JPS6322162B2 - - Google Patents

Info

Publication number
JPS6322162B2
JPS6322162B2 JP58096981A JP9698183A JPS6322162B2 JP S6322162 B2 JPS6322162 B2 JP S6322162B2 JP 58096981 A JP58096981 A JP 58096981A JP 9698183 A JP9698183 A JP 9698183A JP S6322162 B2 JPS6322162 B2 JP S6322162B2
Authority
JP
Japan
Prior art keywords
hollow fiber
cleaning solvent
forced
hollow
blood treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58096981A
Other languages
Japanese (ja)
Other versions
JPS59222205A (en
Inventor
Shigeo Aoyanagi
Kazuhiko Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP9698183A priority Critical patent/JPS59222205A/en
Publication of JPS59222205A publication Critical patent/JPS59222205A/en
Publication of JPS6322162B2 publication Critical patent/JPS6322162B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 発明の背景 技術分野 本発明は、血液処理用中空繊維の製造方法に関
するものである。詳しく述べると、例えば、血液
処理用装置等に使用される中空繊維の内部液を特
定の方法で洗浄除去する中空繊維の製造方法に関
するものである。 先行技術 従来、血液等の透析処理に用いられる中空繊維
としては、再生セルロース、酢酸セルロース等の
セルロース系物質、ポリスルホン、ポリアクリロ
ニトリル、ポリメチルメタクリレート等がある。
これらのうち、現在実用化されているものは、主
として銅アンモニアセルロースからの再生セルロ
ースであり、これらは湿潤状態で充分な強度を有
していて優れている。しかして、透析用中空繊維
は、血液透析等に使用する際には、円形横断面が
くずれると血液凝固等を起し、透析効果が著しく
低下するので、円形であることが望ましい。 従来、中空繊維はセルロース系紡糸原液を環状
紡糸孔から空気中または非凝固性液中に押出し、
その際線状紡糸原液の内部中央部に該紡子原液に
対する非凝固性液(内部液)を導入充填して吐出
させ、ついでこのようにして形成された線状紡糸
原液中を通過させて凝固再生し、洗浄後、必要に
より透析能を低下させないためにグリセリン処理
を行ない、さらに乾燥することにより、製造され
ている(特公昭53−30808号、特開昭57−199808
号等)。このように中空繊維中に含まれているミ
リスチン酸イソプロピル等の内部液は、人体に有
害であると考えられているので、血液透析装置等
に使用する場合には、使用前に予め洗浄除去する
必要がある。 このような中空繊維の内部液の除去洗浄方法と
しては、(1)塩化弗化炭化水素、またはこれと共沸
混合物を形成し得る物質との混合物を該中空繊維
の内部に流通させる方法(特公昭56−22541号お
よび特開昭54−161099号)、(2)中空繊維束を低沸
点有機溶剤で洗浄後乾燥し、ついで、該中空繊維
束の端をケースに固着することによる方法(特開
昭54−58687号)、(3)中空繊維束をケース内に装填
し、その両端部をポツテイングしてケースに固着
し、該ポツテイング部分を切断して開口させる方
法において、その長さ方向に遠心力を作用させる
方法(特公昭57−6363号)、(4)中空繊維束の両端
部をポツテイング材により固定し、該固定部分を
切断して両端を開口させ、該状態で低級アルコー
ルを流通させて洗浄する方法(特公昭54−12043
号)等が提案されている。 しかしながら、(1),(2)および(4)の方法では、内
部液を物理的な方法で充分除去しないで、溶剤の
洗浄力だけで内部液を除去する方法では、内部液
の除去が不充分であり、内部液の除去を充分行な
うには、洗浄溶剤が大量に必要となるという欠点
があつた。一方、浸漬洗浄や循環洗浄を行なう場
合には、除去された内部液が再び中空繊維内外面
に接触するため、洗浄効果が充分に発揮できない
という欠点があつた。また、洗浄後の乾燥で、中
空部の強制排気を伴なわない方法においては、洗
浄溶剤が残留してしまう欠点があつた。また、強
制排気を伴なわない場合においては、中空繊維の
束に疎密が生じ、洗浄溶剤により除去されずに中
空繊維外側に付着した内部液がそのまま密の部分
に残存することがあつた。さらに、前記方法にお
いては、連続的に紡糸されて製造される中空繊維
を所定の寸法に切断して束ねる際に、切口からそ
の付近の中空繊維外側に内部液が付着し、該内部
液が該端部をポツテイング材により固着する際に
ポツテイング効果を低下させ、固着不良となる恐
れがある。さらに、中空繊維外側に付着した内部
液や洗浄液が充分に除去されないまま乾燥工程を
施すと、中空繊維の外表面間に介在する内部液が
固着し、中空繊維同志をゆ着させることがあり、
この場合、その後の製造過程で、接着した中空繊
維同志を引き離す力が加わつたときに中空繊維膜
面にピンホールが生じ、そこから血液のリーク
(漏れ)が生じることがあつた。また(3)の方法に
おいては、遠心力のみによつては内部液の完全除
去は極めて困難であり、また横断面が変形する恐
れがある。 発明の目的 したがつて、本発明の目的は、新規な中空繊維
の製造方法を提供することにある。本発明の他の
目的は、血液処理装置等に使用される中空繊維の
内部液を特定の方法で洗浄除去してなる中空繊維
の製造方法を提供することにある。 これらの諸目的は、セルロース系紡糸原液より
紡糸された非凝固性液を内蔵するセルロース系中
空繊維を切断して中空繊維束を得、該中空繊維束
の一端より該内部非凝固性液を強制的に除去する
とともに該中空繊維の内外に該内部非凝固性液に
対する溶解度が高くかつ揮撥性の高い洗浄溶剤を
強制的に流通させ、ついで該中空繊維の内外に気
体を強制的に流通させることを特徴とする血液処
理用中空繊維の製造方法により達成される。 また、本発明は、内部非凝固性液の強制的除去
が、該内部非凝固性液の吸引通風または圧送通風
による排出により行なわれてなる血液処理用中空
繊維の製造方法である。さらに、本発明は、内部
非凝固性液の強制的除去が、該中空繊維束を立て
て流下させることにより行なわれる血液処理用中
空繊維の製造方法である。本発明は、洗浄溶剤の
強制流通が、該洗浄溶剤の吸引流通または圧送流
通により行なわれる血液処理用中空繊維の製造方
法である。また、本発明は、洗浄溶剤の強制流通
が、遠心力による該中空繊維内外への該洗浄溶剤
の流通により行なわれる血液処理用中空繊維の製
造方法である。さらに、本発明は、洗浄溶剤の強
制流通が、該中空繊維束を水平面に鉛直に立て
て、その下端より該洗浄溶剤中を流通させ、かつ
上端より該洗浄溶剤を溢流させることにより行わ
れる血液処理用中空繊維の製造方法である。ま
た、本発明は、内部非凝固性液の強制的除去と、
洗浄溶剤の強制流通とが同時に行なわれる血液処
理用中空繊維の製造方法である。 発明の具体的説明 つぎに、図面を参照しながら、本発明による血
液処理用中空繊維の製造方法について説明する。 すなわち、第1〜3図は本発明方法の基本原理
を説明するための工程概略図である。同図から明
らかなように、まず、セルロース系紡子原液より
連続的に紡子されかつ非凝固性液(内部液)を内
蔵する中空繊維を所定の長さに切断して束ねて洗
浄用外筒1に入れることにより中空繊維束2を得
る。この洗浄用外筒1の一端に吸引キヤツプ3を
嵌着し、かつ該吸引キヤツプ3を導管4を介して
真空ポンプ等の吸引装置5に連結し、該吸引装置
5aを作動させることにより、前記中空繊維束2
を構成している中空繊維の内部に充満しかつ外面
の一部にも付着している内部液を吸引除去する。
つぎに、第2図に示すように、吸引キヤツプ3に
対する反応側の開口端部において前記中空繊維束
2を洗浄溶剤6と接触させて吸引装置5bを作動
させると、洗浄溶剤6はその吸引力により中空繊
維の内外両部を流通して洗浄する。さらに、第3
図に示すように、中空繊維束2を洗浄溶剤6より
引上げ、前記開口端より気体供給装置7により気
体、例えば空気、窒素ガス、炭酸ガス等、好まし
くは空気、最も好ましくは温風(例えば30〜90
℃)を供給し、吸引装置を作動させることにより
中空繊維の内外両部に気体を強制流通させて乾燥
することにより前記洗浄溶剤が除去される。な
お、該方法において、吸引装置5a,5b,5c
は同一のものを使用してもよいし、また別個に各
工程毎に異なるものを使用してもよい。 また、前記方法において、第1図に示す非凝固
性液の強制的除去は、吸引装置の代りに通常のポ
ンプ、ブロワ等を用いて空気、窒素、炭酸ガス等
の気体を圧送して通風させるか、あるいは該圧送
と吸引とを併用してもよいことはもちろんであ
る。また、第2図に示す洗浄溶剤の強制流通につ
いては、吸引装置の代りにポンプ等を用いて洗浄
溶剤を逆方向に流通させてもよい。さらに、第3
図に示す気体の強制流通についても、吸引装置の
代りに通常のポンプ、ブロワ等を用いて、空気等
の気体、特に温風を流通させるか、あるいは該圧
送と吸引とを併用してもよい。 洗浄用外筒1および吸引キヤツプ3の材質とし
ては、洗浄用溶剤に侵されないものであればよ
く、通常、ポリプロピレン、ポリエチレン、ポリ
カーボネイト等である。 洗浄溶剤としては、内部液である非凝固性液体
に対する溶解度が高く、洗浄効果が大で、かつ比
較的揮発性の高いものであればよい。一例を挙げ
ると、例えばジクロルメタン、1,1,1−トリ
クロルエタン、フロンソルブ(CCl2F−CClF2
旭硝子株式会社製商品名)、ソルミツクスAP−1
(エタノール85.6%、メタノール1.1%、イソプロ
パノール13.3%、日本アルコール販売株式会社製
商品名)等があり、特に好ましくは、ジクロルメ
タンおよび1,1,1−トリクロルエタンであ
る。 本発明方法において使用されるセルロース系紡
糸原液としては、銅アンモニアセルロース等の金
属アンモニアセルロース、ビスコース等がある
が、好ましくは銅アンモニアセルロースであり、
一例を挙げると、例えば平均重合度500〜2500の
セルロースから常法により製造されたものであ
り、必要により特開昭57−199808号に記載されて
いるような透過性能制御剤(孔径制御剤)を配合
してもよい。 このような紡糸原液は、通常比重が1.05〜1.15
であり、好ましくは1.06〜1.10である。しかしな
がら、後述するように紡糸孔から押出される線状
紡糸原液の内部には非凝固性液が充填されている
ので、通常は紡子原液より比重は小さく、1.00〜
1.08であり、好ましくは1.01〜1.04である。 下層として用いられるセルロース系紡糸原液に
対する非凝固性液は、前記線状紡糸原液[非凝固
性液(内部液)を内包する紡糸原液]の嵩比重お
よび凝固性液よりもその比重が大きく、水に対す
る溶解性が低く、かつ表面張力が小さいハロゲン
化炭化水素であり、その比重は通常1.3以上であ
り、好ましくは1.4〜1.7である。一例を挙げる
と、例えば四塩化炭素(d20 4=1.632水溶解度0.08
g/20℃−100ml表面張力(25℃)26.8dyne/
cm)、1,1,1−トリクロルエタン(d20 4
1.349)、1,1,2−トリクロルエタン(d20 4
1.442)、トリクロルエチレン(d15=1.440、水溶
解度0.11g/25℃−100ml、表面張力(25℃)
31.6dyne/cm)、テトラクロルエタン(d25 0
1.542)、テトラクロルエチレン(d0=1.656、水不
溶性)、トリクロルトリフルオルエタン(d25
1.565、水溶解度0.009g/21℃−100ml、表面張
力(25℃)19.0dyne/cm)等がある。これらのう
ちでも特に水に対する溶解度0.05g/21℃−100
ml以下でかつ表面張力(25℃)が20dyne/cm以
下のものを使用すると紡糸性が極めて良好とな
る。このような非凝固性液としては、例えばテト
ラクロルエチレン、トリクロルトリフルオルエタ
ン等がある。しかして、非凝固性液層高さは紡糸
速度によつても異なるが、通常50〜250mmであり、
好ましくは100〜200mmである。 また線状紡糸原液中に導入充填される非凝固性
液(内部液)の選択は、中空糸の中空部の維持あ
るいは中空糸壁面の凹凸の有無に大きく影響す
る。すなわち、中空糸の乾燥時に中空部に充填さ
れている非凝固性液が膜を通して急激に外部に出
ると、中空部内は減圧となり中空潰れを発生さ
せ、あるいは内壁に凹凸を生じる。そして、用い
られる非凝固性液は、乾燥時に透過性の低くかつ
比重が小さい液体から選ばれる。すなわち、セル
ロース系紡糸原液の比重は通常1.05〜1.15、例え
ば銅アンモニアセルロース系紡糸原液の場合約
1.08であるので、前記非凝固性液体を内包する線
状紡糸原液の嵩比重が1.00〜1.08、好ましくは
1.01〜1.04、例えば約1.02となるような範囲から
前記非凝固性液体の比重は選択されるべきであり
通常0.65〜1.00、好ましくは0.70〜0.90、例えば
約0.85である。好適な非凝固性液としては、一例
を挙げると、例えばn−ヘキサン、n−ヘプタ
ン、n−オクタン、n−デカン、n−ドデカン、
流動パラフイン、ミリスチン酸イソプロピル、軽
