JPS63220603A - Ceramic waveguide filtering circuit - Google Patents

Ceramic waveguide filtering circuit

Info

Publication number
JPS63220603A
JPS63220603A JP5314887A JP5314887A JPS63220603A JP S63220603 A JPS63220603 A JP S63220603A JP 5314887 A JP5314887 A JP 5314887A JP 5314887 A JP5314887 A JP 5314887A JP S63220603 A JPS63220603 A JP S63220603A
Authority
JP
Japan
Prior art keywords
filter circuit
ceramic
shape
waveguide
shaped body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5314887A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konishi
小西 良弘
Kenichi Konno
健一 今野
Ikuo Awai
郁雄 粟井
Hideo Hikima
引馬 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNIDEN KK
Uniden Corp
Original Assignee
YUNIDEN KK
Uniden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNIDEN KK, Uniden Corp filed Critical YUNIDEN KK
Priority to JP5314887A priority Critical patent/JPS63220603A/en
Publication of JPS63220603A publication Critical patent/JPS63220603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To simplify a manufacturing process and to decrease a transmission loss by executing a conductive film approximately to the whole circumferential surface of a ceramic bar-shaped body, forming the waveguide of a transmitting area and an interrupting area and obtaining a necessary filtering characteristic with a conductive body element only to extend in the direction orthogonal to one side surface. CONSTITUTION:For example, at the whole circumferential surface of four side surfaces and both edge surfaces in a ceramic bar-shaped body 1 of a square cross section, a conductive body coat 2 is executed. The conductive body element to extend in the direction orthogonal to the shaft of the ceramic bar-shaped body 1 is formed. Thus, the ceramic bar-shaped body 1, in which the whole circumferential surface is approximately covered by the conductive body coat 2, is operated as an interrupting waveguide to the microelectromagnetic wave of a frequency area not to exceed the interrupting frequency determined by the shape dimension of the cross section. Consequently, to the whole circumferential surface of the ceramic bar-shaped body 1, the conductive body coat 2 is executed, a conductive body element idly separated from the circumferential surface conductive body coat 2 to both edge parts is penetrated in the direction orthogonal to the shaft and only made into input output combining elements 3 and 4, and therefore, the circuit can be easily constituted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内部空間に誘電体を充填して小型化した導波
管内に所要周波数領域のマイクロ波を選択的に伝播させ
るセラミック導波管型濾波回路に関し、特に、構造を簡
単化して製造容易とするのみならず、従来と同等以上の
高性能が得られるようにしたものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a ceramic waveguide that selectively propagates microwaves in a desired frequency range within a miniaturized waveguide whose internal space is filled with a dielectric. Regarding the type filter circuit, in particular, the structure is not only simplified and manufactured easily, but also high performance equivalent to or higher than that of the conventional filter can be obtained.

(従来の技術) この種セラミック導波管型濾波回路としては、従来、専
ら、セラミック棒状体の一端面を除く全外周面に導電体
被膜を施すとともに、中心部に軸方向の小孔を貫通させ
てその内周面にも導電体被膜を施したZ波長同軸同調回
路を導波系における電磁波進行方向に複数個配列してそ
れぞれの中心導体部を順次に容量結合させた同軸型濾波
回路が用いられていた。
(Prior Technology) Conventionally, this type of ceramic waveguide type filter circuit has been constructed by applying a conductive coating to the entire outer circumferential surface of a ceramic rod except for one end surface, and by penetrating a small hole in the axial direction in the center. A coaxial filter circuit is constructed by arranging a plurality of Z-wavelength coaxial tuning circuits whose inner peripheral surfaces are also coated with a conductive material in the direction of electromagnetic wave propagation in the waveguide system, and sequentially capacitively coupling the central conductor portions of each circuit. It was used.

(発明が解決しようとする問題点) しかしながら、上述した従来の同軸型濾波回路は、同軸
同調回路の相互間における中心導体部の容量結合を得る
ための構造が複雑となって製造時に手間が掛るのみなら
ず、セラミック同軸回路のQ値を十分に大きくとり得す
、伝送損失が大きくなる、という問題点があった。
(Problems to be Solved by the Invention) However, in the conventional coaxial filter circuit described above, the structure for obtaining capacitive coupling of the center conductor portions between the coaxial tuned circuits is complicated, and it takes time and effort to manufacture it. In addition, there were problems in that the Q value of the ceramic coaxial circuit could be sufficiently large, resulting in increased transmission loss.

(問題点を解決するための手段) 本発明の目的は、上述した従来の問題点を解決し、導波
系における電磁波進行方向の素子間結合構造を簡単化し
て従来に比し格段に製造容易にするとともに伝送損失を
軽減したセラミック導波管型濾波回路を提供することに
ある。
(Means for Solving the Problems) An object of the present invention is to solve the above-mentioned conventional problems, simplify the coupling structure between elements in the direction of electromagnetic wave propagation in a waveguide system, and make manufacturing much easier than in the past. It is an object of the present invention to provide a ceramic waveguide type filter circuit which can reduce transmission loss.

