JPS63221270A - Vibration sample type magnetometer - Google Patents

Vibration sample type magnetometer

Info

Publication number
JPS63221270A
JPS63221270A JP5406787A JP5406787A JPS63221270A JP S63221270 A JPS63221270 A JP S63221270A JP 5406787 A JP5406787 A JP 5406787A JP 5406787 A JP5406787 A JP 5406787A JP S63221270 A JPS63221270 A JP S63221270A
Authority
JP
Japan
Prior art keywords
magnetic pole
magnetic
pole piece
vibrating sample
discontinuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5406787A
Other languages
Japanese (ja)
Other versions
JPH0772748B2 (en
Inventor
Atsusuke Takagaki
高垣 篤補
Kenji Furusawa
賢司 古澤
Katsuo Abe
勝男 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62054067A priority Critical patent/JPH0772748B2/en
Publication of JPS63221270A publication Critical patent/JPS63221270A/en
Publication of JPH0772748B2 publication Critical patent/JPH0772748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To measure fine magnetic moment with high accuracy and high efficiency by constituting the magnetic pole piece of a vibration sample type magnetometer as discontinuous magnetic pole pieces, i.e. a structure body wherein an eddy current and wide-range magnetic wall movement are suppressed. CONSTITUTION:The vibration sample type magnetometer has a detection coil arranged nearby the magnetic pole piece 1 of an electromagnet constituted by winding an exciting coil 3 around a yoke 2 having a couple of mutually opposite magnetic pole surfaces 2a and fitting thin plate lamination type magnetic pole pieces 1 to the magnetic pole surfaces 2a. A DC current is supplied to the exciting coil 3 to produce a magnetic field in the gap 1a between both magnetic pole pieces 1 and a sample which is magnetized by this magnetic field is vibrated to detect induced electromotive force generated at the detection coil, thereby measuring the magnetic moment of the sample. At this time, the magnetic pole pieces 1 are constituted as discontinuous magnetic pole bodies so as to suppress eddy currents and wide-range magnetic wall movement.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は振動試料型磁力計に係り、特に、微小試料や磁
性薄膜材料などの、微小な磁気モーメントを高精度で且
つ高能率で測定するに好適な振動試料型磁力計に関する
ものである・ [従来の技術] 近年、磁気ディスクなどの分野において、磁性薄膜材料
が精力的に研究されている。磁性薄膜材料に関しては、
微小な磁気モーメント、たとえば3XLO−3emu 
(3,8X10.−”wb−m)以下の磁気モーメント
を精度良く測定しなければならない。また、開発を早め
るためには、その測定時間を短く、高能率に測定する必
要がある。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a vibrating sample magnetometer, and in particular, to a vibrating sample type magnetometer, particularly for measuring minute magnetic moments of minute samples, magnetic thin film materials, etc. with high precision and high efficiency. [Background Art] In recent years, magnetic thin film materials have been actively researched in fields such as magnetic disks. Regarding magnetic thin film materials,
A small magnetic moment, e.g. 3XLO-3emu
(3.8×10.-”wb-m) or less magnetic moment must be measured with high precision. Also, in order to speed up development, the measurement time must be short and the measurement must be performed with high efficiency.

このような微小磁気モーメントの測定には振動試料型磁
力計が最適であり、この種のものが数多く市販されてい
る。その測定原理は、例えばr強磁性体の物理(上)第
49頁、裳華房1983年発行」に記載のように、電磁
石の磁極片近傍に検出コイルを配設し、磁極間隙にて、
試料を80七程度で振動させ、前記検出コイルに発生す
る誘導起電力を増幅してこれを測定するものである。こ
の際、電磁石の磁極面に、磁化した試料の鏡像に対応し
た表面磁極が発生し、前記試料からの磁力線が前記磁極
面へ吸込まれる。これを利用することができるように、
検出コイル面を前記磁極面に対して平行に設置して、信
号強度を増加させるようになっている。
A vibrating sample magnetometer is most suitable for measuring such minute magnetic moments, and many of this type are commercially available. The measurement principle is, for example, as described in "Physics of Ferromagnetic Materials (Part 1), p. 49, published by Shokabo, 1983", a detection coil is placed near the magnetic pole piece of the electromagnet, and the detection coil is placed in the magnetic pole gap.
The sample is vibrated at about 80°C, and the induced electromotive force generated in the detection coil is amplified and measured. At this time, a surface magnetic pole corresponding to the mirror image of the magnetized sample is generated on the magnetic pole surface of the electromagnet, and lines of magnetic force from the sample are sucked into the magnetic pole surface. So that you can take advantage of this,
The detection coil surface is placed parallel to the magnetic pole surface to increase signal strength.