油、灯油、ベンゼン、トルエン、キシレン、スチ
レン、エチルベンゼン等がある。 セルロース系紡糸原液に対する凝固性液は、前
記のごとき下層の非凝固性液よりもその比重が小
さく、通常1.03〜1.10の比重を有するアルカリ水
溶液である。アルカリとしては、水酸化ナトリウ
ム、水酸化カリウム、水酸化リチウム、水酸化ア
ンモニウム等があり、好ましくは水酸化ナトリウ
ムであ。その濃度は水酸化ナトリウム換算で30〜
150g−NaOH/、好ましくは35〜80g−
NaOH/、最も好ましくは40〜60g−
NaOH/であり、特に約50g−NaOH/
(約4.8重量%、d=1.055)である。しかして、
前記非凝固性液との界面から変向棒端までの距離
は、通常5〜30mm、好ましくは10〜20mmである。 以上は浮上紡糸法による銅アンモニアセルロー
ス中空繊維について説明したが、本発明は該方法
にのみ限定されるものではなく、銅アンモニアセ
ルロース溶液を環状紡糸孔から空気中に押出し、
その下方に自重落下させ、その際、線状に紡出さ
れる紡子原液の内部中央部に該紡糸原液に対する
非凝固性液体を導入充填して吐出させ、それから
自重落下による充分伸長したのち、酸またはアル
カリ溶液中に浸漬して凝固再生を行ない、ついで
洗浄を行ない、さらに必要によりグリセリン処理
を行なつたのち、乾燥することによる中空繊維の
製造方法あるいはその他公知の方法も使用でき
る。 第4図は、本発明の他の実施例を示すもので、
前記のごとき方法により洗浄用外筒1内の中空繊
維束2より少なくとも大部分の内部液を除去した
のち、該中空繊維束2を水平面に鉛直に立てて、
その下端より中空繊維束2を構成する中空繊維の
内外両面に洗浄溶剤を流通させ、上端の開口端よ
り溢流させ、ついで前記方法により乾燥させる。 第5図は、本発明のさらに他の実施例を示すも
ので、前記のごとき方法により洗浄用外筒1内の
中空繊維束2より少なくとも大部分の内部液を除
去したのち、同図に示すように回転板9の中央部
の堰10の開口11に前記中空繊維束2をセツト
し、該回転板9を回転させながら回転板上の導管
12により洗浄溶剤を供給すると遠心力により中
空繊維内外両面を流通することになる。 このようにして洗浄溶剤を強制流通された中空
繊維束は、前記のごとき方法により乾燥される。 以上のごとき方法で製造された中空繊維は、第
6図に示すように、人工腎臓、すなわち、中空繊
維型のダイアライザーに使用される。このダイア
ライザー21は、両端部付に透析液用の入口管2
2および出口管23をそれぞれ設けてなる筒状本
体24に、多数の中空繊維よりなる中空繊維束2
を挿入したのち、その両端部をポリウレタン等の
ポツテイング剤26,27で前記筒状本体の両端
部とともにそれぞれシールしてなる、例えば熱交
換器におけるシール・アンド・チユーブ式装置に
類似した構成のものであり、前記筒状本体24の
両端には血液用の流入口28および排出口29を
それぞれ備えたヘツダー30,31がそれぞれ当
接され、キヤツプ33,34によりヘツダー3
0,31と筒状本体24とがそれぞれ固着されて
いる。しかして、前記流入口28および排出口2
9には、人体に接続するチユーブ34,35が連
結されている。 つぎに、実施例を挙げて本発明をさらに詳細に
説明する。 実施例 1 内部液としてミリスチン酸イソプロピルを内蔵
する肉厚12μm、外径224μmの銅アンモニアセル
ロースから再生された中空繊維を長さ26cmに切断
し、1万本を束ね、ポリプロピレン製の洗浄用外
筒に充填して中空繊維束を得た。この中空繊維束
2を第1〜3図に示す装置を用いて、吸引装置5
aを作動させて5分間吸引して内部液を強制的に
除去した。ついで、その開口端部をジクロルメタ
ン中に浸漬したのち、吸引装置5bを作動させて
該ジクロルメタンを500ml流通させた。さらに、
吸引装置5cを作動させて70〜80℃の温風を5分
間吸引流通させた。このときの中空繊維中のグリ
セリン含量、残留内部液および残留洗浄溶剤の測
定結果は第1表のとおりであつた。また、このよ
うにして得られた中空繊維を用いて第6図に示す
ような人工腎臓を作製し、その両端部はセグメン
トポリウレタンポツテイング剤を用いて固着し
た。ついで、入口管22より透析液を導入して出
口管23排出させ、一方、1000mmHg(ゲージ圧)
で血液用流入口28より血液を導入しかつ排出口
29より排出させて、中空繊維膜表面又はポツテ
イング部における血液のリーク状態を調べたとこ
ろ、第1表のとおりであつた。 実施例 2 実施例1と同様の方法で内部液を強制的に除去
した中空繊維束について、第4図に示す装置を用
いて1,1,1−トリクロルエタン中に垂直に浸
漬して上端より溢流させることにより該1,1,
1−トリクロルエタンを流通させ、ついで実施例
1と同様の方法で温風を5分間吸引流通させた。
実施例1と同様の測定結果は、第1表のとおりで
あた。また、この中空繊維束を用いて実施例1と
同様にして人工腎臓を作製し、血液のリーク試験
を行なつたところ、第1表のとおりであつた。 比較例 1 実施例1と同様の中空繊維束について内部液を
強制的に除去することなく、両端をポツテイング
したのち、中空繊維の内部のみにジクロルエタン
を流通させて洗浄し、ついで70〜80℃の温風を流
通させて乾燥し、実施例1と同様な測定を行なつ
たところ、第1表の結果が得られた。また、この
中空繊維を用いて人工腎臓を作製し、実施例1と
同様なリーク試験を行なつたところ、第1表のと
おりであつた。 比較例 2 実施例1と同様の中空繊維束について1,1,
1−トリクロルエタン浴中に浸漬して洗浄したの
ち、70〜80℃の雰囲気下に放置して乾燥し、実施
例1と同様な測定を行なつたところ、第1表の結
果が得られた。また、この中空繊維を用いて人工
腎臓を作製し、実施例1と同様なリーク試験を行
なつたところ、第1表のとおりであつた。 比較例 3 実施例1で使用した中空繊維を洗浄せずに実施
例1と同様な測定を行なつたところ、第1表の結
果が得られた。また、この中空繊維を用いて人工
腎臓を作成し生理食塩水を流通させたのち、実施
例1と同様なリーク試験を行なつたところ、第1
表のとおりであつた。
BACKGROUND OF THE INVENTION Technical Field The present invention relates to a method for producing hollow fibers for blood treatment. More specifically, the present invention relates to a method for producing hollow fibers used in, for example, blood processing devices, in which the internal liquid of the fibers is washed and removed by a specific method. Prior Art Hollow fibers conventionally used for dialysis treatment of blood and the like include cellulose-based materials such as regenerated cellulose and cellulose acetate, polysulfone, polyacrylonitrile, and polymethyl methacrylate.
Among these, those currently in practical use are mainly regenerated cellulose made from copper ammonia cellulose, and these are excellent as they have sufficient strength in a wet state. When the hollow fiber for dialysis is used for hemodialysis or the like, it is desirable that the hollow fiber be circular because if the circular cross section is distorted, blood coagulation etc. will occur and the dialysis effect will be significantly reduced. Traditionally, hollow fibers are produced by extruding cellulose-based spinning dope through an annular spinning hole into air or a non-coagulating liquid.
At that time, a non-coagulable liquid (internal liquid) for the spinner dope is introduced into the center of the linear spinning dope and discharged, and then passed through the linear spinning dope formed in this way to solidify. It is manufactured by regenerating it, washing it, treating it with glycerin if necessary so as not to reduce its dialysis ability, and then drying it (Japanese Patent Publication No. 53-30808, Japanese Patent Publication No. 57-199808).
No. etc.). Internal fluids such as isopropyl myristate contained in hollow fibers are considered to be harmful to the human body, so when using them in hemodialysis equipment, etc., they must be washed and removed before use. There is a need. As a method for removing and cleaning the internal liquid of such hollow fibers, (1) a method of flowing a chlorofluorohydrocarbon or a mixture of this and a substance capable of forming an azeotrope into the hollow fiber (in particular, (2) A method in which the hollow fiber bundle is washed with a low boiling point organic solvent and then dried, and then the ends of the hollow fiber bundle are fixed to a case (Special (3) A method in which a hollow fiber bundle is loaded into a case, both ends of which are potted and fixed to the case, and the potted portions are cut and opened. Method of applying centrifugal force (Japanese Patent Publication No. 57-6363), (4) fixing both ends of the hollow fiber bundle with potting material, cutting the fixed part to open both ends, and flowing the lower alcohol in this state. Method of cleaning by washing
