JPS63221326A - Liquid crystal element driving device - Google Patents

Liquid crystal element driving device

Info

Publication number
JPS63221326A
JPS63221326A JP5425487A JP5425487A JPS63221326A JP S63221326 A JPS63221326 A JP S63221326A JP 5425487 A JP5425487 A JP 5425487A JP 5425487 A JP5425487 A JP 5425487A JP S63221326 A JPS63221326 A JP S63221326A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal element
signal
output
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5425487A
Other languages
Japanese (ja)
Inventor
Susumu Sato
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP5425487A priority Critical patent/JPS63221326A/en
Publication of JPS63221326A publication Critical patent/JPS63221326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To permit compensation of the nonlinearity of input and output characteristics with simple constitution by detecting the liquid crystal molecular orientation state of a liquid crystal element for monitor and feeding back the detection signal thereof to form a driving signal. CONSTITUTION:A light beam is projected from a light source 3 to the liquid crystal element 2 for monitor having nearly the same optical characteristics at the optical output characteristics of the liquid crystal element to be subjected to driving control and the transmitted light thereof is detected by a photodetector 4. The output of the detector 4 is supplied to a feedback amplifier 5. A distance signal from the element 1 to an object is supplied to the other input terminal of the amplifier 5. The amplifier 5 detects the differential component of both signals and supplies the output signal thereof to amplitude modulators 6 and 8. The output signals thereof have the characteristic to constitute an inverse function to the molecular arrangement of the element 2. The modulators 6 and 8 respectively modulate the output signals of the amplifier 5 and supply the same as driving signals to the element 2 and the element 1. The element 1 is thereby driven in the optical output characteristic of the function linear to the input signal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電圧制御型液晶素子の駆動装置、特に入力信
号に対して線形な光学出力特性を得ることができる液晶
素子駆動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a voltage-controlled liquid crystal element driving device, and particularly to a liquid crystal element driving device that can obtain linear optical output characteristics with respect to an input signal. be.

(従来の技術) 電圧制御型液晶素子は外部駆動電圧によって液晶分子の
配向状態が変化し、その実効的な透過率や屈折率を変化
させることができ、各種光学素子として実用化されてい
る。例えば外部電圧を印加し、その実効値を変えること
によりセル内の液晶分子の配向状態を可変制御し、その
実効的な屈折率を可変して、焦点距離を連続的に変える
ことのできる液晶レンズや透過光強度を可変する調光フ
ィルターが考案されている。更に、本発明者は、特開昭
60−1985114公報において液晶素子と距離セン
サとを組み合せて焦点距離を自動的に調節できる自動焦
点レンズを提案している。
(Prior Art) Voltage-controlled liquid crystal elements are capable of changing the alignment state of liquid crystal molecules by an external driving voltage and changing their effective transmittance and refractive index, and have been put into practical use as various optical elements. For example, a liquid crystal lens that can variably control the alignment state of liquid crystal molecules in the cell by applying an external voltage and changing its effective value, and by changing its effective refractive index, the focal length can be continuously changed. Light control filters that can vary the intensity of transmitted light have been devised. Furthermore, the present inventor has proposed an autofocus lens that can automatically adjust the focal length by combining a liquid crystal element and a distance sensor in Japanese Patent Application Laid-Open No. 60-1985114.

これら液晶素子を駆動する場合、外部からの入力信号を
駆動信号として用いこの駆動信号によって透過率、屈折
率等の光学的出力特性を変化させるため、入力信号に対
して線形な光学的出力特性を達成することが望ましく、
例えば、液晶素子を自動焦点レンズとして用いる場合距
離センサからの出力信号に対して焦点距離が線形に変化
することが望ましい。
When driving these liquid crystal elements, an external input signal is used as a drive signal, and this drive signal changes the optical output characteristics such as transmittance and refractive index. Therefore, the optical output characteristics are linear with respect to the input signal. It is desirable to achieve
For example, when using a liquid crystal element as an autofocus lens, it is desirable that the focal length changes linearly with respect to the output signal from the distance sensor.