すなわち、本発明によるセラミック導波管型濾波回路は
、セラミック棒状体のほぼ全周面に導電被膜を施して伝
送域もしくは遮断域の導波管を形成するとともに、その
導波管内には、管軸方向に延在する導電体素子は設けず
、−側面に直交する方向に延在する導電体素子のみによ
って所要の濾波特性が得られるようにすることにより、
製造工程を著しく簡単化し得るとともに伝送損失を軽減
し得るようにしたものであり、所定形状寸法の横断面を
有する所定長のセラミック棒状体の側面および両端面の
ほぼ全面に亘り導電材被膜を設けて前記横断面の形状寸
法に応じ伝播域もしくは遮断域をなす導波管を形成し、
当該導波管の両端部にそれぞれ所定形状の導電体素子よ
りなる入出力結合要素を設け、当該入出力結合要素の相
互間に、前記セラミック棒状体の横断面における導電体
被膜の形状寸法もしくは当該形状寸法の管軸方向におけ
る周期的変化に対応した周波数領域の電磁波を選択的に
伝播させるようにしたことを特徴とするものである。
That is, in the ceramic waveguide type filter circuit according to the present invention, a conductive coating is applied to almost the entire circumferential surface of a ceramic rod-shaped body to form a waveguide in a transmission region or a cutoff region. By not providing any conductive elements extending in the axial direction, but by ensuring that the required filtering characteristics are obtained only by the conductive elements extending in the direction orthogonal to the side surfaces,
This method significantly simplifies the manufacturing process and reduces transmission loss, and a conductive material coating is provided over almost the entire side and both end surfaces of a ceramic rod-shaped body of a predetermined length and a cross section of a predetermined shape and size. to form a waveguide forming a propagation region or a cutoff region depending on the shape and size of the cross section,
Input/output coupling elements each made of a conductor element having a predetermined shape are provided at both ends of the waveguide, and the shape and size of the conductor coating in the cross section of the ceramic rod-shaped body or the It is characterized by selectively propagating electromagnetic waves in a frequency range corresponding to periodic changes in shape and dimensions in the tube axis direction.

(作 用) したがって、本発明によれば、優れた濾波性能を有する
セラミック導波管型濾波回路を極めて容易に製造するこ
とができる。
(Function) Therefore, according to the present invention, a ceramic waveguide type filter circuit having excellent filtering performance can be manufactured extremely easily.

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

まず、本発明セラミック導波管型濾波回路の最も簡単な
構成例として高域通過濾波回路をなすものを第1図(a
)に示す。図示の構成例においては、十分な遮断減衰量
を得るに必要な長さを有する例えば方形横断面のセラミ
ック棒状体1における西側面および両端面の全周面に導
電体被膜2を施し、その対向2側面A、Bの両端部にお
いて、第1図(b)に示すように、微小領域の導電体被
膜2を除去し、露出したセラミック棒状体1に細孔を貫
通させ、その細孔の内周面に導電体被膜を施すなどして
セラミック棒状体1の軸に直交する方向に延在する導電
体素子を形成し、両端部のかかる導電体素子を入出力結
合要素3および4として外部導波路にそれぞれ接続する
First, as an example of the simplest configuration of the ceramic waveguide filter circuit of the present invention, a high-pass filter circuit is shown in FIG.
). In the illustrated configuration example, a conductor coating 2 is applied to the entire circumferential surface of the west side and both end surfaces of a ceramic rod-shaped body 1 having a rectangular cross section and having a length necessary to obtain a sufficient amount of cutoff attenuation. At both ends of the two side surfaces A and B, as shown in FIG. 1(b), the conductor coating 2 in minute areas is removed, the exposed ceramic rod-shaped body 1 is penetrated with pores, and the inside of the pores is penetrated. A conductive element extending in a direction perpendicular to the axis of the ceramic rod-shaped body 1 is formed by applying a conductive coating to the circumferential surface, and the conductive elements at both ends are used as input/output coupling elements 3 and 4 as external conductors. Connect to each wave path.

上述のようにほぼ全周面を導電体被膜2により被ったセ
ラミック棒状体1は、その横断面の形状寸法によって決
まる遮断周波数を超えない周波数領域のマイクロ電磁波
に対しては遮断導波管として作用し、その遮断周波数を
超えた周波数領域のマイクロ電磁波に対しては通常の導
波管として作用する。したがって、適切な形状寸法のセ
ラミック棒状体1の全周面に導電体被膜2を施すととも
に、両端部にその周面導電体被膜2から遊離した導電体
素子を軸に直交する方向に貫通させて入出結合要素3,
4とするだけの極めて簡単で製造容易な構成によりマイ
クロ波の高域通過濾波回路を得ることができる。
As mentioned above, the ceramic rod-shaped body 1 whose almost entire circumferential surface is covered with the conductive film 2 acts as a cut-off waveguide for microelectromagnetic waves in a frequency range that does not exceed the cut-off frequency determined by the shape and dimensions of its cross section. However, it acts as a normal waveguide for microelectromagnetic waves in a frequency range exceeding its cutoff frequency. Therefore, a conductive coating 2 is applied to the entire circumferential surface of a ceramic rod-shaped body 1 having an appropriate shape and dimensions, and conductive elements separated from the circumferential conductive coating 2 are passed through both ends in a direction perpendicular to the axis. Input/output connection element 3,
A microwave high-pass filter circuit can be obtained with an extremely simple and easy-to-manufacture configuration of only 4.