No.) etc. have been proposed. However, in methods (1), (2), and (4), the internal liquid is not sufficiently removed by physical methods and is removed only by the cleaning power of the solvent, which results in insufficient removal of the internal liquid. However, in order to sufficiently remove the internal liquid, a large amount of cleaning solvent is required. On the other hand, when immersion cleaning or circulation cleaning is performed, the removed internal liquid comes into contact with the inner and outer surfaces of the hollow fibers again, so there is a drawback that the cleaning effect cannot be sufficiently exerted. In addition, methods that do not involve forced evacuation of the hollow space during drying after cleaning have the disadvantage that the cleaning solvent remains. Furthermore, in the case without forced exhaust, the bundle of hollow fibers was densely packed, and the internal liquid that adhered to the outside of the hollow fibers without being removed by the cleaning solvent sometimes remained in the densely packed parts. Furthermore, in the above method, when the hollow fibers produced by continuous spinning are cut into predetermined dimensions and bundled, internal liquid adheres to the outside of the hollow fibers from the cut end and in the vicinity of the cut end. When fixing the end portions with a potting material, the potting effect may be reduced, resulting in poor fixation. Furthermore, if the drying process is performed without sufficiently removing the internal liquid or cleaning liquid adhering to the outside of the hollow fibers, the internal liquid interposed between the outer surfaces of the hollow fibers may stick together, causing the hollow fibers to stick together.
In this case, during the subsequent manufacturing process, when a force was applied to separate the bonded hollow fibers, pinholes were formed on the hollow fiber membrane surface, and blood leaked from the holes. Furthermore, in method (3), it is extremely difficult to completely remove the internal liquid using only centrifugal force, and there is a risk that the cross section may be deformed. OBJECT OF THE INVENTION Therefore, an object of the present invention is to provide a novel method for producing hollow fibers. Another object of the present invention is to provide a method for manufacturing hollow fibers used in blood processing devices and the like, in which the internal liquid of the fibers is washed and removed by a specific method. These objectives are to obtain a hollow fiber bundle by cutting cellulose-based hollow fibers containing a non-coagulable liquid spun from a cellulose-based spinning dope, and to force the internal non-coagulable liquid from one end of the hollow fiber bundle. At the same time, a cleaning solvent with high solubility in the internal non-coagulable liquid and high volatility is forced to flow inside and outside the hollow fibers, and then a gas is forced to flow inside and outside the hollow fibers. This is achieved by a method for producing hollow fibers for blood treatment, which is characterized by the following. Further, the present invention is a method for producing a hollow fiber for blood treatment, in which the internal non-coagulable liquid is forcibly removed by exhausting the internal non-coagulable liquid by suction ventilation or forced ventilation. Furthermore, the present invention is a method for producing hollow fibers for blood treatment, in which the internal non-coagulable liquid is forcibly removed by standing up the hollow fiber bundle and letting it flow down. The present invention is a method for producing a hollow fiber for blood treatment, in which the forced circulation of a cleaning solvent is carried out by suction or forced circulation of the cleaning solvent. Further, the present invention is a method for producing a hollow fiber for blood treatment, in which the forced flow of the cleaning solvent is carried out by circulating the cleaning solvent into and out of the hollow fiber by centrifugal force. Further, in the present invention, forced circulation of the cleaning solvent is performed by standing the hollow fiber bundle vertically on a horizontal surface, allowing the cleaning solvent to flow through the lower end, and overflowing the cleaning solvent from the upper end. This is a method for producing hollow fibers for blood treatment. The present invention also provides forcible removal of internal non-coagulable liquid;
This is a method for manufacturing hollow fibers for blood treatment, in which forced circulation of a cleaning solvent is performed at the same time. DETAILED DESCRIPTION OF THE INVENTION Next, a method for producing a hollow fiber for blood treatment according to the present invention will be described with reference to the drawings. That is, FIGS. 1 to 3 are process schematic diagrams for explaining the basic principle of the method of the present invention. As is clear from the figure, first, hollow fibers that are continuously spun from a cellulose-based spinner stock solution and contain a non-coagulable liquid (internal liquid) are cut into predetermined lengths and bundled. A hollow fiber bundle 2 is obtained by putting it into a tube 1. A suction cap 3 is fitted to one end of this cleaning outer cylinder 1, and the suction cap 3 is connected to a suction device 5 such as a vacuum pump via a conduit 4, and the suction device 5a is operated. Hollow fiber bundle 2
The internal liquid that has filled the inside of the hollow fibers that make up the structure and is also attached to a part of the outer surface is removed by suction.
Next, as shown in FIG. 2, when the hollow fiber bundle 2 is brought into contact with the cleaning solvent 6 at the open end on the reaction side of the suction cap 3 and the suction device 5b is activated, the cleaning solvent 6 is absorbed by its suction force. Both the inside and outside of the hollow fibers are circulated and cleaned. Furthermore, the third
As shown in the figure, the hollow fiber bundle 2 is pulled up from the cleaning solvent 6, and a gas, such as air, nitrogen gas, carbon dioxide gas, etc., is supplied from the open end by the gas supply device 7, preferably air, and most preferably hot air (for example, ~90
The cleaning solvent is removed by drying the hollow fibers by forcing gas to flow through both the inside and outside of the hollow fibers by operating a suction device. In addition, in this method, the suction devices 5a, 5b, 5c