しかしながら、液晶レンズの駆動信号電圧に対する焦点
距離の変化は、第4図に示されるように非線形に変化す
るため、この非線形な特性を駆動装置によつ、て補償す
る必要がある。このような非線形特性は、液晶素子にツ
ィステッドネマティック液晶(TN液晶)及びゲストホ
スト液晶(G)(液晶)を用いた場合はぼ同様に発生す
る。従って、TN液晶やGH液晶を用いた調光フィルタ
や表示素子においても同様に非線形特性を補償する必要
がある。
However, since the focal length of the liquid crystal lens with respect to the driving signal voltage changes nonlinearly as shown in FIG. 4, it is necessary to compensate for this nonlinear characteristic using the driving device. Such nonlinear characteristics occur in almost the same way when twisted nematic liquid crystal (TN liquid crystal) and guest-host liquid crystal (G) (liquid crystal) are used as the liquid crystal element. Therefore, it is necessary to similarly compensate for nonlinear characteristics in dimming filters and display elements using TN liquid crystals or GH liquid crystals.

(発明が解決しようとする問題点) 上記の液晶素子の非線形特性を補償するためには、その
特性曲線を多数の直線で近似する折り線近似法によるも
のや、液晶素子の非線形特性に似た形の特殊な関数を発
生する方法等が考えられるが、そのためには高価で複雑
な電子装置やマイクロコンピュータ等を用いなければな
らず、駆動装置の構造が複雑化すると共に製造コストが
高価になる欠点があった。
(Problem to be Solved by the Invention) In order to compensate for the nonlinear characteristics of the liquid crystal element described above, it is possible to use a folded line approximation method in which the characteristic curve is approximated by many straight lines, or to compensate for the nonlinear characteristics of the liquid crystal element. A method of generating a special function of the shape can be considered, but this requires the use of expensive and complicated electronic devices, microcomputers, etc., which complicates the structure of the drive device and increases manufacturing costs. There were drawbacks.

従って、本発明の目的は上述した欠点を除去し、入力信
号と光学的出力特性との間の非線形特性を簡単な構成で
補償できる液晶素子駆動装置を提供するものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a liquid crystal element driving device capable of eliminating the above-mentioned drawbacks and compensating for nonlinear characteristics between an input signal and an optical output characteristic with a simple configuration.

(問題点を解決するための手段) 本発明による液晶素子駆動装置は、駆動制御されるべき
液晶素子の光学的出力特性とほぼ同一の光学的出力特性
を有するモニタ用液晶素子と、このモニタ用液晶素子の
液晶分子配向状態を検出する装置と、この検出装置から
の検出信号と測定されるべき液晶素子の所望の光学的出
力状態を指示する入力信号とに基いて前記モニタ用の液
晶素子を駆動する出力信号を作成する帰還増幅器とを具
え、この帰還増幅器からの出力信号に基いて駆動制御さ
れるべき液晶素子を駆動するように構成したことを特徴
とするものである。
(Means for Solving the Problems) A liquid crystal element driving device according to the present invention includes a liquid crystal element for a monitor having almost the same optical output characteristics as the optical output characteristic of the liquid crystal element to be driven and controlled, and a device for detecting the orientation state of liquid crystal molecules in a liquid crystal element; and a device for detecting the liquid crystal element for monitoring based on a detection signal from the detection device and an input signal instructing a desired optical output state of the liquid crystal element to be measured. The present invention is characterized in that it includes a feedback amplifier that generates an output signal to be driven, and is configured to drive a liquid crystal element to be driven and controlled based on the output signal from the feedback amplifier.