上述したところに比すれば構成はやや複雑であるが同様
に製造容易な低域通過濾波回路をなす本発明濾波回路の
構成例を第2図(a)に示す。図示の構成例においては
、第1図(a)に示した構成例とほぼ同様に構成したセ
ラミック棒状体1の横断面の形状寸法を少なくとも所要
周波数領域において導波管内が伝送域となるように設定
するとともに、入出力結合要素3.4をなす導電体素子
が貫通する対向2側面A、Bに、第2図(b)に示すよ
うに、適切な形状寸法の例えば同一方形の凹欠部5aお
よび5bをそれぞれ軸方向の行列に対向配置して設け、
かかる凹欠部5a 、 5bの内周面を含めてセラミッ
ク棒状体1のほぼ全周面に導電体被膜2を施しである。
FIG. 2(a) shows an example of the configuration of the filter circuit of the present invention, which is a low-pass filter circuit that is somewhat more complex than the one described above but is similarly easy to manufacture. In the illustrated configuration example, the shape and dimensions of the cross section of the ceramic rod-shaped body 1, which is configured almost in the same manner as the configuration example shown in FIG. At the same time, as shown in FIG. 2(b), on the two opposing sides A and B through which the conductor element forming the input/output coupling element 3.4 passes, recesses of appropriate shapes and dimensions, for example, the same one-sided shape, are formed. 5a and 5b are arranged facing each other in an axial matrix,
A conductive coating 2 is applied to almost the entire circumferential surface of the ceramic rod-shaped body 1, including the inner circumferential surfaces of the recessed notches 5a and 5b.

かかる構成のセラミック棒状体1においては、相対向す
る凹欠部5a 、 5bの対向底面間がそれぞれ容量C
として作用するとともに、相隣る凹欠部相互間の突出部
がインダクタンスLとして作用する。したがって、両端
部の入出力結合要素3.4間の対向2側面A、Bにそれ
ぞれ複数個のイングクタンス素子りを直列に接続すると
ともに、イングクタンス素子りの相互接続点間に並列に
複数個の容量素子Cをそれぞれ接続した4端子回路網と
同等の低域通過濾波特性を呈することができ、セラミッ
ク棒状体1の横断面の形状寸法、並びに、凹欠部5a 
、 5bの形状寸法および間隔を適切に設定して所要の
濾波特性を有する低域通過濾波回路を製造容易に得るこ
とができる。
In the ceramic rod-shaped body 1 having such a configuration, the capacitance C is between the opposing bottom surfaces of the opposing recessed portions 5a and 5b.
At the same time, the protrusions between adjacent recessed portions act as an inductance L. Therefore, a plurality of inductance elements are connected in series on two opposite sides A and B between the input/output coupling elements 3.4 at both ends, and a plurality of inductance elements are connected in parallel between the interconnection points of the inductance elements. It is possible to exhibit low-pass filtering characteristics equivalent to a four-terminal circuit network in which capacitive elements C are respectively connected.
, 5b can be appropriately set to easily manufacture a low-pass filter circuit having desired filtering characteristics.

しかして、第1図に示した高域通過濾波回路とする構成
例における高域の通過帯域に第3図(b)に示すような
ノツチ特性を付与するようにした場合における本発明セ
ラミック導波管型濾波回路の構成例を第3図(a)に示
す。図示の構成例は、第1図に示した構成例と全く同様
に低域の電磁波に対して遮断領域として作用する形状寸
法に構成した全周面導電体被覆のセラミック棒状体1に
おけるE面横断面幅を第3図(b)に示した通過帯域特
性における遮断波長λ。の+に設定するとともに、対向
2側面A、B間に管軸に直交する方向の細孔6を一方の
側縁Cに寄せて貫通させ、かかる細孔6をλ9 管内波長λ9に対しn−の間隔で管軸方向に配列し、各
細孔6の内周面にノツチ周波数ftに対してハ/4の高
さまで導電体被膜を施すことにより、第3図(ハ)に示
すように通過帯域に所望周波数f、のノツチを入れるよ
うにしたものである。
Therefore, the ceramic waveguide of the present invention when the high pass band in the configuration example of the high-pass filter circuit shown in FIG. 1 is given a notch characteristic as shown in FIG. 3(b). An example of the configuration of a tube filter circuit is shown in FIG. 3(a). The illustrated configuration example is a cross-sectional view of the E-plane of a ceramic rod-shaped body 1 whose entire circumference is coated with a conductive material and whose shape and dimensions act as a blocking area for low-frequency electromagnetic waves, just like the configuration example shown in FIG. The cutoff wavelength λ in the passband characteristic whose surface width is shown in FIG. 3(b). At the same time, a pore 6 in the direction perpendicular to the tube axis is passed through between the two opposing sides A and B, moving toward one side edge C, and the pore 6 is By applying a conductive film to the inner circumferential surface of each pore 6 to a height of C/4 with respect to the notch frequency ft, as shown in FIG. A notch at a desired frequency f is inserted into the band.

第3図に示した構成例においては、通過帯域にノツチを
入れるための導電体素子6を、入出力結合要素3.4の
例と同様に、セラミック棒状体1を貫通する細孔の内周
面に導電体被膜を施すことによって形成したが、ノツチ
用導電体素子6および入出力結合要素3.4を、いずれ
も、セラミック棒状体の側縁Cおよび両端面に施した導
電管被膜2を兼用して形成し、構成を著しく簡単化して
一層製造容易にした場合における本発明濾波回路の構成
例を第4図に示す。図示の構成例においては、セラミッ
ク棒状体1の側縁Cおよび両端面に施した導電体被膜2
の各一部分を図示のように切除して適切な形状寸法に遊
離させることにより、ノツチ用導電体素子6Sおよび入
出力結合要素3S 。
In the configuration example shown in FIG. 3, the conductive element 6 for making a notch in the passband is placed on the inner periphery of a pore penetrating the ceramic rod-shaped body 1, similar to the example of the input/output coupling element 3.4. The notch conductor element 6 and the input/output coupling element 3.4 are both formed by applying a conductive film to the side edge C and both end faces of the ceramic bar body. FIG. 4 shows an example of the configuration of the filter circuit of the present invention in which the filter circuit is formed to be used in combination, and the configuration is significantly simplified and manufacturing is further facilitated. In the illustrated configuration example, a conductive coating 2 is applied to the side edge C and both end surfaces of the ceramic rod-shaped body 1.
The notch conductive element 6S and the input/output coupling element 3S are cut out as shown in the figure to separate them into appropriate shapes and dimensions.

