JPS60132636A - Viewing port of vacuum apparatus - Google Patents

Viewing port of vacuum apparatus

Info

Publication number
JPS60132636A
JPS60132636A JP23989983A JP23989983A JPS60132636A JP S60132636 A JPS60132636 A JP S60132636A JP 23989983 A JP23989983 A JP 23989983A JP 23989983 A JP23989983 A JP 23989983A JP S60132636 A JPS60132636 A JP S60132636A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
glass surface
glass
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23989983A
Other languages
Japanese (ja)
Other versions
JPS6322172B2 (en
Inventor
Hiroshi Yanagida
柳田 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP23989983A priority Critical patent/JPS60132636A/en
Publication of JPS60132636A publication Critical patent/JPS60132636A/en
Publication of JPS6322172B2 publication Critical patent/JPS6322172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/004Sight-glasses therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To heat the surface of glass, by adhering a transparent conductive film to the surface of glass in the vacuum side of a viewing port by vapor deposition and supplying a current to said transparent conductive film. CONSTITUTION:A viewing port has a circular glass plate 10 and In2O3 is adhered to the surface of glass in the vacuum side thereof as a transparent conduct film 2 in a thickness of about 5,000Angstrom by vapor deposition due to the heat resistance heating evaporation of In2O3 and a current is supplied to the formed transparent conductive film 12. By this method, the surface of glass can be raised to a high temp. by resistance heating and the substance having high vapor pressure present in a vacuum apparatus is evaporated and clouding is prevented.

Description

【発明の詳細な説明】 この発明は、真空装置のビューイングボートに関する。[Detailed description of the invention] The present invention relates to a viewing boat for a vacuum device.

真空装置では真空を破ることなしにその内部から外部へ
またはその逆に可視光線、赤外線などの光線を導くため
、透明なガラス板を備えたビューイングポートが使用さ
れる。しかしながら、真空装置の内部に蒸気圧の高い物
質が存する場合には、これがビューイングボートの真空
側ガラス表面に沈積してこれをくもらせる。
In vacuum devices, a viewing port with a transparent glass plate is used to guide visible light, infrared light, etc. from the inside to the outside and vice versa without breaking the vacuum. However, if there is a substance with a high vapor pressure inside the vacuum device, this will deposit on the glass surface of the vacuum side of the viewing boat and cloud it.

例えは分子線エピタキシャル成長装置では基板の温度測
定、分子線強度測定および成長プロセス監視などのため
に赤外線温度計、偏光解析モニタ、原子吸光式蒸着速度
モニタなどが使用されまた肉眼による覗き監視が行なわ
れ、それらのためにビューイングボートのガラス板を光
線が透過する必要がある。しかしながら、分子線エピタ
キシャル成長装置で達成される化合物半導体成長におい
て取扱われる元素には、V族元素のp、、Al1、Vi
族のSe、 Sなどの蒸気圧の高い物質が多い。これら
の物質Fiまわシ込みによってビューイングポートに沈
積しその真空側ガラス表面をくもらせる。
For example, in molecular beam epitaxial growth equipment, infrared thermometers, polarization analysis monitors, atomic absorption deposition rate monitors, etc. are used to measure substrate temperature, molecular beam intensity, and growth process monitoring. , for them the light rays need to pass through the glass panes of the viewing boat. However, the elements handled in compound semiconductor growth achieved using a molecular beam epitaxial growth apparatus include group V elements such as p, Al1, Vi
There are many substances with high vapor pressure such as Se and S in the group. These substances are deposited in the viewing port due to the infiltration of Fi and cloud the glass surface on the vacuum side.

これに対する対策として、従来はビューイングボートの
真空側内側に機械的シャッタを別に取付けて、ビューイ
ングポートを使用しない場合にはシャッタを閉じるよう
にしていた。しかし、なから、かかる対策ではビューイ
ングボートを使用する際の沈積は防止できず、真空側ガ
ラス表面に沈積によろくもシが生じた場合には真空槽な
どを開けてビューイングボートの真空側ガラス表面を清
掃する必要があった。
As a countermeasure against this, conventionally, a mechanical shutter was separately installed inside the viewing boat on the vacuum side, and the shutter was closed when the viewing port was not in use. However, such measures cannot prevent sedimentation when using the viewing boat, and if the glass surface on the vacuum side becomes sloppy due to sedimentation, open the vacuum chamber etc. It was necessary to clean the glass surface.