The same one may be used, or a different one may be used separately for each step. In addition, in the above method, the forced removal of the non-coagulable liquid shown in Fig. 1 is carried out by using a normal pump, blower, etc. instead of a suction device to forcefully send gas such as air, nitrogen, carbon dioxide, etc. Of course, the pressure feeding and suction may also be used together. Further, regarding the forced circulation of the cleaning solvent shown in FIG. 2, a pump or the like may be used instead of the suction device to cause the cleaning solvent to flow in the opposite direction. Furthermore, the third
Regarding the forced circulation of gas shown in the figure, a normal pump, blower, etc. may be used instead of a suction device to circulate gas such as air, especially warm air, or the pressure feeding and suction may be used in combination. . The cleaning outer cylinder 1 and the suction cap 3 may be made of any material as long as it is not attacked by cleaning solvents, and are usually polypropylene, polyethylene, polycarbonate, or the like. The cleaning solvent may be any solvent as long as it has high solubility in the non-coagulable liquid that is the internal liquid, has a large cleaning effect, and is relatively volatile. For example, dichloromethane, 1,1,1-trichloroethane, Fronsolve ( CCl2F - CClF2 ,
Asahi Glass Co., Ltd. product name), Solmics AP-1
(85.6% ethanol, 1.1% methanol, 13.3% isopropanol, trade name manufactured by Nippon Alcohol Sales Co., Ltd.), and particularly preferred are dichloromethane and 1,1,1-trichloroethane. The cellulose-based spinning stock solution used in the method of the present invention includes metal ammonia cellulose such as cuprammonium cellulose, viscose, etc., but preferably cuprammonium cellulose,
For example, a permeation performance control agent (pore size control agent) such as one manufactured by a conventional method from cellulose having an average degree of polymerization of 500 to 2500, and as described in JP-A-57-199808, if necessary. may also be blended. Such spinning dope usually has a specific gravity of 1.05 to 1.15.
and preferably 1.06 to 1.10. However, as will be described later, the linear spinning dope extruded from the spinning hole is filled with a non-coagulable liquid, so the specific gravity is usually lower than that of the spinner dope, and is 1.00~1.00.
1.08, preferably 1.01 to 1.04. The non-coagulable liquid for the cellulose-based spinning dope used as the lower layer has a bulk specific gravity larger than that of the linear spinning dope [spinning dope containing a non-coagulable liquid (internal liquid)] and a larger specific gravity than the coagulable liquid; It is a halogenated hydrocarbon that has low solubility in water and low surface tension, and its specific gravity is usually 1.3 or more, preferably 1.4 to 1.7. For example, carbon tetrachloride (d 20 4 = 1.632 water solubility 0.08
g/20℃−100mlSurface tension (25℃)26.8dyne/
cm), 1,1,1-trichloroethane (d 20 4 =
1.349), 1,1,2-trichloroethane (d 20 4 =
1.442), trichlorethylene (d 15 = 1.440, water solubility 0.11g/25℃-100ml, surface tension (25℃)
31.6dyne/cm), tetrachloroethane (d 25 0 =
1.542), tetrachlorethylene (d 0 = 1.656, water insoluble), trichlorotrifluoroethane (d 25 =
1.565, water solubility 0.009g/21℃-100ml, surface tension (25℃) 19.0dyne/cm), etc. Among these, the solubility in water is 0.05g/21℃-100
ml or less and a surface tension (25°C) of 20 dyne/cm or less provides extremely good spinnability. Examples of such non-coagulable liquids include tetrachlorethylene, trichlorotrifluoroethane, and the like. Therefore, the height of the non-coagulable liquid layer varies depending on the spinning speed, but is usually 50 to 250 mm.
Preferably it is 100 to 200 mm. In addition, the selection of the non-coagulable liquid (internal liquid) to be introduced and filled into the linear spinning dope greatly influences the maintenance of the hollow portion of the hollow fiber and the presence or absence of irregularities on the wall surface of the hollow fiber. That is, when the non-coagulable liquid filled in the hollow fiber is suddenly discharged to the outside through the membrane when the hollow fiber is dried, the pressure inside the hollow becomes reduced, causing collapse of the hollow or unevenness on the inner wall. The non-coagulable liquid used is selected from liquids that have low permeability and low specific gravity when dried. That is, the specific gravity of a cellulose-based spinning stock solution is usually 1.05 to 1.15, for example, in the case of a cuprammoniac cellulose-based spinning stock solution, the specific gravity is approximately 1.05 to 1.15.
1.08, the bulk specific gravity of the linear spinning dope containing the non-coagulable liquid is 1.00 to 1.08, preferably
The specific gravity of the non-coagulable liquid should be selected from a range of 1.01 to 1.04, for example about 1.02, and is usually 0.65 to 1.00, preferably 0.70 to 0.90, for example about 0.85. Examples of suitable non-coagulable liquids include n-hexane, n-heptane, n-octane, n-decane, n-dodecane,
Liquid paraffin, isopropyl myristate, light oil, kerosene, benzene, toluene, xylene, styrene, ethylbenzene, etc. The coagulating liquid for the cellulose-based spinning dope is an alkaline aqueous solution that has a specific gravity lower than that of the non-coagulating liquid in the lower layer, and usually has a specific gravity of 1.03 to 1.10. Examples of the alkali include sodium hydroxide, potassium hydroxide, lithium hydroxide, and ammonium hydroxide, with sodium hydroxide being preferred. Its concentration is 30~ in terms of sodium hydroxide.
150g-NaOH/, preferably 35-80g-
NaOH/, most preferably 40-60g
NaOH/, especially about 50g-NaOH/
(approximately 4.8% by weight, d=1.055). However,
The distance from the interface with the non-coagulable liquid to the end of the deflection rod is usually 5 to 30 mm, preferably 10 to 20 mm. Although the cuprammonium cellulose hollow fibers produced by the floating spinning method have been described above, the present invention is not limited to this method.