4Sをストリップ線路状に形成し、第3図の構成例とほ
ぼ同様の通過帯域特性を呈するようにしてあり、セラミ
ック棒状体1の全周面に図示の形状寸法の欠除部を有す
る導電体被膜2を被着するのみの極めて簡単な工程によ
り所要の通過帯域特性を有するマイクロ波ノツチフィル
タを得ることができる。
4S is formed in the shape of a strip line so as to exhibit almost the same pass band characteristics as the configuration example shown in FIG. A microwave notch filter having the required passband characteristics can be obtained by an extremely simple process of just depositing the coating 2.

つぎに、前述した高域通過および低域通過の濾波回路と
同様に、はぼ全周面に導電体被膜2を施して両端部に入
出力結合要素3.4を設けたセラミック棒状体1がなす
セラミック導波管型の導波路に対し、基本的には管軸に
直交する方向に延在する導電体要素を電磁波の進行方向
に沿い種々の形態に配列することにより、マイクロ波通
信装置に多用する帯域通過濾波回路とした場合における
本発明セラミック導波管型濾波回路の構成を第5図乃至
第10図に示す。
Next, similar to the high-pass and low-pass filter circuits described above, a ceramic rod-shaped body 1 is provided with a conductive coating 2 on almost its entire circumference and input/output coupling elements 3.4 at both ends. By arranging conductor elements that extend perpendicularly to the waveguide axis in a variety of configurations along the direction of electromagnetic wave propagation, microwave communication devices can be developed. The configuration of the ceramic waveguide type filter circuit of the present invention when used as a frequently used band-pass filter circuit is shown in FIGS. 5 to 10.

まず、本発明によるセラミック導波管型の帯域通過濾波
回路の基本的構成例を第5図に示す。図示の構成例は、
導電体被膜2によりほぼ全周面を被った方形横断面を有
するセラミック棒状体1がなす遮断導波路における両端
部の入出力結合要素3.4間に、軸に直交して対向2側
面A、B間に延在する好ましくはほぼλ、/4の長さを
有する単一もしくは複数個ずつの導電体素子6をほぼλ
、/2の間隔で軸方向に配列することにより、はぼ管内
波長λ9を有するマイクロ電磁波のみ選択的に入出力結
合要素3,4間を通過させるようにしたものであり、導
電体素子6は、セラミック棒状体1を貫通する細孔の内
周面に導電体被膜を施して形成するのが好適である。
First, an example of the basic configuration of a ceramic waveguide type bandpass filter circuit according to the present invention is shown in FIG. The illustrated configuration example is
Between the input/output coupling elements 3.4 at both ends of the cut-off waveguide formed by the ceramic rod-shaped body 1 having a rectangular cross-section whose almost entire circumferential surface is covered with a conductive film 2, two opposing side surfaces A, perpendicular to the axis; A conductive element 6 extending between B and having a length of approximately λ, /4 is preferably connected to
By arranging them in the axial direction at intervals of . It is preferable to form the ceramic rod-shaped body 1 by applying a conductive coating to the inner circumferential surface of the pore passing through it.

ところで、方形導波管のE面の中心線に沿って管軸方向
に凹欠溝(トラフ)を設けた形態のトラフ型導波管にお
ける電磁波伝搬の態様はつねにE面の中心線に対して対
称となる。したがって、第5図示の帯域通過濾波回路を
かかるトラフ型導波管の形態に構成する場合には、第6
図に示すように、方形横断面を有するセラミック棒状体
1の例えば側面Aに管軸方向の凹欠溝7を形成し、その
凹欠溝7の両端部に入出力結合要素3.4を設けるよ・
うにして凹欠溝7の内周面をも含めてセラミック棒状体
1の全周面に導電体被膜2を施し、凹欠溝7を挟む左右
の側面Aに対称に導電体素子6を配列することになる。
By the way, the mode of electromagnetic wave propagation in a trough-type waveguide in which a trough is provided in the tube axis direction along the centerline of the E-plane of a rectangular waveguide is always relative to the centerline of the E-plane. It becomes symmetrical. Therefore, when the bandpass filter circuit shown in FIG.
As shown in the figure, a notched groove 7 in the tube axis direction is formed on, for example, a side surface A of a ceramic rod-shaped body 1 having a rectangular cross section, and input/output coupling elements 3.4 are provided at both ends of the notched groove 7. Yo·
In this way, a conductive coating 2 is applied to the entire circumferential surface of the ceramic rod-shaped body 1, including the inner circumferential surface of the notched groove 7, and conductive elements 6 are arranged symmetrically on the left and right side surfaces A that sandwich the notched groove 7. I will do it.