[発明が解決しようとする問題点] 上記従来技術は、一般に電磁石の磁極片として、電磁軟
鉄のブロック、すなわちバルクの電磁軟鉄を使用してい
た。したがって、発生磁場を変化させるときの磁壁移動
に起因するバルクハウゼン・ノイズに対しての配慮がさ
れておらず、このバルクハウゼン・ノイズを検出コイル
が検出してしまい、ノイズが増加するという問題点があ
った。これは、特に、磁極片が磁気飽和に近くなる10
ke (8X 10’A/m)以上から発生磁場を減少させた
場合、4kOe (3xlO’A/m)以下において、
顕著であった。さらに、バルクハウゼン・ノイズを抑え
るためには、このノイズがパルス状で周波数範囲が広い
ので、時定数を1秒程度にする必要があった。したがっ
て、高精度の測定には、1試料当たり20〜30分の測
定時間が必要で、測定能率が悪いものであった。
[Problems to be Solved by the Invention] The above-mentioned prior art generally uses a block of electromagnetic soft iron, that is, a bulk electromagnetic soft iron, as the magnetic pole piece of the electromagnet. Therefore, no consideration is given to Barkhausen noise caused by domain wall movement when changing the generated magnetic field, and this Barkhausen noise is detected by the detection coil, resulting in an increase in noise. was there. This is especially true at 10 where the pole piece approaches magnetic saturation.
When the generated magnetic field is reduced from ke (8X 10'A/m) or higher, below 4kOe (3xlO'A/m),
It was remarkable. Furthermore, in order to suppress Barkhausen noise, since this noise is pulse-like and has a wide frequency range, it was necessary to set the time constant to about 1 second. Therefore, highly accurate measurement requires a measurement time of 20 to 30 minutes per sample, resulting in poor measurement efficiency.

また、磁極片が電磁軟鉄のブロックであるので、周波数
が80七まで上昇すると、渦電流損失に起因して、鏡像
による表面磁極が十分に現れない。
Furthermore, since the magnetic pole piece is a block of electromagnetic soft iron, when the frequency increases to 807, the surface magnetic pole due to the mirror image does not sufficiently appear due to eddy current loss.

このため、信号強度が理論値まで上昇せず、上記ノイズ
に対する信号/ノイズ比(S/N比)を大きくすること
ができないという問題点もあった。
For this reason, there was also a problem that the signal strength did not rise to the theoretical value, and the signal/noise ratio (S/N ratio) with respect to the above-mentioned noise could not be increased.

上記した磁極片を使用した市販の振動試料型磁力計は、
バルクハウゼン・ノイズが原因して、5X10−s−I
XIO−’emu (6,3X10−”−1,3X10
−1〜b−m)程度の誤差が発生してしまい、測定上。
Commercially available vibrating sample magnetometers using the above magnetic pole pieces are:
Due to Barkhausen noise, 5X10-s-I
XIO-'emu (6,3X10-"-1,3X10
An error of about -1 to bm) will occur during measurement.

無視できない大きさであり、且つ渦電流の影響で信号強
度も低いものであった。
The size was not negligible, and the signal strength was also low due to the influence of eddy currents.

このように、従来、磁極片としてバルクの電磁軟鉄を使
用していた振動試料型磁力計は、周波数80Hzにおけ
る検出能力が低下し、且つ磁場掃引時にバルクハウゼン
・ノイズを発生したので、微小な磁気モーメントを測定
する際、■測定精度が悪く、◎測定時間が長くて測定能
率が悪い、という問題点があった。
In this way, conventional vibrating sample magnetometers that used bulk electromagnetic soft iron as magnetic pole pieces had a reduced detection ability at a frequency of 80 Hz and generated Barkhausen noise when sweeping the magnetic field. When measuring the moment, there were problems such as ◎ poor measurement accuracy and ◎ long measurement time and poor measurement efficiency.

本発明は、上記した従来技術の問題点を改善して、微小
な磁気モーメントを、高精度に且つ高能率に測定するこ
とができる振動試料型磁力計の提供を、その目的とする
ものである。
An object of the present invention is to provide a vibrating sample magnetometer capable of measuring minute magnetic moments with high precision and high efficiency by improving the problems of the prior art described above. .