At that time, a non-coagulable liquid for the spinning dope is introduced and discharged into the center of the spinning dope to be spun linearly, and after it is fully elongated by its own weight, an acid Alternatively, it is also possible to use a method for producing hollow fibers by immersing the fibers in an alkaline solution to coagulate and regenerate, then washing, and if necessary, treating with glycerin, followed by drying, or other known methods. FIG. 4 shows another embodiment of the present invention,
After removing at least most of the internal liquid from the hollow fiber bundle 2 in the cleaning outer cylinder 1 by the method described above, the hollow fiber bundle 2 is stood vertically on a horizontal surface,
The cleaning solvent is passed through the inner and outer surfaces of the hollow fibers constituting the hollow fiber bundle 2 from the lower end, overflows from the open end at the upper end, and then dried by the method described above. FIG. 5 shows still another embodiment of the present invention, in which at least most of the internal liquid is removed from the hollow fiber bundle 2 in the cleaning outer cylinder 1 by the method described above, The hollow fiber bundle 2 is set in the opening 11 of the weir 10 in the center of the rotary plate 9, and when the cleaning solvent is supplied through the conduit 12 on the rotary plate while rotating the rotary plate 9, the centrifugal force causes the hollow fibers to move inside and outside. It will be distributed on both sides. The hollow fiber bundle through which the cleaning solvent was forced to flow in this manner is dried by the method described above. The hollow fiber produced by the above method is used in an artificial kidney, that is, a hollow fiber type dialyzer, as shown in FIG. This dialyzer 21 has inlet tubes 2 for dialysate attached to both ends.
A hollow fiber bundle 2 made of a large number of hollow fibers is placed in a cylindrical body 24 provided with a hollow fiber bundle 2 and an outlet pipe 23, respectively.
After inserting the cylindrical body, both ends thereof are sealed together with both ends of the cylindrical body using potting agents 26 and 27 such as polyurethane, for example, a structure similar to a seal-and-tube type device in a heat exchanger. Headers 30 and 31 each having an inlet 28 and an outlet 29 for blood are brought into contact with both ends of the cylindrical body 24, and caps 33 and 34 connect the headers 30 and 31 to each other.
0, 31 and the cylindrical main body 24 are fixed to each other. Therefore, the inlet port 28 and the outlet port 2
Tubes 34 and 35 connected to the human body are connected to 9. Next, the present invention will be explained in more detail by giving Examples. Example 1 Hollow fibers recycled from copper ammonia cellulose with a wall thickness of 12 μm and an outer diameter of 224 μm, containing isopropyl myristate as an internal liquid, were cut into lengths of 26 cm, and 10,000 fibers were bundled to form a polypropylene cleaning cylinder. to obtain a hollow fiber bundle. This hollow fiber bundle 2 is transferred to a suction device 5 using the device shown in FIGS. 1 to 3.
The internal liquid was forcibly removed by activating the a switch and suctioning for 5 minutes. Then, after immersing the open end in dichloromethane, the suction device 5b was activated to flow 500 ml of the dichloromethane. moreover,
The suction device 5c was activated to suck and circulate hot air at 70 to 80° C. for 5 minutes. At this time, the measurement results of the glycerin content, residual internal liquid, and residual cleaning solvent in the hollow fibers were as shown in Table 1. Further, an artificial kidney as shown in FIG. 6 was prepared using the hollow fibers thus obtained, and both ends thereof were fixed using a segmented polyurethane potting agent. Next, dialysate was introduced from the inlet pipe 22 and discharged from the outlet pipe 23, while the dialysate was heated to 1000 mmHg (gauge pressure).
Blood was introduced from the blood inlet 28 and discharged from the outlet 29, and the state of blood leakage on the hollow fiber membrane surface or potting portion was examined, and the results were as shown in Table 1. Example 2 A hollow fiber bundle whose internal liquid had been forcibly removed in the same manner as in Example 1 was immersed vertically in 1,1,1-trichloroethane using the apparatus shown in FIG. By overflowing said 1, 1,
1-Trichloroethane was circulated, and then hot air was sucked and circulated for 5 minutes in the same manner as in Example 1.
The measurement results similar to those in Example 1 were as shown in Table 1. Further, an artificial kidney was prepared using this hollow fiber bundle in the same manner as in Example 1, and a blood leak test was conducted, and the results were as shown in Table 1. Comparative Example 1 A hollow fiber bundle similar to that in Example 1 was potted at both ends without forcibly removing the internal liquid, then washed by flowing dichloroethane only inside the hollow fibers, and then heated at 70 to 80°C. When the sample was dried by circulating hot air and the same measurements as in Example 1 were performed, the results shown in Table 1 were obtained. Furthermore, an artificial kidney was prepared using this hollow fiber and a leak test similar to that in Example 1 was conducted, and the results were as shown in Table 1. Comparative Example 2 Regarding the same hollow fiber bundle as in Example 1, 1, 1,
After washing by immersing it in a 1-trichloroethane bath, it was left to dry in an atmosphere of 70 to 80°C, and the same measurements as in Example 1 were performed, and the results shown in Table 1 were obtained. . Furthermore, an artificial kidney was prepared using this hollow fiber and a leak test similar to that in Example 1 was conducted, and the results were as shown in Table 1. Comparative Example 3 When the same measurements as in Example 1 were carried out without washing the hollow fibers used in Example 1, the results shown in Table 1 were obtained. In addition, after creating an artificial kidney using this hollow fiber and passing physiological saline through it, we conducted a leak test similar to that in Example 1.
It was as shown in the table.