しかして、トラフ型導電管においては、上述したように
E面の中心線に対して左右対称に電磁波伝搬が行なわれ
るのでるから、トラフ型導波管を凹欠溝7に沿って1分
したいずれか一方の半裁導波管のみによっても全く同様
に電磁波を伝搬させることができる。したがって、第6
図示の構成例を凹欠溝7に沿って1分するとともに、例
えば図示の左側半裁導波管のセラミック棒状体1内に設
けである導電体素子6を、第4図示の構成例に做い、凹
欠溝7に沿った載断面に施す導電体被膜2の一部を切除
して裁断面上に設けることもできる。
In the trough-type conductive tube, as mentioned above, electromagnetic waves propagate symmetrically with respect to the center line of the E plane. Electromagnetic waves can be propagated in exactly the same way using only one of the half-cut waveguides. Therefore, the sixth
The illustrated configuration example is divided into one segment along the notched groove 7, and the conductive element 6 provided in the ceramic rod-shaped body 1 of the illustrated left half waveguide is, for example, taken as the configuration example illustrated in the fourth figure. It is also possible to cut out a part of the conductor coating 2 applied to the mounting surface along the groove 7 and provide it on the cut surface.

かかる半裁導波管の形態にした本発明による帯域通過濾
波回路の構成例を第7図に示す。図示の構成例において
は、第6図に示したトラフ型導波管のセラミック棒状体
1を凹欠溝7に沿って半裁したものの載断面りに、第6
図に示した入出結合要素3,4および帯域濾波のための
導電体素子6に相当するパターンの導電体被膜を設けた
ものである。すなわち、半裁セラミック棒状体1の側面
Aの両端部における導電体被膜2を一部除去した位置に
管軸に直交する方向の帯状導電体被膜を形成して入出力
結合要素3.4とし、また、導電体素子6に対応する位
置に管軸に直交する方向の帯状導電体被膜6Sを形成し
、その両端を上下の側面A、Bに被着した導電体被膜2
にそれぞれ接続するとともに、中間部にスリット8を設
けて容量Cを構成し、スリット幅により容量Cを調整し
て遅波回路素子として作用する帯状導電体被膜6Sの濾
波特性を変化させる。さらに、相隣る帯状導電体被膜6
Sの中間に、上下の側面A、Bの導電体被膜2に両端を
それぞれ接続して管軸に直交する方向の帯状導電体被膜
9を形成し、遅波回路各段間を分離してその膜幅により
相互間の結合度を調整し得るようにし、裁断面り上のか
かる導電体パターンにより第6図示の構成例と同等の帯
域濾波特性が得られるようになる。なお、セラミック棒
状体1の誘電率が充分に大きければ、裁断面り上の導電
体パターンはストリップ線路と同様に作用するので、か
かる導電体パターンから漏洩する電界放射はほとんど生
じない。
FIG. 7 shows an example of the configuration of a bandpass filter circuit according to the present invention in the form of such a half-cut waveguide. In the illustrated configuration example, the ceramic rod-shaped body 1 of the trough-type waveguide shown in FIG.
A conductive film having a pattern corresponding to the input/output coupling elements 3 and 4 and the conductive element 6 for bandpass filtering shown in the figure is provided. That is, a strip-shaped conductor coating is formed in a direction perpendicular to the tube axis at the position where the conductor coating 2 is partially removed at both ends of the side surface A of the half-cut ceramic rod-shaped body 1, and the input/output coupling element 3.4 is formed. , a conductor coating 2 in which a strip-shaped conductor coating 6S is formed in a direction perpendicular to the tube axis at a position corresponding to the conductor element 6, and both ends of the band-shaped conductor coating 6S are attached to the upper and lower side surfaces A and B.
A slit 8 is provided in the intermediate portion to form a capacitor C, and the capacitor C is adjusted by the slit width to change the filtering characteristics of the strip-shaped conductive film 6S that acts as a slow wave circuit element. Further, adjacent strip-shaped conductor coatings 6
In the middle of S, a strip-shaped conductive film 9 is formed in the direction perpendicular to the tube axis by connecting both ends to the conductive films 2 on the upper and lower sides A and B, and separates each stage of the slow wave circuit. The degree of mutual coupling can be adjusted by adjusting the film width, and bandpass filtering characteristics equivalent to the configuration example shown in FIG. 6 can be obtained by such a conductive pattern on the cut surface. Note that if the dielectric constant of the ceramic rod-shaped body 1 is sufficiently large, the conductor pattern on the cut surface acts in the same manner as a strip line, so that almost no electric field radiation leaks from the conductor pattern.

つぎに、第7図示の構成例において遅波回路各段間を分
離して相互間の結合度を調整するために、裁断面り上に
帯状導電体被膜6Sを形成する替わりに、対向側面に管
軸に直交する方向の凹欠部10を形成した場合の構成例
を第8図に示す。図示の構成例において′は、帯域濾波
特性を得るための導電体パターンを設けた裁断面りに対
向したセラミック棒状体の側面において帯状導電体被膜
6Sに対応する位置に例えば方形の凹欠部を形成し、そ
の形状寸法に応じて帯状導電体被膜6S相互間の結合度
を調整し得るようにしである。
Next, in the configuration example shown in FIG. 7, in order to separate each stage of the slow-wave circuit and adjust the degree of coupling between them, instead of forming the strip-shaped conductive film 6S on the cut surface, the band-shaped conductive film 6S is formed on the opposite side surface. FIG. 8 shows an example of a configuration in which a recessed portion 10 is formed in a direction perpendicular to the tube axis. In the illustrated configuration example, ' is a rectangular recessed part, for example, at a position corresponding to the band-shaped conductor coating 6S on the side surface of the ceramic rod-shaped body facing the cut section provided with the conductor pattern for obtaining band-pass filtering characteristics. The degree of bonding between the band-shaped conductor coatings 6S can be adjusted depending on the shape and size of the conductor coatings.