(作用) 液晶素子の非線形特性を補償するために、外部電圧印加
による液晶分子配列の変化を光学的透過特性の変化とし
て、または電気的特性の変化として検出し、その特性の
逆関数電圧を作り液晶素子を駆動する駆動信号として用
いると、液晶素子の非線形特性をT度打ち消すように作
用するため、液晶素子の非線形特性を補償することがで
きる。
(Function) In order to compensate for the nonlinear characteristics of a liquid crystal element, changes in liquid crystal molecular alignment due to external voltage application are detected as changes in optical transmission characteristics or changes in electrical characteristics, and a voltage is created that is an inverse function of the characteristics. When used as a drive signal for driving a liquid crystal element, it acts to cancel out the nonlinear characteristics of the liquid crystal element by T degrees, so that the nonlinear characteristics of the liquid crystal element can be compensated for.

すなわち、例えば液晶レンズと対象物との相対距離に比
例する電圧を発生する距離センサと、本発明による駆動
装置とを組み合わせることにより、特性の優れた自動焦
点レンズを構成することができる。
That is, for example, by combining a distance sensor that generates a voltage proportional to the relative distance between a liquid crystal lens and an object and a driving device according to the present invention, an autofocus lens with excellent characteristics can be constructed.

また、丁NHa素子やGH液晶素子及び光強度(明るさ
)に比例した電圧を発生する光センサと本発明による駆
動装置とを組み合わせることにより外部の明るさに比例
して透過光強度が変化する調光フィルターとすることが
でき、光センサの代わりに可変電圧源を用いると直線的
に且つ連続的゛  に透過光強度を可変できる調光フィ
ルターとする゛  こともできる。さらに、液晶表示素
子における中間I(グレースケール)の表示特性が線形
となるので、中111i;1の表示特性のすぐれた液晶
表示素子に応用することもできる。
Furthermore, by combining the driving device according to the present invention with a DINHa element, a GH liquid crystal element, and an optical sensor that generates a voltage proportional to the light intensity (brightness), the transmitted light intensity changes in proportion to the external brightness. It can be used as a dimmer filter, and by using a variable voltage source instead of the optical sensor, it can also be used as a dimmer filter that can linearly and continuously vary the transmitted light intensity. Furthermore, since the display characteristics of the intermediate I (gray scale) in the liquid crystal display element are linear, it can also be applied to a liquid crystal display element having excellent display characteristics of the intermediate 111i;1.

(実施例) 第1図は本発明による液晶素子駆動装置の一例の構成を
示す線図である。本例では自動焦点レンズ用の液晶素子
を駆動制御する例を説明する。駆11J 11 ’II
Jされるべき自動焦点レンズ用の液晶素子1を用いる。
(Embodiment) FIG. 1 is a diagram showing the configuration of an example of a liquid crystal element driving device according to the present invention. In this example, an example of driving and controlling a liquid crystal element for an autofocus lens will be described. Kaku11J 11'II
A liquid crystal element 1 for an autofocus lens to be used is used.