[問題点を解決するための手段] 上記問題点を改善するための本発明に係る振動試料型磁
力計の構成は、一対の相対向する磁極面を有するヨーク
に励磁コイルを巻き、且つ前記磁極面のそれぞれに磁極
片を取付けてなる電磁石の前記磁極片近傍に検出コイル
を配設し、前記励磁コイルへ直流電流を流すことにより
前記両磁極片の間隙に磁場を発生させ、この磁場により
磁化した試料を振動させ、前記検出コイルに発生する誘
導起電力を検出することにより、前記試料の磁気モーメ
ントを測定することができるようにした振動試料型磁力
計において、磁極片を、不連続体の磁極片にしたもので
ある。
[Means for Solving the Problems] The structure of the vibrating sample magnetometer according to the present invention for improving the above problems is such that an excitation coil is wound around a yoke having a pair of opposing magnetic pole surfaces, and A detection coil is disposed near the magnetic pole pieces of an electromagnet having magnetic pole pieces attached to each of its faces, and a magnetic field is generated in the gap between the two magnetic pole pieces by flowing a direct current to the excitation coil, and this magnetic field causes magnetization. In the vibrating sample magnetometer, the magnetic moment of the sample can be measured by vibrating the sample and detecting the induced electromotive force generated in the detection coil. It is made into a magnetic pole piece.

さらに詳しくは、磁極片を、渦電流および広範囲な磁壁
移動を抑制した構造体にしたものである。
More specifically, the magnetic pole pieces have a structure that suppresses eddy currents and wide range domain wall movement.

[作用] まず、バルクハウゼン・ノイズの除去について説明する
。電磁石のヨークから発生するバルクハウゼン・ノイズ
は、磁極片を不連続体にすることにより磁壁移動が抑制
されて、著しく低減する。
[Operation] First, the removal of Barkhausen noise will be explained. Barkhausen noise generated from the yoke of the electromagnet is significantly reduced by making the magnetic pole pieces discontinuous, which suppresses domain wall movement.

したがって、測定能率が向上するとともに、測定精度も
向上する。
Therefore, measurement efficiency is improved and measurement accuracy is also improved.

次に、信号強度の増加について説明する。前記磁極片の
周波数特性が良好なため、試料振動数80Hz程度に対
しての鏡像磁気モーメントが大きくなる。したがって、
前記磁極片に吸込まれる磁力線が多くなることにより、
信号強度が増加する。
Next, the increase in signal strength will be explained. Since the frequency characteristics of the magnetic pole piece are good, the mirror image magnetic moment with respect to the sample vibration frequency of about 80 Hz is large. therefore,
As more lines of magnetic force are drawn into the magnetic pole piece,
Signal strength increases.

[実施例コ 実施例の説明に入る前に、本発明に係る基本的事項を説
明する。
[Embodiments] Before entering into the explanation of the embodiments, basic matters related to the present invention will be explained.

本発明の振動試料型磁力計は、その磁極片を、渦電流と
磁壁移動とを抑制することができる、不連続体の磁極片
にしたものである。この構成の実施態様としては、厚さ
1mm以下の薄板を磁極面と直交する方向に積層した薄
板積層型磁極片2条厚1m以下の条体を磁極面と直交す
る方向に束ねた条束型磁極片9粒径約100μmφ以下
の粉体を圧縮成形した圧粉成形型磁極片にしたものであ
る。
The vibrating sample magnetometer of the present invention has a discontinuous magnetic pole piece that can suppress eddy currents and domain wall movement. An embodiment of this configuration is a laminated thin plate type in which thin plates with a thickness of 1 mm or less are laminated in a direction perpendicular to the magnetic pole surface.A bundle type in which two strips of magnetic pole pieces with a thickness of 1 m or less are bundled in a direction perpendicular to the magnetic pole surface. The magnetic pole piece 9 is a powder-molded magnetic pole piece that is compression-molded from powder having a grain size of about 100 μm or less.

このように構成することにより、■渦電流を抑制するこ
とができるので、信号強度が増加し、■磁気移動を抑制
することができるので、バルクハウゼン・ノイズが発生
せず、測定能率が向上し且つ測定誤差を低減することが
できる。
By configuring it in this way, ■ eddy currents can be suppressed, increasing the signal strength, and ■ magnetic transfer can be suppressed, eliminating Barkhausen noise and improving measurement efficiency. Moreover, measurement errors can be reduced.

なお、これら磁極片の材料としては、電磁石への適性を
考慮して、飽和磁束密度1.5T以上を有する高飽和磁
性材料、たとえばF e −Co合金。
Note that the material for these magnetic pole pieces is a highly saturated magnetic material having a saturation magnetic flux density of 1.5 T or more, such as an Fe-Co alloy, in consideration of its suitability for electromagnets.

Fe−8i合金gFeAQ合金などがよい。Fe-8i alloy gFeAQ alloy etc. are preferable.

本発明は、上記した基本的事項に基づいてなされたもの
であり、以下実施例によって説明する。
The present invention has been made based on the above-mentioned basic matters, and will be explained below with reference to Examples.

第1の実施例を述べる。A first example will be described.