【表】 発明の具体的効果 以上述べたように、本発明は、セルロース系紡
糸原液より紡糸された非凝固性液を内蔵するセル
ロース系中空繊維を切断して中空繊維束を得、該
中空繊維束の一端より該内部非凝固性液を強制的
に除去するとともに該中空繊維の内外に該内部非
凝固性液に対する溶解度が高くかつ揮撥性の高い
洗浄溶剤を強制的に流通させ、ついで該中空繊維
の内外に気体を強制的に流通させることを特徴と
する血液処理用中空繊維の製造方法であるから、
中空繊維の内部の洗浄効果が充分であるばかりで
なく外部の洗浄効果も充分な血液処理用中空繊維
を得ることができるので、従来切断口から浸出す
る内部液による汚染のためにポツテイング不良を
生じ、このため人工腎臓に使用した場合にしばし
ば生じていたリークが著しく減少するという利点
がある。さらに、中空繊維の外部も強制的に洗浄
される為、該繊維外面に付着した非凝固性液も除
去することができ、従来のように残存する洗浄溶
剤や非凝固性液を介して中空繊維同志がゆ着しな
いから、ピンホールの発生やそれに伴なう血液の
リーク(漏れ)が生じることのない血液処理用中
空繊維を得ることができる。 また、内部非凝固性液の強制的除去は、吸引通
風または圧送通風あるいは該中空繊維束を立てて
流下させることにより行なわれるので極めて簡単
な方法で洗浄前の中空繊維に付着している内部液
を最少限にすることができ、後の洗浄溶剤による
洗浄効果を高めている。さらに、洗浄溶剤の強制
流通は、該洗浄溶剤の吸引流通または圧送流通に
より行なわれるので、極めて簡単な方法で優れた
洗浄効果をあげることができる。また、洗浄溶剤
の強制流通は、遠心力による流通または下端より
該中空繊維束を浸漬しかつ上端より該洗浄溶剤を
溢流させることにより行なわれるので、作業性お
よび生産性が極めて優れている。さらに、内部非
凝固性液の強制的除去と洗浄溶剤の強制流通とを
同時に行なえば、さらに生産性は向上する。ま
た、中空繊維の内外に気体が強制的に流通される
ことから、洗浄溶剤の乾燥を迅速に行なうことが
できるとともに、気体の圧力により中空繊維束に
おける中空繊維の分散をより均一なものとし、従
来のように洗浄しにくいとされた密の部分に付着
した洗浄溶剤や中空繊維の切り口から出てきた内
部非凝固性液を残存させることなく、洗浄が充分
に施された血液処理用中空繊維を得ることができ
る。
[Table] Specific Effects of the Invention As described above, the present invention obtains hollow fiber bundles by cutting cellulose-based hollow fibers containing a non-coagulable liquid spun from a cellulose-based spinning dope, and The internal non-coagulable liquid is forcibly removed from one end of the bundle, and a cleaning solvent with high solubility and volatility in the internal non-coagulable liquid is forced to flow inside and outside the hollow fibers, and then the Since this is a method for producing hollow fibers for blood treatment, which is characterized by forcibly circulating gas inside and outside the hollow fibers,
Since it is possible to obtain a hollow fiber for blood treatment that not only has a sufficient cleaning effect on the inside of the hollow fiber but also has a sufficient cleaning effect on the outside, it is possible to obtain a hollow fiber for blood treatment that has a sufficient cleaning effect on the inside and outside of the hollow fiber. This has the advantage of significantly reducing leaks that often occur when used in artificial kidneys. Furthermore, since the outside of the hollow fiber is also forcibly cleaned, the non-coagulant liquid adhering to the outer surface of the fiber can also be removed. Since the comrades do not stick together, it is possible to obtain a hollow fiber for blood treatment that does not cause pinholes or blood leakage due to pinholes. In addition, the internal non-coagulable liquid can be forcibly removed by suction ventilation, forced ventilation, or by standing up the hollow fiber bundle and letting it flow down, which is an extremely simple method. can be minimized, increasing the cleaning effect of subsequent cleaning solvents. Furthermore, since the forced circulation of the cleaning solvent is carried out by suction or forced circulation of the cleaning solvent, excellent cleaning effects can be achieved with an extremely simple method. Further, the forced circulation of the cleaning solvent is carried out by centrifugal force or by immersing the hollow fiber bundle from the lower end and overflowing the cleaning solvent from the upper end, resulting in extremely excellent workability and productivity. Furthermore, if the internal non-coagulable liquid is forcibly removed and the cleaning solvent is forced to flow at the same time, productivity can be further improved. In addition, since the gas is forced to flow inside and outside the hollow fibers, the cleaning solvent can be dried quickly, and the pressure of the gas makes the hollow fibers more uniformly dispersed in the hollow fiber bundle. Hollow fibers for blood treatment that can be thoroughly cleaned without leaving behind cleaning solvents that adhere to dense areas that are difficult to clean, as well as internal non-coagulable liquid that comes out from the cut ends of the hollow fibers. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明による中空繊維の製造方法
の工程原理を示す概略側面図、第4図は他の実施
例を示す概略一部破断側面図、第5図はさらに他
の実施例を示す斜視図であり、また第6図は本発
明による中空繊維を使用した人工腎臓の一例を示
す一部切欠図を有する斜視図である。 1……洗浄用外筒、2……中空繊維束、3……
吸引キヤツプ、4……導管、5a,5b,5c…
…吸引装置、6……洗浄溶剤、7……気体供給装
置、8……回転板。
1 to 3 are schematic side views showing the process principle of the hollow fiber manufacturing method according to the present invention, FIG. 4 is a schematic partially cutaway side view showing another embodiment, and FIG. 5 is a schematic side view showing another embodiment. FIG. 6 is a perspective view with a partially cutaway view showing an example of an artificial kidney using hollow fibers according to the present invention. 1...Outer cylinder for cleaning, 2...Hollow fiber bundle, 3...
Suction cap, 4... Conduit, 5a, 5b, 5c...
... Suction device, 6... Cleaning solvent, 7... Gas supply device, 8... Rotating plate.