よって、この発明は上述したような従来の欠点を除去し
た新規な真空装置のビューイングボートを提供すること
を主な目的とする。
Therefore, the main object of the present invention is to provide a viewing boat for a new vacuum device that eliminates the above-mentioned drawbacks of the conventional vacuum device.

この目的の達成のためこの発明による真空装置のビュー
イングボートは、その真空側カラス表面に透明導電膜を
蒸着によって付着させ、透明導電膜に通電することによ
って前記ガラス表面を加熱できるようにしたことを特徴
とする。
To achieve this object, the viewing boat of the vacuum device according to the present invention has a transparent conductive film attached to the glass surface on the vacuum side by vapor deposition, and the glass surface can be heated by applying electricity to the transparent conductive film. It is characterized by

このような特徴によれば、透明導電膜の通電による抵抗
加熱によってガラス表面が高温にでき、このようにする
と真空装置の内部に存する蒸気圧の高い物質が真空側ガ
ラス表面に到達してもここから蒸発してしまうからこの
物質が真空側ガラス表面に沈積してこれをくもらせるお
それは解消される。透明導電膜はもちろん光線のガラス
板通過を一般に阻止しないが、その光線に対する透明導
電膜の光透過度か低い場合であっても透明導電膜が付着
していないガン1表面部分を光線が通過するようにすれ
はよい。
According to these characteristics, the glass surface can be heated to a high temperature by resistance heating caused by electricity passing through the transparent conductive film, and in this way, even if substances with high vapor pressure existing inside the vacuum device reach the glass surface on the vacuum side, they will not heat up. Since the material evaporates from the glass surface, the risk of this material depositing on the glass surface on the vacuum side and clouding it is eliminated. Of course, the transparent conductive film does not generally prevent the light rays from passing through the glass plate, but even if the transparent conductive film has low light transmittance to the light rays, the light rays will pass through the surface portion of the gun 1 to which the transparent conductive film is not attached. That's fine.

この発明による真空装置のビューイングボートは、真空
側ガラス表面の加熱温度の制御のため、前記ガラス表面
にさらに薄膜サーミスタを蒸着によって付着させること
が望ましく、このようにすれば真空側ガラス表面が所望
の高温に維持できる。
In the viewing boat for a vacuum device according to the present invention, in order to control the heating temperature of the glass surface on the vacuum side, it is desirable to further attach a thin film thermistor to the glass surface by vapor deposition. Can be maintained at high temperatures.

以下、図面を参照しながらこの発明の実施例について詳
述する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

図示の実施例にお6て、ビューイングボートは円形のガ
ラス&10を有し、その真空側ガラス表面//には透明
導電膜12として工n203が抵抗加熱蒸発による蒸着
によって300OAすなわち0.5μmの厚さに付着さ
れる。その隙にパターンユングによって第1図図示のよ
うなパターン幅31!llの蛇行状長尺体に透明導電膜
/2は形成きれる。
In the illustrated embodiment, the viewing boat has a circular glass plate 10, and a transparent conductive film 12 of 300 OA, or 0.5 μm, is deposited on the vacuum side glass surface // by resistive heating evaporation. Adhered to thickness. In the meantime, we created a pattern with a pattern width of 31 as shown in Figure 1! The transparent conductive film/2 is completely formed on the meandering elongated body of 1.

この場合に透明導電膜l−の抵抗はlθ0オーム程度で
あシこれに30mA程度の電流を流せばガラス表向/l
の温度は300℃以上になる。なお、ビューイングボー
トの耐熱温度はダ5Q℃でIJI、In2O3は500
℃まで安定である。通電のため、蛇行状長尺体の透明導
電膜l−の両端からは4細13が引出される。In2O
3透明導電股12の上には保護mtグとして5102が
スパッタリング蒸着によって1μmの厚さに付着される
。ガラス表向llの温度の制御には薄膜サーミスタtS
が使用される。このサーミスタ/jt、t、pt引出導
線16をそれぞれ有しガラス表面iiに付着させられた
一個のPt −Au th&/ 7の間を架橋するよう
にガラス表面l/に付着された薄膜igがらなシ、この
薄膜igはSiOの化学気相蒸湛によって形成される。
In this case, the resistance of the transparent conductive film l- is about lθ0 ohm, and if a current of about 30 mA is passed through it, the glass surface /l
The temperature will be over 300°C. In addition, the heat resistance temperature of the viewing boat is 5Q℃, IJI, In2O3 is 500
Stable up to ℃. For energization, four thin strips 13 are drawn out from both ends of the meandering elongated transparent conductive film l-. In2O
3. On top of the transparent conductive crotch 12, a protective mtg 5102 is deposited to a thickness of 1 μm by sputtering deposition. Thin film thermistor tS is used to control the temperature on the surface of the glass.
is used. The thermistor/jt, t, and pt lead wires 16 are respectively attached to the thin film ig attached to the glass surface l/ so as to bridge between one piece of Pt-Au th&/7 attached to the glass surface ii. This thin film ig is formed by chemical vapor deposition of SiO.