第1図は、本発明の第1の実施例に係る振動試料型磁力
計の薄板積層型磁極片近傍の詳細を示す斜視図、第2図
は、この振動試料型磁力計を示す略示構成図、第3図は
、この振動試料型磁力計の要部を示す正面図である。
FIG. 1 is a perspective view showing details of the vicinity of the thin plate laminated magnetic pole piece of a vibrating sample magnetometer according to a first embodiment of the present invention, and FIG. 2 is a schematic diagram showing the configuration of this vibrating sample magnetometer. 3 are front views showing the main parts of this vibrating sample type magnetometer.

図において、10は、一対の相対向する磁極面2aを有
するヨーク2に励磁コイル3を巻き、且つ前記磁極面2
aのそれぞれに磁極片に係る薄板積層型磁極片1(詳細
後述)を取付けてなる電磁石、5は、薄板積層型磁極片
1近傍に配設された検出コイル、7は、この検出コイル
5に接続され。
In the figure, reference numeral 10 indicates an exciting coil 3 wound around a yoke 2 having a pair of opposing magnetic pole surfaces 2a;
5 is a detection coil disposed near the thin plate laminated magnetic pole piece 1; connected.

磁束変化により該検出コイル5に発生する誘導起電力を
増幅し、これを磁気モーメントとして測定することがで
きる増幅器、4は、磁気モーメントを測定すべき試料、
6は、この試料4を振動方向8へ80七程度で振動させ
ることができる加振器である。
An amplifier capable of amplifying the induced electromotive force generated in the detection coil 5 due to a change in magnetic flux and measuring this as a magnetic moment; 4 is a sample whose magnetic moment is to be measured;
Reference numeral 6 denotes a vibrator that can vibrate the sample 4 in the vibration direction 8 at about 807 degrees.

前記薄板積層型磁極片1は、その詳細を第1図に示すよ
うに、厚さが0.5anで、材料がFa−Co (50
wt%)合金の薄板1aを、磁極面2aと直交する方向
に積層して、円柱状に形成したものである。磁極面2a
と直交する方向に積層したのは、渦電流が磁極面2aと
平行に発生するからである。
The thin plate laminated magnetic pole piece 1 has a thickness of 0.5 ann and is made of Fa-Co (50
wt%) alloy thin plates 1a are stacked in a direction perpendicular to the magnetic pole face 2a to form a columnar shape. Magnetic pole face 2a
The reason why the layers are stacked in a direction perpendicular to the magnetic pole surface 2a is that eddy currents are generated parallel to the magnetic pole face 2a.

なお、9は磁力線、11は、試料4の磁気モーメント、
12は鏡像磁気モーメントである。
In addition, 9 is the line of magnetic force, 11 is the magnetic moment of sample 4,
12 is the mirror image magnetic moment.

このように構成したので、加振器6によって試料4を振
動方向8へ加振したとき、磁壁移動は、高々、薄板1a
の厚さ程度に抑制される。したがって、ヨーク2から発
生するバルクハウゼン・ノイズに起因して、検出コイル
5に発生する誘導起電力は、著しく低減する。
With this configuration, when the sample 4 is vibrated in the vibration direction 8 by the vibrator 6, the domain wall movement is at most the same as that of the thin plate 1a.
It is suppressed to about the thickness of . Therefore, the induced electromotive force generated in the detection coil 5 due to Barkhausen noise generated from the yoke 2 is significantly reduced.

また、薄板積層型磁極片1が、それ自体不連続体である
ので、渦電流の発生が防止され、該磁極片1の周波数特
性が良好になる。したがって、試料振動数80土程度に
対しての鏡像磁気モーメント12が大きくなり、薄板積
層磁極片1$こ吸込まれる磁力線9が多くなって、信号
強度が増加する。
Furthermore, since the thin plate laminated magnetic pole piece 1 is itself a discontinuous body, generation of eddy currents is prevented, and the frequency characteristics of the magnetic pole piece 1 are improved. Therefore, the mirror image magnetic moment 12 with respect to the sample vibration frequency of about 80 degrees becomes large, and the number of magnetic lines of force 9 absorbed by each thin plate laminated pole piece increases, and the signal intensity increases.

次に、この薄板積層型磁極片1について、磁極片厚さh
(第1図参照)をいろいろに変えた場合の信号/ノイズ
比(S/N比)の変化、および特定数をいろいろに変え
た場合のS/N比の変化の状態を、図面を用いて具体的
に説明する。
Next, regarding this thin plate laminated type magnetic pole piece 1, the magnetic pole piece thickness h
The changes in the signal/noise ratio (S/N ratio) when (see Figure 1) are varied, and the changes in the S/N ratio when the specific number is varied are shown using diagrams. I will explain in detail.

