin film heater for removable volatile protecting coatings
JPH08181071A (en) Film forming method and manufacture of semiconductor device using thereof
JPS5893036A (en) Light branching device
CA1057045A (en) Method for monitoring the surface resistivity of metallized film