導線13および/6はビューイングボートの大気側に取
付けられた兼用コンセント(図示なし)に導かれる。
The conductors 13 and /6 are led to a dual-purpose outlet (not shown) installed on the atmospheric side of the viewing boat.

In2O3透明導電膜l−を付着させたパイレックスガ
ラス板IOの透過率(T)および反射率(R)はぼIY
第1図に示す通電であシ、これから判るように、この発
明に従って工11203透明導電膜l−を付着させたビ
ューイングボートのガラス&loは、可視光領域の波長
、偏光解析モニタのレーザ波長(0,6μm)および原
子吸光式蒸着速度モニタの吸収波長(アルミニウムでo
、りμm、ガリウムで0.3μm)のいずれについても
大きな透過率を有する。従って、これら波長については
透明導電膜/コを付活させてもビューイングボートの光
透過性が実質上低下しない。赤外線温度計に採用される
一μmの波長の赤外線では光透過性ががなシ低下するが
、この場合には所要の赤外線が透明導電膜l−の付着さ
れないガラス表面iiの部分を通過するようにすればよ
い。
The transmittance (T) and reflectance (R) of the Pyrex glass plate IO to which the In2O3 transparent conductive film l- is attached are approximately IY
As shown in Fig. 1, the glass of the viewing boat to which the transparent conductive film 11203 is attached according to the present invention has a wavelength in the visible light region, a laser wavelength of the polarization analyzer monitor ( 0.6 μm) and the absorption wavelength of an atomic absorption deposition rate monitor (0.6 μm for aluminum).
It has a large transmittance for both 0.3 μm for gallium and 0.3 μm for gallium. Therefore, for these wavelengths, the light transmittance of the viewing boat does not substantially decrease even if the transparent conductive film is activated. The light transmittance of infrared rays with a wavelength of 1 μm, which is used in infrared thermometers, is significantly reduced, but in this case, the necessary infrared rays are made to pass through the portion of the glass surface ii to which the transparent conductive film l- is not attached. Just do it.

上述したIn2O3の抵抗加熱蒸発による蒸着の代シと
して、5n02を3−/ 0重量%含有する工n20H
の焼結体をターゲットとする高周波スパッタリング蒸着
によっても透明導電膜lコは形成できる。
As an alternative to the above-mentioned vapor deposition by resistance heating evaporation of In2O3, In20H containing 3-/0% by weight of 5n02 was used.
The transparent conductive film can also be formed by high frequency sputtering deposition using a sintered body as a target.

また5n02だけからなる透明導電膜も使用できる。Furthermore, a transparent conductive film consisting only of 5n02 can also be used.

サーミスタの薄膜/ g t:t SiOの代シにTa
Nによっても構成できる。
Thin film of thermistor / g t:t Ta instead of SiO
It can also be configured by N.

かくして構成されたこの発明によるビューイングボート
は、真空側ガラス表面だけを加熱するように構成されて
いるから、真空装置例えば分子線エピタキシャル成長装
置の作動中に透廟導電瞑に通電してガラス表面への蒸気
圧の高い物質の沈積を阻止できる。真空装置の作動中に
沈積した蒸気圧の高い物質を、作動後の透明導電膜通電
による真空側ガラス表面の加熱によって蒸発除去するこ
とも勿論可能である。
The viewing boat according to the present invention thus constructed is configured to heat only the glass surface on the vacuum side. Therefore, during the operation of a vacuum device, for example, a molecular beam epitaxial growth device, electricity is applied to the glass surface by applying electricity to the glass surface. can prevent the deposition of substances with high vapor pressure. Of course, it is also possible to evaporate and remove substances with high vapor pressure deposited during the operation of the vacuum device by heating the vacuum side glass surface by energizing the transparent conductive film after the operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるビューイングボートのガラス板
の図解的正面図、第2図は第1図の…−■線に沿う拡大
断面図、第3図は第1図のl1l−Ill線に沿う拡大
断面図、第を図は工n203透明膜を付着させたガラス
制の波長による透過率および反射率の変化を示すグラフ
である。 図面例おいて、10はガラス板、/lは真空側ガラス表
面、l−は透明導電膜、15は薄膜ナーミスタを示す。 鳥2図 毘3図 児4図 、0.:[ 波長(7LwL)−
Fig. 1 is a schematic front view of a glass plate of a viewing boat according to the present invention, Fig. 2 is an enlarged cross-sectional view taken along line . The enlarged cross-sectional view shown in FIG. In the drawing example, 10 is a glass plate, /l is the glass surface on the vacuum side, l- is a transparent conductive film, and 15 is a thin film nermistor. 2 birds, 3 children, 4, 0. :[ Wavelength (7LwL) -