Claims (1)

【特許請求の範囲】 1 セルロース系紡糸原液より紡糸された非凝固
性液を内蔵するセルロース系中空繊維を切断して
中空繊維束を得、該中空繊維束の一端より該内部
非凝固性液を強制的に除去するとともに該中空繊
維の内外に該内部非凝固性液に対する溶解度が高
くかつ揮撥性の高い洗浄溶剤を強制的に流通さ
せ、ついで、該中空繊維の内外に気体を強制的に
流通させることを特徴とする血液処理用中空繊維
の製造方法。 2 内部非凝固性液の強制的除去は、該内部非凝
固性液の吸引通風または圧送通風による排出によ
り行なわれてなる特許請求の範囲第1項に記載の
血液処理用中空繊維の製造方法。 3 内部非凝固性液の強制的除去は、該中空繊維
束を立てて流下させることにより行なわれる特許
請求の範囲第1項に記載の血液処理用中空繊維の
製造方法。 4 洗浄溶剤の強制流通は、該洗浄溶剤の吸引流
通または圧送流通により行なわれる特許請求の範
囲第1項ないし第3項のいずれか一つに記載の血
液処理用中空繊維の製造方法。 5 洗浄溶剤の強制流通は、遠心力による該中空
繊維内外への該洗浄溶剤の流通により行なわれる
特許請求の範囲第1項ないし第3項のいずれか一
つに記載の血液処理用中空繊維の製造方法。 6 洗浄溶剤の強制流通は、該中空繊維束を水平
面に鉛直に立てて、その下端より該洗浄溶剤を流
通させ、かつ上端より該洗浄溶剤を溢流させるこ
とにより行なわれる特許請求の範囲第1項ないし
第3項のいずれか一つに記載の血液処理用中空繊
維の製造方法。 7 内部非凝固性液の強制的除去と、洗浄溶剤の
強制流通とは同時に行なわれる特許請求の範囲第
6項に記載の血液処理用中空繊維の製造方法。 8 気体の強制流通は、該気体の吸引流通または
圧送流通により行なわれる特許請求の範囲第1項
ないし第7項のいずれか一つに記載の血液処理用
中空繊維の製造方法。
[Claims] 1. A hollow fiber bundle containing a non-coagulable liquid spun from a cellulose-based spinning dope is cut to obtain a hollow fiber bundle, and the internal non-coagulable liquid is released from one end of the hollow fiber bundle. At the same time as forcibly removing the hollow fibers, a cleaning solvent having high solubility in the internal non-coagulable liquid and having high volatility is forcibly distributed inside and outside the hollow fibers, and then gas is forcibly introduced into the inside and outside of the hollow fibers. A method for producing hollow fibers for blood treatment, which comprises distributing them. 2. The method for producing a hollow fiber for blood treatment according to claim 1, wherein the forced removal of the internal non-coagulable liquid is carried out by discharging the internal non-coagulable liquid by suction ventilation or forced ventilation. 3. The method for producing hollow fibers for blood treatment according to claim 1, wherein the internal non-coagulable liquid is forcibly removed by standing up the hollow fiber bundle and letting it flow down. 4. The method for producing a hollow fiber for blood treatment according to any one of claims 1 to 3, wherein the forced circulation of the cleaning solvent is carried out by suction or forced circulation of the cleaning solvent. 5. In the hollow fiber for blood treatment according to any one of claims 1 to 3, the forced flow of the cleaning solvent is carried out by the flow of the cleaning solvent into and out of the hollow fiber by centrifugal force. Production method. 6. The forced circulation of the cleaning solvent is carried out by standing the hollow fiber bundle vertically on a horizontal surface, allowing the cleaning solvent to flow through the lower end, and overflowing the cleaning solvent from the upper end. A method for producing a hollow fiber for blood treatment according to any one of Items 1 to 3. 7. The method for producing a hollow fiber for blood treatment according to claim 6, wherein the forced removal of the internal non-coagulable liquid and the forced circulation of the cleaning solvent are performed at the same time. 8. The method for producing a hollow fiber for blood treatment according to any one of claims 1 to 7, wherein the forced gas flow is performed by suction flow or forced flow of the gas.
JP9698183A 1983-06-02 1983-06-02 Manufacture of hollow fiber for treating blood Granted JPS59222205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9698183A JPS59222205A (en) 1983-06-02 1983-06-02 Manufacture of hollow fiber for treating blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9698183A JPS59222205A (en) 1983-06-02 1983-06-02 Manufacture of hollow fiber for treating blood