第4図は、前記薄板積層型磁極片の磁極片厚さ−S/N
比特性図、第5は、この薄板積層型磁極片の時定数−S
/N比特性図である。
FIG. 4 shows the magnetic pole piece thickness-S/N of the thin plate laminated type magnetic pole piece.
The fifth graph in the ratio characteristic diagram is the time constant -S of this thin plate laminated magnetic pole piece.
/N ratio characteristic diagram.

この第4図は、試料4と磁極片面との距Nd(第3図参
照)=15+m、試料振動数=80七の場合のものであ
る。この図から明らかなように、磁極片厚さhが3Tm
以上であれば、S/N比が約15dB向上することがわ
かる。
FIG. 4 shows a case where the distance Nd between the sample 4 and one side of the magnetic pole (see FIG. 3) is 15+m, and the sample vibration frequency is 807. As is clear from this figure, the magnetic pole piece thickness h is 3Tm
It can be seen that the S/N ratio is improved by about 15 dB when the value is above.

また、第5図は、薄板積m型磁極片1(磁極片厚さh=
5nwn)と、従来の電磁軟鉄ブロックの磁極片(ただ
し磁極片厚さ5閣)とを比較して示しである。この図か
ら、S/N比の低下し始める時定数が、電磁軟鉄ブロッ
クの磁極片では400m5であるのに対して、薄板積層
型磁極片1では40m5に向上している。
In addition, FIG. 5 shows a thin plate m-type magnetic pole piece 1 (pole piece thickness h=
5nwn) and the magnetic pole piece of a conventional electromagnetic soft iron block (however, the magnetic pole piece thickness is 5 mm). From this figure, the time constant at which the S/N ratio starts to decrease is 400 m5 for the magnetic soft iron block magnetic pole piece, whereas it has been improved to 40 m5 for the thin plate laminated type magnetic pole piece 1.

なお、本実施例は、薄板1aの厚さが0.5n*のもの
について説明したが、薄板の厚さは1mm以下であれば
同様の効果を奏する。
In this embodiment, the thin plate 1a has a thickness of 0.5n*, but the same effect can be obtained if the thin plate has a thickness of 1 mm or less.

さらに、本実施例は、薄板積層型磁極片1の形状を円柱
形状のものにしたが、円錐台形状のものであっても同様
の効果を奏するものである。
Further, in this embodiment, the thin plate laminated magnetic pole piece 1 is cylindrical in shape, but the same effect can be achieved even if the thin plate laminated magnetic pole piece 1 is in the shape of a truncated cone.

次に、第2図の実施例を述べる。Next, the embodiment shown in FIG. 2 will be described.

第6図は、本発明の第2の実施例に係る振動試料型磁力
計の条束型磁極片近傍の詳細を示す斜視図である。
FIG. 6 is a perspective view showing details of the vicinity of the bundle type magnetic pole piece of the vibrating sample magnetometer according to the second embodiment of the present invention.

この第6図において、第1図と同一番号を付したものは
同一部分である。そして、IAは、条厚が0.5mmで
、材料がFe−Go (50wt%)合金の条体1bを
、磁極面2aと直交する方向に束ねて1円柱状に形成し
た条束型磁極片である。
In FIG. 6, the same parts as in FIG. 1 are denoted by the same numbers. The IA is a bundle type magnetic pole piece which is formed into a columnar shape by bundling strips 1b made of Fe-Go (50wt%) alloy in a direction perpendicular to the pole face 2a and having a thickness of 0.5 mm. It is.

この条束型磁極片IAを取付けた振動試料型磁力計も、
前記第1図に係る実施例と同様に、該磁極片IAによっ
て磁壁移動を抑制するとともに、渦電流の発生を防止す
ることができ、微小な磁気モーメントを、高精度に且つ
高能率に測定することができる。
A vibrating sample magnetometer equipped with this strip type magnetic pole piece IA also
Similar to the embodiment shown in FIG. 1, the magnetic pole pieces IA can suppress domain wall movement and prevent the generation of eddy currents, allowing minute magnetic moments to be measured with high precision and high efficiency. be able to.

なお、条厚が1m以下であれば、同様の効果を奏する。Note that the same effect can be achieved if the thickness is 1 m or less.

次に、第3図の実施例を述べる。Next, the embodiment shown in FIG. 3 will be described.

第7図は、本発明の第3の実施例に係る振動試料型磁力
計の圧粉成形型磁極片近傍の詳細を示す斜視図である。
FIG. 7 is a perspective view showing details of the vicinity of a powder molding type magnetic pole piece of a vibrating sample type magnetometer according to a third embodiment of the present invention.