Claims (1)

【特許請求の範囲】 / Jlll装置のビューイングポートの真空側ガラス
表面に透明導電膜を蒸着によって付着させ、透明導電膜
に通電することによってOす記ガラス表面を加熱できる
ようにしたことを4?徴とする真空装置のビューイング
ポート。 ユ 前記ガラス表面の加熱温度の制御のため、lす記ガ
ラス表面にさらに薄膜サーミスタを蒸着によって何着さ
せた特許請求の範囲j%/項に記載の真空装置のビュー
イングポート。
[Claims] / 4. A transparent conductive film is attached by vapor deposition to the vacuum side glass surface of the viewing port of the Jllll device, and the glass surface can be heated by applying electricity to the transparent conductive film. ? Viewing port of vacuum equipment. The viewing port of a vacuum device according to claim 1, wherein a thin film thermistor is further deposited on the glass surface by vapor deposition in order to control the heating temperature of the glass surface.
JP23989983A 1983-12-21 1983-12-21 Viewing port of vacuum apparatus Granted JPS60132636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23989983A JPS60132636A (en) 1983-12-21 1983-12-21 Viewing port of vacuum apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23989983A JPS60132636A (en) 1983-12-21 1983-12-21 Viewing port of vacuum apparatus

Publications (2)

Publication Number Publication Date
JPS60132636A true JPS60132636A (en) 1985-07-15
JPS6322172B2 JPS6322172B2 (en) 1988-05-11

Family

ID=17051510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23989983A Granted JPS60132636A (en) 1983-12-21 1983-12-21 Viewing port of vacuum apparatus

Country Status (1)

Country Link
JP (1) JPS60132636A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261345A (en) * 1975-11-17 1977-05-20 Anthony S Mfg Co Multiple glass window structure for insulation
JPS5620036U (en) * 1979-07-25 1981-02-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261345A (en) * 1975-11-17 1977-05-20 Anthony S Mfg Co Multiple glass window structure for insulation
JPS5620036U (en) * 1979-07-25 1981-02-21

Also Published As

Publication number Publication date
JPS6322172B2 (en) 1988-05-11

Similar Documents

Publication Publication Date Title
US5754297A (en) Method and apparatus for monitoring the deposition rate of films during physical vapor deposition
US2381819A (en) Thermocouple
US3383238A (en) Method and apparatus of controlling thin film deposition in a vacuum
Barr The production of low scattering dielectric mirrors using rotating vane particle filtration
Andersson et al. Zirconium nitride based transparent heat mirror coatings—preparation and characterisation
US8115991B2 (en) Switchable infrared filter
JPS60132636A (en) Viewing port of vacuum apparatus
JPH08134638A (en) Formation of titanium oxide film
Enjouji et al. The analysis and automatic control of a reactive dc magnetron sputtering process
Calı̀ et al. Deposition of indium tin oxide films by laser ablation: Processing and characterization
Gadenne et al. In-situ measurements of the optical properties of gold films near the percolation threshold
JPS5948786B2 (en) Molecular beam crystal growth method
Martin et al. Optical properties of thin amorphous silicon and amorphous hydrogenated silicon films produced by ion beam techniques
JPH0892733A (en) Method and apparatus for depositing thin metal oxide layer
Ruccia et al. The surface emittance of vacuum-metallized polyester film
Liu et al. Deposition of amorphous BaTiO3 optical films at low temperature
JP2591695Y2 (en) Thin film forming equipment with radiation thermometer
NL8004990A (en) PHOTO-GALVANIC ELEMENTS.
JP2000256848A (en) Formation of film and device therefor
JP2818124B2 (en) Semiconductor device manufacturing method
Karim Thin film heater for removable volatile protecting coatings
JPH0625831A (en) Infrared vapor deposition method for thin film
Dobrev et al. Texture of silver films condensed at high rates onto glass substrates in yacuum
Kraatz Optical Coatings 2-6 Microns.
Širbegović et al. An investigation of the durability of front surface Ag mirrors using oxide protecting layers