しかして、半裁セラミック棒状体1の誘電率が充分大き
い場合には、前述したように、半裁セラミック棒状体1
の裁断面りに第7図あるいは第8図に示したような導電
体パターンを形成しただけでも漏洩電界放射はほとんど
生じないが、半裁セラミック棒状体1の誘電率が充分に
は大きくない場合には裁断面りからの漏洩電界放射を抑
制する必要がある。かかる場合における本発明濾波回路
の構成例を第9図および第10図にそれぞれ示す。
However, if the dielectric constant of the half-cut ceramic rod-shaped body 1 is sufficiently large, as described above, the half-cut ceramic rod-shaped body 1
Even if a conductor pattern as shown in FIG. 7 or 8 is formed on the cut surface of the ceramic bar, almost no leakage electric field radiation occurs, but if the dielectric constant of the half-cut ceramic bar 1 is not large enough, It is necessary to suppress leakage electric field radiation from the cutting section. Examples of the configuration of the filter circuit of the present invention in such a case are shown in FIGS. 9 and 10, respectively.

図示の各構成例においては、半裁セラミック棒状体1の
裁断面りにおける第7図あるいは第8図に示した導電体
パターンの間隙からの漏洩電界放射を低減するために、
他の側面に施しである導電体被膜2と同様に、連続した
導電体被膜11を裁断面りに設けて前述した導電体パタ
ーンの部分を局限してあり、第9図に示す構成例におい
ては導電体パターンの部分を裁断面りの下線に沿って設
け、また、第10図に示す構成例においては、それぞれ
連続した導電体被膜11と12とにより挟んだ中央領域
に設けである。
In each illustrated configuration example, in order to reduce leakage electric field radiation from the gap between the conductor patterns shown in FIG. 7 or 8 in the cut section of the half-cut ceramic rod-shaped body 1,
Similar to the conductive film 2 applied to the other side surfaces, a continuous conductive film 11 is provided on the cut surface to localize the aforementioned conductive pattern, and in the configuration example shown in FIG. The conductive pattern portion is provided along the underline of the cut section, and in the configuration example shown in FIG. 10, it is provided in the central region sandwiched between continuous conductive films 11 and 12, respectively.

(発明の効果) 以上の説明から明らかなように、本発明によれば、内部
空間に誘電体を充填して小型化したセラミック導電管に
各種の周波数帯域選択手段を施してマイクロ波を選択的
に伝搬させるセラミック導波管型濾波回路を、極めて簡
単な構成乃至構造により製造容易に実現し得るのみなら
ず、従来と同等以上の優れた濾波特性が得られるという
格別の効果を挙げることができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, various frequency band selection means are applied to the ceramic conductive tube, which is miniaturized by filling the internal space with a dielectric material, to selectively transmit microwaves. Not only is it possible to easily manufacture a ceramic waveguide type filter circuit that allows propagation to occur due to its extremely simple configuration and structure, but it also has the exceptional effect of providing excellent filtering characteristics that are equal to or better than conventional ones. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は本発明セラミック導波管型
濾波回路の高域通過濾波回路としての構成例をそれぞれ
示す斜視図および一部縦断面図、第2図(a)およびG
)は同じくその低域通過濾波回路としての構成例をそれ
ぞれ示す斜視図および縦断面図、 第3図(a)および(ハ)は同じくそのノックフィルタ
としての構成例およびその周波数特性の例をそれぞれ示
す斜視図および特性曲線図、 第4図は同じくそのノツチフィルタとしての他の構成例
を示す斜視図、 第5図は同じくその帯域通過濾波回路としての構成例を
示す斜視図、 第6図は同じくその帯域通過濾波回路としての他の構成
例を示す斜視図、 第7図乃至第1O図は同じく半裁トラフ導波管を用いた
帯域通過濾波回路としての構成例をそれぞれ示す斜視図
である。 1・・・セラミック棒状体  2・・・導電体被膜゛ 
3,4・・・入出力結合要素 5a、 5b・・・凹欠部 6・・・導電体素子 3S、 43.6S 、 9・・・帯状導電体被膜7・
・・凹欠溝(トラフ)  8・・・スリット10・・・
凹欠部       11.12・・・導電体被膜第7
図 第8図 第9図 第1O図
FIGS. 1(a) and (b) are a perspective view and a partial longitudinal sectional view respectively showing a configuration example of a ceramic waveguide type filter circuit of the present invention as a high-pass filter circuit, and FIGS. 2(a) and 1(b) are
) is a perspective view and a longitudinal cross-sectional view respectively showing an example of its configuration as a low-pass filter circuit, and FIGS. 3(a) and (c) are an example of its configuration as a knock filter and an example of its frequency characteristics, respectively. FIG. 4 is a perspective view showing another example of the configuration as a notch filter, FIG. 5 is a perspective view showing an example of the configuration as a bandpass filter circuit, and FIG. Similarly, FIGS. 7 to 10 are perspective views showing other configuration examples of the band-pass filter circuit, respectively. FIGS. 1...Ceramic rod-shaped body 2...Conductor coating
3, 4... Input/output coupling elements 5a, 5b... Recessed portion 6... Conductor element 3S, 43.6S, 9... Band-shaped conductor coating 7.
...Trough 8...Slit 10...
Concave cutout 11.12...Conductor coating 7th
Figure 8 Figure 9 Figure 1O Figure

Claims (1)