この第7図において、第1図と同一番号を付したものは
同一部分である。そして、IBは1粒径が約5Qμmφ
で、材料がFe−Co (50wt%)合金の粉体1c
を円柱状に圧縮成形してなる圧粉成形型磁極片である。
In FIG. 7, the same parts as in FIG. 1 are denoted by the same numbers. And, the diameter of one particle of IB is about 5Qμmφ
The material is Fe-Co (50wt%) alloy powder 1c.
This is a powder molded magnetic pole piece that is compression molded into a cylindrical shape.

この圧粉成形型磁極片IBを取付けた振動試料型磁力計
も、前記第1図に係る実施例と同様に、該磁極片IBに
よって磁壁移動を抑制するとともに、渦電流の発生を防
止することができ、微小な磁気モーメントを、高精度に
且つ高能率に測定することができる。
The vibrating sample magnetometer equipped with this powder-molded magnetic pole piece IB also suppresses domain wall movement and prevents the generation of eddy currents by the magnetic pole piece IB, as in the embodiment shown in FIG. It is possible to measure minute magnetic moments with high precision and high efficiency.

なお、粉体の粒径が約100μmφ以下であれば、同様
の効果を奏する。
Note that the same effect can be achieved if the particle size of the powder is about 100 μm or less.

前記各実施例においては、磁極片の材料を、すべてF 
e −G o (50w t%)合金にしたが、磁極片
の材料は、これに限るものではなく、通常使用される電
磁石発生磁場10kOe (8X10SA/m)以上に
おいて有効であればよく、このためには飽和磁化(飽和
磁束密度)が15KG (1,5T)以上であることが
望ましい、これを満足するものとして、Fe−Go金合
金 F e−5i (15wt%以下)合金、FeAΩ
(15wt%以下)合金などの高飽和磁性材料がある。
In each of the above embodiments, the material of the magnetic pole pieces is all F.
e -G o (50 wt%) alloy, but the material of the magnetic pole piece is not limited to this, and may be any material that is effective in a magnetic field of 10 kOe (8 x 10 SA/m) or higher, which is normally used for electromagnets. It is desirable that the saturation magnetization (saturation magnetic flux density) is 15KG (1.5T) or more.Those that satisfy this are Fe-Go gold alloy Fe-5i (15wt% or less) alloy, FeAΩ
(15 wt% or less) There are highly saturated magnetic materials such as alloys.

これらの材料を使用して、薄板積層型磁極片l2条束型
磁極片IA、圧粉成形型磁極片IBを製作し、それらの
S/N増、最小厚、最小時定数を調べた結果を、次の表
に示す。
Using these materials, we manufactured a thin plate laminated magnetic pole piece l2-bundle type magnetic pole piece IA and a powder molded magnetic pole piece IB, and investigated their S/N increase, minimum thickness, and minimum time constant. , shown in the following table.

この表において、S/N増は、第4図を参照して、磁極
片厚さh=oにおけるS/N比と、 S/N比の飽和値
との差を示し、最小厚は、同じく第4図を参照して、S
lN比がその飽和値から3dB減少する磁極片厚さhを
示し、最小時定数は、第5図を参照して、S/N比がそ
の飽和値から3dB減少する時定数を示す。
In this table, the S/N increase indicates the difference between the S/N ratio at the pole piece thickness h=o and the saturation value of the S/N ratio, with reference to FIG. Referring to Figure 4, S
Denotes the pole piece thickness h at which the IN ratio decreases by 3 dB from its saturation value, and the minimum time constant designates, with reference to FIG. 5, the time constant at which the S/N ratio decreases by 3 dB from its saturation value.

この表から明らかなように、上記材料の何れを選択して
も、同様の効果が得られる。
As is clear from this table, similar effects can be obtained no matter which of the above materials is selected.

なお、上記材料のほかに、たとえばフェライト糸の焼結
体も考えられる。しかし、飽和磁化が4kG (0,4
T)以下であるため、電磁石発生磁場が4kOe (3
,2X10sA/m)以下では、磁極片が磁気飽和して
しまう。したがって、フェライト糸の焼結体は、磁気飽
和を生じない3kOe(2、4X 10’A/m)以下
でのみ有効である。
In addition to the above-mentioned materials, for example, a sintered body of ferrite thread can also be considered. However, the saturation magnetization is 4kG (0,4
T) or less, the magnetic field generated by the electromagnet is 4kOe (3
, 2 x 10 sA/m) or less, the magnetic pole piece becomes magnetically saturated. Therefore, sintered bodies of ferrite threads are only effective below 3 kOe (2,4X 10'A/m) where magnetic saturation does not occur.