この液晶素子は駆動電圧に応じて液晶分子の配向状態が
変化し屈折率が変化する液晶で構成され、例えば誘電異
方性が正のネマチック液晶を用いることができる。上述
したように液晶素子1は駆動電圧に対する焦点距離の変
化が非線形な特性を有するため、この非線形な光学的出
力特性とほぼ同一の光学的出力特性を有するモニタ用の
液晶素子2を用いる。本例では、このモニタ用の液晶素
子2として駆動電圧に応じて透過率が変化するゲスト・
ホスト液晶を用いる。このGH液晶は誘電異方性が正の
ネマティック液晶(ホスト)に2色性色素(ゲスト)を
溶解したホモジニアス配列特性を有する。このモニタ用
液晶素子2は、第2図に示すように駆動電圧に対する透
過率の変化が第4図に示す液晶素子1の特性とほぼ同一
となるようセルの厚さや色素の濃度を調整する。このモ
ニタ用液晶素子2に向けて、例えば半導体レーザから成
る光!!13から光ビームを投射し、その透過光を光検
出器4により受光する。光源3からの光ビームは、モニ
タ用液晶素子2の液晶分子の配向状態に応じて吸収作用
を受けるから、光検出器4の出力信号はモニタ用液晶素
子2の液晶分子の配向状態を示すことになる。光検出器
4の出力信号を増幅し電圧変換してから帰還増幅器5の
一方の入力端子に供給する。帰還増幅器5の他方の入力
端子には距離センサ(図示せず)で計測した液晶素子1
から対象物までの距離を表わす入力信号を供給する。こ
の距離センサからの入力信号は液晶素子から対象物まで
の距離に比例した電圧出力を有し、駆動されるべき液晶
素子1の結像点までの距離を支持する信号となる。帰還
増幅器5は、光検出器4の出力信号と入力信号との差成
分を検出し、この出力信号を振幅変調器6に供給する。
This liquid crystal element is composed of a liquid crystal whose refractive index changes as the alignment state of liquid crystal molecules changes depending on the driving voltage, and for example, a nematic liquid crystal with positive dielectric anisotropy can be used. As described above, since the liquid crystal element 1 has a nonlinear characteristic in which the change in focal length with respect to the driving voltage is nonlinear, a liquid crystal element 2 for a monitor having almost the same optical output characteristic as this nonlinear optical output characteristic is used. In this example, a guest liquid crystal element 2 whose transmittance changes according to the driving voltage is used as the liquid crystal element 2 for this monitor.
Uses host liquid crystal. This GH liquid crystal has a homogeneous arrangement characteristic in which a dichroic dye (guest) is dissolved in a nematic liquid crystal (host) with positive dielectric anisotropy. In this monitor liquid crystal element 2, the cell thickness and dye concentration are adjusted so that the change in transmittance with respect to the driving voltage as shown in FIG. 2 is almost the same as the characteristics of the liquid crystal element 1 shown in FIG. 4. Light from, for example, a semiconductor laser is directed toward this monitor liquid crystal element 2! ! A light beam is projected from 13, and the transmitted light is received by a photodetector 4. Since the light beam from the light source 3 is absorbed depending on the alignment state of the liquid crystal molecules in the monitor liquid crystal element 2, the output signal from the photodetector 4 indicates the alignment state of the liquid crystal molecules in the monitor liquid crystal element 2. become. The output signal of the photodetector 4 is amplified and converted into voltage, and then supplied to one input terminal of the feedback amplifier 5. The other input terminal of the feedback amplifier 5 has a liquid crystal element 1 measured by a distance sensor (not shown).
provides an input signal representing the distance from the object to the object. The input signal from this distance sensor has a voltage output proportional to the distance from the liquid crystal element to the object, and becomes a signal that supports the distance to the imaging point of the liquid crystal element 1 to be driven. Feedback amplifier 5 detects a difference component between the output signal of photodetector 4 and the input signal, and supplies this output signal to amplitude modulator 6 .

この出力信号はモニタ用液晶素子の分子配列に対する逆
関数となる特性を有する。振幅変調器6では、発振器7
から供給されるIKHzの方形波信号に基いて帰還増幅
器5からの出力信号を振幅変調し、この変調信号を駆動
信号としてモニタ用液晶素子2に供給する。このように
構成すれば、モニタ用液晶素子2を所望の配向状態とす
るためのフィードバックループが形成され、モニタ用液
晶素子2を瞬時に所望の配向状態とすることができる。
This output signal has a characteristic that is an inverse function to the molecular arrangement of the monitor liquid crystal element. In the amplitude modulator 6, the oscillator 7
The output signal from the feedback amplifier 5 is amplitude-modulated based on the IKHz square wave signal supplied from the feedback amplifier 5, and this modulated signal is supplied to the monitor liquid crystal element 2 as a drive signal. With this configuration, a feedback loop is formed to bring the monitor liquid crystal element 2 into a desired alignment state, and the monitor liquid crystal element 2 can be instantly brought into the desired alignment state.