【特許請求の範囲】 1、所定形状寸法の横断面を有する所定長のセラミック
棒状体の側面および両端面のほぼ全面に亘り導電材被膜
を設けて前記横断面の形状寸法に応じ伝播域もしくは遮
断域をなす導波管を形成し、当該導波管の両端部にそれ
ぞれ所定形状の導電体素子よりなる入出力結合要素を設
け、当該入出力結合要素の相互間に、前記セラミック棒
状体の横断面における導電体被膜の形状寸法もしくは当
該形状寸法の管軸方向における周期的変化に対応した周
波数領域の電磁波を選択的に伝播させるようにしたこと
を特徴とするセラミック導波管型濾波回路。 2、前記セラミック棒状体の横断面の形状寸法によって
前記導波管の遮断周波数を設定し、当該遮断周波数を超
えた周波数領域の電磁波を前記入出力結合要素の相互間
に選択的に伝播させることにより、高域通過濾波回路と
したことを特徴とする特許請求の範囲第1項記載のセラ
ミック導波管型濾波回路。 3、前記セラミック棒状体の横断面における導電体被膜
の形状寸法を管軸方向に周期的に変化させて当該形状寸
法の変化の周期に対応した周波数領域の電磁波を前記入
出力結合要素の相互間に選択的に伝播させることにより
、帯域通過濾波回路としたことを特徴とする特許請求の
範囲第1項記載のセラミック導波管型濾波回路。 4、前記セラミック棒状体における所定の一側線近傍の
側面領域から当該側面領域にほぼ直交して前記セラミッ
ク棒状体の凹欠面上もくは側面上に延在する導電体被膜
の形状寸法を管軸方向に周期的に変化させて当該形状寸
法の変化の周期に対応した周波数領域の電磁波を前記入
出力結合要素の相互間に選択的に伝播させることにより
、帯域通過濾波回路としたことを特徴とする特許請求の
範囲第3項記載のセラミック導波管型濾波回路。 5、前記セラミック棒状体における所定の一側線近傍の
側面領域から当該側面領域にほぼ直交して前記セラミッ
ク棒状体の凹欠面上もしくは側面上に延在する導電体被
膜素子を管軸方向にほぼ等間隔に配列して当該等間隔に
対応した周波数領域の電磁波を前記入出力結合要素の相
互間に選択的に伝播させることにより、帯域通過濾波回
路としたことを特徴とする特許請求の範囲第3項記載の
セラミック導波管型濾波回路。 6、前記横断面を方形にした前記セラミック棒状体の互
いに対応する両側面にほぼ同一形状寸法の凹欠部を少な
くとも一列管軸方向に等間隔に対向配置して前記凹欠部
の形状寸法および間隔によって決まる遮断周波数を超え
ない周波数領域の電磁波を前記入出結合要素の相互間に
選択的に伝播させることにより、低域通過濾波回路とし
たことを特徴とする特許請求の範囲第1項記載のセラミ
ック導波管型濾波回路。
[Scope of Claims] 1. A conductive material coating is provided over almost the entire side surface and both end surfaces of a ceramic rod-shaped body of a predetermined length having a cross section of a predetermined shape and size, and a propagation region or a block is formed depending on the shape and size of the cross section. A waveguide is formed, and input/output coupling elements each made of a conductor element of a predetermined shape are provided at both ends of the waveguide. 1. A ceramic waveguide type filter circuit, characterized in that electromagnetic waves in a frequency range corresponding to the shape and size of a conductor coating on a surface or periodic changes in the shape and size in the tube axis direction are selectively propagated. 2. Setting a cutoff frequency of the waveguide depending on the shape and size of the cross section of the ceramic rod, and selectively propagating electromagnetic waves in a frequency range exceeding the cutoff frequency between the input/output coupling elements. A ceramic waveguide type filter circuit according to claim 1, wherein the ceramic waveguide type filter circuit is a high-pass filter circuit. 3. The shape and dimensions of the conductor coating in the cross section of the ceramic rod-shaped body are periodically changed in the tube axis direction, and electromagnetic waves in a frequency range corresponding to the period of change in the shape and dimension are transmitted between the input and output coupling elements. 2. The ceramic waveguide type filter circuit according to claim 1, wherein the ceramic waveguide type filter circuit is made into a band pass filter circuit by selectively propagating the waveguide. 4. The shape and dimensions of the conductor coating extending from a side area near a predetermined one side line of the ceramic rod-like body to the side surface area and on the concave cut surface or side surface of the ceramic rod-like body are determined. A bandpass filter circuit is formed by selectively propagating electromagnetic waves in a frequency range that corresponds to the cycle of changes in the shape and dimensions by changing them periodically in the axial direction between the input and output coupling elements. A ceramic waveguide filter circuit according to claim 3. 5. A conductive coating element extending from a side surface area near a predetermined one side line of the ceramic rod-like body on the concave cutout surface or side surface of the ceramic rod-like body substantially perpendicularly to the side surface area in the tube axis direction. A bandpass filter circuit is formed by arranging the input/output coupling elements at equal intervals and selectively propagating electromagnetic waves in a frequency range corresponding to the equal intervals between the input/output coupling elements. The ceramic waveguide filter circuit according to item 3. 6. At least one row of recessed portions having substantially the same shape and dimensions are arranged facing each other at equal intervals in the tube axis direction on both corresponding side surfaces of the ceramic rod-shaped body having a rectangular cross section, and the shape and size of the recessed portions are adjusted. Claim 1, characterized in that a low-pass filter circuit is created by selectively propagating electromagnetic waves in a frequency range that does not exceed a cutoff frequency determined by the spacing between the input and output coupling elements. Ceramic waveguide filter circuit.
JP5314887A 1987-03-10 1987-03-10 Ceramic waveguide filtering circuit Pending JPS63220603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5314887A JPS63220603A (en) 1987-03-10 1987-03-10 Ceramic waveguide filtering circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5314887A JPS63220603A (en) 1987-03-10 1987-03-10 Ceramic waveguide filtering circuit