[発明の効果] 以上詳細に説明したように本発明によれば、渦電流を抑
制することができるので、信号強度を増加させることが
でき、高いS/N比が得られる。
[Effects of the Invention] As described in detail above, according to the present invention, eddy currents can be suppressed, so signal strength can be increased and a high S/N ratio can be obtained.

また、バルクハウゼン・ノイズを著しく低減することが
できるので、短い時定数の測定ができ、測定時間を短縮
することができ、測定精度も向上する。
Further, since Barkhausen noise can be significantly reduced, measurement can be performed with a short time constant, measurement time can be shortened, and measurement accuracy can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の第1の実施例に係る振動試料型磁力
計の薄板積層型磁極片近傍の詳細を示す斜視図、第2図
は、この振動試料型磁力計を示す略示構成図、第3図は
、この振動試料型磁力計の要部を示す正面図、第4図は
、前記薄板積層型磁極片の磁極片厚さ一3/N比特性図
、第5図は。 この薄板積層型磁極片の時定数−S/N比特性図、第6
図は、本発明の第2の実施例に係る振動試料型磁力計の
条束型磁極片近傍の詳細を示す斜視図、第7図は、本発
明の第3の実施例に係る振動試料型磁力計の圧粉成形型
磁極片近傍の詳細を示す斜視図である。 1・・・薄板積層型磁極片、IA・・・条束型磁極片。 IB・・・圧粉成形型磁極片、1a・・・薄板、lb・
・・条体、1c・・・粉体、2・・・ヨーク、2a・・
・磁極面、3・・・励磁コイル、4・・・試料、5・・
・検出コイル、6・・・加振器、7・・・増幅器、10
・・・電磁石、11・・・磁気モーメント。
FIG. 1 is a perspective view showing the details of the vicinity of the thin plate laminated magnetic pole piece of a vibrating sample magnetometer according to the first embodiment of the present invention, and FIG. 2 is a schematic diagram showing the configuration of this vibrating sample magnetometer. 3 is a front view showing the main parts of this vibrating sample type magnetometer, FIG. 4 is a magnetic pole piece thickness -3/N ratio characteristic diagram of the thin plate laminated type magnetic pole piece, and FIG. 5 is a graph showing the pole piece thickness -3/N ratio characteristic. Time constant-S/N ratio characteristic diagram of this thin plate laminated magnetic pole piece, No. 6
The figure is a perspective view showing details of the vicinity of the magnetic pole pieces of the bundle type of the vibrating sample magnetometer according to the second embodiment of the present invention, and FIG. 7 is the vibrating sample type magnetometer according to the third embodiment of the present invention. FIG. 2 is a perspective view showing details of the vicinity of a powder-molded magnetic pole piece of the magnetometer. 1... Thin plate laminated type magnetic pole piece, IA... Strip type magnetic pole piece. IB...Powder molding type magnetic pole piece, 1a...Thin plate, lb.
...Strip body, 1c...Powder, 2...Yoke, 2a...
・Magnetic pole surface, 3... Excitation coil, 4... Sample, 5...
・Detection coil, 6... Exciter, 7... Amplifier, 10
...Electromagnet, 11...Magnetic moment.

Claims (1)