一方、帰還増幅器5からの出力信号を別の振幅増幅器7
に供給する。この振幅増幅器8において発振器7からの
IKH7の方形波信号に基いて振幅変調を行ない、この
変調信号を増幅器9で適切な利得に増幅し制御されるべ
き液晶素子1に駆動信号として供給する。このように構
成すれば、液晶素子1はこの液晶自身が有する分子配向
性に対して逆関数となる駆動信号によって駆動制御され
、従って、第3図に示すように入力信号に対して線形な
関数の光学的出力特性で駆動制御されることになる。液
晶素子を、このように駆動制御することにより機械的な
可動部のない全電子形の自動焦点レンズとして機能させ
ることができる。
On the other hand, the output signal from the feedback amplifier 5 is sent to another amplitude amplifier 7.
supply to. Amplitude modulation is performed in the amplitude amplifier 8 based on the square wave signal of the IKH 7 from the oscillator 7, and this modulation signal is amplified to an appropriate gain in the amplifier 9 and supplied as a drive signal to the liquid crystal element 1 to be controlled. With this configuration, the liquid crystal element 1 is driven and controlled by a drive signal that is an inverse function to the molecular orientation of the liquid crystal itself, and therefore, as shown in FIG. The drive will be controlled by the optical output characteristics of. By driving and controlling the liquid crystal element in this manner, it can function as an all-electronic automatic focusing lens without mechanically moving parts.

本発明は上述した実施例だけに限定されず種々の変形が
可能である。例えば上述した実施例では自動焦点レンズ
用の液晶素子を駆動制御する例を以て説明したが、駆動
制御されるべき液晶素子及びモニタ用液晶素子を共にT
N液晶素子で構成することによって入力信号に比例した
透過特性を有する調光フィルタとして機能させることも
できる。
The present invention is not limited to the embodiments described above, and various modifications are possible. For example, in the above embodiment, an example was explained in which the liquid crystal element for an autofocus lens was drive-controlled, but both the liquid crystal element to be driven and controlled and the monitor liquid crystal element were
By configuring it with N liquid crystal elements, it can also function as a dimming filter having transmission characteristics proportional to the input signal.

更に、同様に入力電圧により中間調表示を線形に行なう
表示素子にも応用することができる。
Furthermore, the present invention can also be applied to display elements that linearly display halftones depending on the input voltage.

更に、上述した実施例ではモニタ用のゲスト・ホスト液
晶素子の駆動信号を作成するため、1KH2の方形波を
用いたが、ゲスト・ホスト液晶素子を作動できる周波数
であれば、他の周波数の信号を用いることができ、更に
正弦波や歪形波等も用いることができる。
Furthermore, in the above embodiment, a 1KH2 square wave was used to create a driving signal for the guest/host liquid crystal element for monitoring, but signals of other frequencies may be used as long as the frequency can operate the guest/host liquid crystal element. can be used, and furthermore, a sine wave, a distorted wave, etc. can also be used.

更に、液晶素子を直流電圧信号で駆動できる場合には振
幅変調器は不要である。
Furthermore, if the liquid crystal element can be driven with a DC voltage signal, an amplitude modulator is not necessary.

更に、ホモジニアス配列の液晶素子の静電容量は印加電
圧に対して第2図に示したような特性と類似した変化を
することから、液晶分子の配列の変化を電気的に検出す
る場合には、液晶素子の静電容量の変化として検出し、
これを発振回路の一部に組込む方法やAD−DA変換等
の慣用の手法及び第1図に示した負帰還増幅器との組み
合わせにより、同様に逆電圧を得ることができる。
Furthermore, since the capacitance of a homogeneously aligned liquid crystal element changes in response to applied voltage in a manner similar to the characteristics shown in Figure 2, when electrically detecting changes in the alignment of liquid crystal molecules, , detected as a change in capacitance of the liquid crystal element,
A reverse voltage can be similarly obtained by incorporating this into a part of the oscillation circuit, by using conventional techniques such as AD-DA conversion, and by combining it with the negative feedback amplifier shown in FIG.