Publications (2)

Publication Number Publication Date
JPS59222205A JPS59222205A (en) 1984-12-13
JPS6322162B2 true JPS6322162B2 (en) 1988-05-11

Family

ID=14179388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9698183A Granted JPS59222205A (en) 1983-06-02 1983-06-02 Manufacture of hollow fiber for treating blood

Country Status (1)

Country Link
JP (1) JPS59222205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719209A2 (en) 2019-04-02 2020-10-07 Simex S.r.l. Excavating assembly and operating machine comprising this assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246699A (en) * 1975-10-08 1977-04-13 Nippon Zeon Co Method of treating hollow yarn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246699A (en) * 1975-10-08 1977-04-13 Nippon Zeon Co Method of treating hollow yarn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719209A2 (en) 2019-04-02 2020-10-07 Simex S.r.l. Excavating assembly and operating machine comprising this assembly

Also Published As

Publication number Publication date
JPS59222205A (en) 1984-12-13

Similar Documents

Publication Publication Date Title
US9028740B2 (en) Permselective membrane and process for manufacturing thereof
EP0568045B1 (en) Polysulfone-based hollow fiber membrane and process for manufacturing the same
JPS6133601B2 (en)
EP1134019B1 (en) Hollow fiber membrane and process for producing the same
JPS6322162B2 (en)
JPH05317664A (en) Porous hollow fiber membrane
JPS6241741B2 (en)
US5814179A (en) Process for producing a blood dialyzer
JPS6329005B2 (en)
JPS6241740B2 (en)
JP3494466B2 (en) Method for producing hollow fiber for dialysis
JPH08168524A (en) Production of blood dialyzer
EP0847796B1 (en) Method for washing hollow fiber membrane
JP4381096B2 (en) Hollow fiber membrane for blood purification, method for producing the same and blood purifier
JP2710663B2 (en) Blood processing device manufacturing method
JP3068424B2 (en) How to make a hemodialyzer
JPS5812043B2 (en) How to clean hollow fibers
JPH01113064A (en) Priming method of plasma exchanger
JPH07124250A (en) Washing and drying method of hollow yarn for hemodialysis
JPH02187133A (en) Cellulose-type hollow yarn and is production and fluid treatment apparatus
JP2004305997A (en) Drying method for hollow fiber membrane bundle, and hollow fiber membrane bundle
JPH1043292A (en) Manufacture of semi-wet or dry blood dialyzer
JP2003245345A (en) Hollow yarn membrane and production method therefor
JPH07331524A (en) Method for washing core liquid of hollow yarn
JPS59218160A (en) Gas exchange membrane for artificial lung and production thereof