【特許請求の範囲】 1、一対の相対向する磁極面を有するヨークに励磁コイ
ルを巻き、且つ前記磁極面のそれぞれに磁極片を取付け
てなる電磁石の前記磁極片近傍に検出コイルを配設し、
前記励磁コイルへ直流電流を流すことにより前記両磁極
片の間隙に磁場を発生させ、この磁場により磁化した試
料を振動させ、前記検出コイルに発生する誘導起電力を
検出することにより、前記試料の磁気モーメントを測定
することができるようにした振動試料型磁力計において
、磁極片を、不連続体の磁極片にしたことを特徴とする
振動試料型磁力計。 2、不連続体の磁極片を、厚さ1mm以下の薄板を磁極
面と直交する方向に積層した薄板積層型磁極片にしたも
のである特許請求の範囲第1項記載の振動試料型磁力計
。 3、薄板の材料を、高飽和磁性材料にしたものである特
許請求の範囲第2項記載の振動試料型磁力計。 4、不連続体の磁極片を、条厚1mm以下の条体を磁極
面と直交する方向に束ねた条束型磁極片にしたものであ
る特許請求の範囲第1項記載の振動試料型磁力計。 5、条体の材料を、高飽和磁性材料にしたものである特
許請求の範囲第4項記載の振動試料型磁力計。 6、不連続体の磁極片を、粒径約100μmφ以下の粉
体を圧粉成形した圧粉成形型磁極片にしたものである特
許請求の範囲第1項記載の振動試料型磁力計。 7、粉体の材料を、高飽和磁性材料にしたものである特
許請求の範囲第6項記載の振動試料型磁力計。
[Scope of Claims] 1. An excitation coil is wound around a yoke having a pair of opposing magnetic pole faces, and a detection coil is disposed near the magnetic pole piece of an electromagnet having a magnetic pole piece attached to each of the magnetic pole faces. ,
By passing a direct current through the excitation coil, a magnetic field is generated in the gap between the two magnetic pole pieces, the magnetized sample is vibrated by this magnetic field, and the induced electromotive force generated in the detection coil is detected. A vibrating sample magnetometer capable of measuring a magnetic moment, characterized in that the magnetic pole piece is a discontinuous magnetic pole piece. 2. The vibrating sample magnetometer according to claim 1, wherein the discontinuous magnetic pole piece is a thin plate laminated type magnetic pole piece in which thin plates with a thickness of 1 mm or less are laminated in a direction perpendicular to the magnetic pole surface. . 3. The vibrating sample magnetometer according to claim 2, wherein the thin plate is made of a highly saturated magnetic material. 4. The vibrating sample type magnetic force according to claim 1, wherein the discontinuous magnetic pole piece is a bundle-type magnetic pole piece in which strips having a thickness of 1 mm or less are bundled in a direction perpendicular to the magnetic pole surface. Total. 5. The vibrating sample magnetometer according to claim 4, wherein the strip is made of a highly saturated magnetic material. 6. The vibrating sample type magnetometer according to claim 1, wherein the discontinuous magnetic pole piece is a powder-molded magnetic pole piece obtained by compacting powder with a particle size of about 100 μm or less. 7. The vibrating sample magnetometer according to claim 6, wherein the powder material is a highly saturated magnetic material.
JP62054067A 1987-03-11 1987-03-11 Vibration sample magnetometer Expired - Lifetime JPH0772748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054067A JPH0772748B2 (en) 1987-03-11 1987-03-11 Vibration sample magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054067A JPH0772748B2 (en) 1987-03-11 1987-03-11 Vibration sample magnetometer

Publications (2)

Publication Number Publication Date
JPS63221270A true JPS63221270A (en) 1988-09-14
JPH0772748B2 JPH0772748B2 (en) 1995-08-02

Family

ID=12960273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054067A Expired - Lifetime JPH0772748B2 (en) 1987-03-11 1987-03-11 Vibration sample magnetometer

Country Status (1)

Country Link
JP (1) JPH0772748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212453A (en) * 2009-03-10 2010-09-24 Toei Scientific Industrial Co Ltd Electromagnet, and device and system for application of magnetic field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212453A (en) * 2009-03-10 2010-09-24 Toei Scientific Industrial Co Ltd Electromagnet, and device and system for application of magnetic field

Also Published As

Publication number Publication date
JPH0772748B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US7218092B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
JPH0831635A (en) Mri magnetic field generating device
Yu et al. Differential-type GMI magnetic sensor based on longitudinal excitation
JP2010087225A (en) Magnetic oscillator, magnetic sensor and magnetic recording/reproducing system
Lazzari et al. Integrated magnetic recording heads
CN103197263A (en) Small-sized alternating magnetoelectricity sensor with adjustable bias magnetic circuit
JP3580905B2 (en) Magnetic sensor
JP3014319B2 (en) Magnet facing permanent magnet circuit
Nishio et al. More accurate hysteresis curve for large Nd–Fe–B sintered magnets employing a superconducting magnet-based vibrating sample magnetometer
JP2615342B2 (en) Variable magnetoresistance magnetometer for measuring parameters of magnetic materials
CN105974336B (en) A kind of detection method of powder core saturation induction density
US4238734A (en) Apparatus for measuring the magnetic moments of a body using a magnetic field generated by a permanent magnetic
JPS63221270A (en) Vibration sample type magnetometer
JP4541136B2 (en) Magnetic body detection sensor and magnetic body detection line sensor
US6937018B2 (en) Systems and methods for fabricating pole pieces for magnetic resonance imaging systems
JP3618425B2 (en) Magnetic sensor
JP2514338B2 (en) Current detector
Nakata et al. Numerical analysis of flux distribution in permanent-magnet stepping motors
JP3512250B2 (en) Magnetic image detection device and detection method
KR20100006969A (en) Composite of conife ternary series alloy thin film for magnetic induction type nondestructive sensor
JPH0763832A (en) Magnetic sensor and method for detecting magnetic field
JPH04339309A (en) Magneto-resistance effect element using multilayred magneto-resistance effect film
JPS5936330B2 (en) magnetic head
JPS5919213A (en) Vertically magnetized recording head
Baran Core magnet assembly with anisotrophic AlNiCo permanent magnets