(発明の効果) 卓上説明したように本発明によれば、駆動制御されるべ
き液晶素子とほぼ同一の光学的出力特性を有するモニタ
用の液晶素子を用い、このモニタ用液晶素子の液晶分子
配向状態を検出し、この検出信号をフィードバックルー
プで帰還して駆動信号を作成しているので、フィードバ
ックループ中の帰還増幅器によりill Illされる
べき液晶素子の光学的出力特性に対して逆関数となる駆
動電圧を作成することができる。そして、この逆関数電
圧を用いて液晶素子の非線形特性を補償し、または制御
するものであるから、比較的簡単な構成で入出力特性が
線形となる液晶素子の駆動装置を提供することができる
。すなわち、本発明により信頼性が高くコストの安い自
動焦点レンズが容易に構成でき、また可変焦点液晶レン
ズや液晶調光フィルター、さらに液晶表示素子等の線形
駆動や印加電圧に対する特性の制御等を容易に行うこと
ができる。
(Effects of the Invention) As described above, according to the present invention, a liquid crystal element for a monitor having almost the same optical output characteristics as the liquid crystal element to be driven and controlled is used, and the liquid crystal molecules of the liquid crystal element for a monitor are aligned. Since the state is detected and this detection signal is fed back in a feedback loop to create a drive signal, it becomes an inverse function to the optical output characteristics of the liquid crystal element that should be illuminated by the feedback amplifier in the feedback loop. Driving voltage can be created. Since this inverse function voltage is used to compensate or control the nonlinear characteristics of the liquid crystal element, it is possible to provide a liquid crystal element driving device with linear input/output characteristics with a relatively simple configuration. . In other words, the present invention allows easy construction of a highly reliable and low-cost autofocus lens, and also facilitates linear drive of variable focus liquid crystal lenses, liquid crystal dimming filters, and liquid crystal display elements, as well as control of characteristics relative to applied voltage. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による液晶素子駆動装置の一例の構成を
示す線図、 第2図はモニタ用液晶素子の駆動電圧に対する透過特性
を示すグラフ、 第3図は駆動制御されるべき液晶素子の入力電圧に対す
る焦点距離特性を示すグラフ、第4図は自動焦点レンズ
用液晶素子の駆動電圧に対する焦点距離特性を示すグラ
フである。 1・・・液晶素子     2・・・モニタ用液晶素子
3・・・光源       4・・・光検出器5・・・
帰還層幅器    6・・・振幅変調器7・・・発振器 日 ム ′@         刊 ω              N 囚   法通i強庚  区
FIG. 1 is a diagram showing the configuration of an example of a liquid crystal element driving device according to the present invention, FIG. 2 is a graph showing transmission characteristics of a monitor liquid crystal element with respect to driving voltage, and FIG. 3 is a graph showing the transmission characteristics of a liquid crystal element to be driven and controlled. FIG. 4 is a graph showing focal length characteristics with respect to input voltage. FIG. 4 is a graph showing focal length characteristics with respect to driving voltage of a liquid crystal element for an automatic focusing lens. 1...Liquid crystal element 2...Liquid crystal element for monitor 3...Light source 4...Photodetector 5...
Feedback width modulator 6... Amplitude modulator 7... Oscillator

Claims (1)

【特許請求の範囲】[Claims] 1、駆動制御されるべき液晶素子の光学的出力特性とほ
ぼ同一の光学的出力特性を有するモニタ用液晶素子と、
このモニタ用液晶素子の液晶分子配向状態を検出する装
置と、この検出装置からの検出信号と測定されるべき液
晶素子の所望の光学的出力状態を指示する入力信号とに
基いて前記モニタ用の液晶素子を駆動する出力信号を作
成する帰還増幅器とを具え、この帰還増幅器からの出力
信号に基いて駆動制御されるべき液晶素子を駆動するよ
うに構成したことを特徴とする液晶素子の駆動装置。
1. A liquid crystal element for monitoring that has optical output characteristics almost the same as the optical output characteristics of the liquid crystal element whose drive is to be controlled;
A device for detecting the orientation state of liquid crystal molecules of the liquid crystal element for monitoring, and a device for detecting the orientation state of liquid crystal molecules of the liquid crystal element for monitoring, based on a detection signal from this detection device and an input signal indicating a desired optical output state of the liquid crystal element to be measured. A driving device for a liquid crystal element, comprising a feedback amplifier that generates an output signal for driving a liquid crystal element, and configured to drive a liquid crystal element to be driven and controlled based on the output signal from the feedback amplifier. .
JP5425487A 1987-03-11 1987-03-11 Liquid crystal element driving device Pending JPS63221326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5425487A JPS63221326A (en) 1987-03-11 1987-03-11 Liquid crystal element driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5425487A JPS63221326A (en) 1987-03-11 1987-03-11 Liquid crystal element driving device

Publications (1)

Publication Number Publication Date
JPS63221326A true JPS63221326A (en) 1988-09-14

Family

ID=12965419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5425487A Pending JPS63221326A (en) 1987-03-11 1987-03-11 Liquid crystal element driving device

Country Status (1)

Country Link
JP (1) JPS63221326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300280B1 (en) * 1997-04-30 2001-09-06 마찌다 가쯔히꼬 Active matrix light modulators and display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195627A (en) * 1983-04-21 1984-11-06 Olympus Optical Co Ltd Liquid crystal display device
JPS6114876B2 (en) * 1979-04-10 1986-04-21 Tokyo Shibaura Electric Co

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114876B2 (en) * 1979-04-10 1986-04-21 Tokyo Shibaura Electric Co
JPS59195627A (en) * 1983-04-21 1984-11-06 Olympus Optical Co Ltd Liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300280B1 (en) * 1997-04-30 2001-09-06 마찌다 가쯔히꼬 Active matrix light modulators and display

Similar Documents

Publication Publication Date Title
US3579145A (en) Modulator stabilization circuits
US5002353A (en) Apparatus and method for reducing modulator nonlinearities
CA2112390C (en) Temperature compensation of liquid-crystal etalon filters
KR930008237B1 (en) Optical modulation system
US5552926A (en) Device and method for wavelength conversion and BBO crystal for wavelength conversion
US4460249A (en) Control system for an optical modulator
US5903247A (en) Servo controlled liquid crystal windows
US5510922A (en) Optical frequency stabilizer and optical frequency selector
EP0585758B1 (en) Optical wavelength converter
JPS63221326A (en) Liquid crystal element driving device
US3524147A (en) Method and apparatus for the electro-optic control and modulation of light
US3609381A (en) Electrooptic light modulator with birefringent beamsplitter-recombiner
JPS61140925A (en) Temperature correcting liquid crystal lens of double refraction
JP2668600B2 (en) Liquid crystal display
US5432567A (en) Apparatus for driving photoconductive liquid crystal light valve having write intensity detecting function and display apparatus using such light valve
US5867615A (en) Compact straight channel fiber optic intensity modular
CA1323920C (en) Electro-optic device
JP2006517686A (en) Automatic DC bias control using double-current binary modulation format low-pass electrical filter
JP2967019B2 (en) Driving method of liquid crystal spatial light modulator
JPS6051715B2 (en) liquid crystal display device
SU379967A1 (en)
RU2016382C1 (en) Optronic measuring device
JPH0142527B2 (en)
SU1589307A1 (en) Device for presentation of information on projection screen
SU989518A1 (en) Electric optical device for adjusting light radiation intensity