Publications (1)

Publication Number Publication Date
JPS63220603A true JPS63220603A (en) 1988-09-13

Family

ID=12934745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5314887A Pending JPS63220603A (en) 1987-03-10 1987-03-10 Ceramic waveguide filtering circuit

Country Status (1)

Country Link
JP (1) JPS63220603A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212002A (en) * 1990-01-17 1991-09-17 Fujitsu Ltd Dielectric filter
JPH03212004A (en) * 1990-01-17 1991-09-17 Fujitsu Ltd Dielectric branching filter
JPH03212003A (en) * 1990-01-17 1991-09-17 Fujitsu Ltd Waveguide type dielectric filter
JPH03270501A (en) * 1990-03-20 1991-12-02 Fujitsu Ltd Dielectric filter
JPH0431802U (en) * 1990-07-12 1992-03-16
JPH0565101U (en) * 1992-02-12 1993-08-27 健一 今野 Comline type dielectric filter
US5926079A (en) * 1996-12-05 1999-07-20 Motorola Inc. Ceramic waveguide filter with extracted pole
US6020800A (en) * 1996-06-10 2000-02-01 Murata Manufacturing Co., Ltd. Dielectric waveguide resonator, dielectric waveguide filter, and method of adjusting the characteristics thereof
WO2000013253A1 (en) * 1998-08-27 2000-03-09 Merrimac Industries, Inc. Multilayer dielectric evanescent mode waveguide filter
US6154106A (en) * 1998-08-27 2000-11-28 Merrimac Industries, Inc. Multilayer dielectric evanescent mode waveguide filter
EP1439599A1 (en) * 2003-01-17 2004-07-21 Toko, Inc. Waveguide-Type dielectric filter
JP2009141653A (en) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp Waveguide band rejection filter
WO2013183354A1 (en) * 2012-06-04 2013-12-12 日本電気株式会社 Band-pass filter
US9230726B1 (en) 2015-02-20 2016-01-05 Crane Electronics, Inc. Transformer-based power converters with 3D printed microchannel heat sink
US9888568B2 (en) 2012-02-08 2018-02-06 Crane Electronics, Inc. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212004A (en) * 1990-01-17 1991-09-17 Fujitsu Ltd Dielectric branching filter
JPH03212003A (en) * 1990-01-17 1991-09-17 Fujitsu Ltd Waveguide type dielectric filter
JPH03212002A (en) * 1990-01-17 1991-09-17 Fujitsu Ltd Dielectric filter
JPH03270501A (en) * 1990-03-20 1991-12-02 Fujitsu Ltd Dielectric filter
JPH0431802U (en) * 1990-07-12 1992-03-16
JPH0565101U (en) * 1992-02-12 1993-08-27 健一 今野 Comline type dielectric filter
US6255921B1 (en) * 1996-06-10 2001-07-03 Murata Manufacturing Co., Ltd. Dielectric waveguide resonator, dielectric waveguide filter, and method of adjusting the characteristics thereof
US6020800A (en) * 1996-06-10 2000-02-01 Murata Manufacturing Co., Ltd. Dielectric waveguide resonator, dielectric waveguide filter, and method of adjusting the characteristics thereof
US6356170B1 (en) * 1996-06-10 2002-03-12 Murata Manufacturing Co., Ltd. Dielectric waveguide resonator, dielectric waveguide filter, and method of adjusting the characteristics thereof
US6346867B2 (en) * 1996-06-10 2002-02-12 Murata Manufacturing Co., Ltd. Dielectric waveguide resonator, dielectric waveguide filter, and method of adjusting the characteristics thereof
US6281764B1 (en) * 1996-06-10 2001-08-28 Murata Manufacturing Co., Ltd. Dielectric waveguide resonator, dielectric waveguide filter, and method of adjusting the characteristics thereof
US6160463A (en) * 1996-06-10 2000-12-12 Murata Manufacturing Co., Ltd. Dielectric waveguide resonator, dielectric waveguide filter, and method of adjusting the characteristics thereof
US5926079A (en) * 1996-12-05 1999-07-20 Motorola Inc. Ceramic waveguide filter with extracted pole
US6154106A (en) * 1998-08-27 2000-11-28 Merrimac Industries, Inc. Multilayer dielectric evanescent mode waveguide filter
US6137383A (en) * 1998-08-27 2000-10-24 Merrimac Industries, Inc. Multilayer dielectric evanescent mode waveguide filter utilizing via holes
WO2000013253A1 (en) * 1998-08-27 2000-03-09 Merrimac Industries, Inc. Multilayer dielectric evanescent mode waveguide filter
EP1439599A1 (en) * 2003-01-17 2004-07-21 Toko, Inc. Waveguide-Type dielectric filter
US7009470B2 (en) 2003-01-17 2006-03-07 Toko, Inc. Waveguide-type dielectric filter
JP2009141653A (en) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp Waveguide band rejection filter
US9888568B2 (en) 2012-02-08 2018-02-06 Crane Electronics, Inc. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
US11172572B2 (en) 2012-02-08 2021-11-09 Crane Electronics, Inc. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
WO2013183354A1 (en) * 2012-06-04 2013-12-12 日本電気株式会社 Band-pass filter
US9793589B2 (en) 2012-06-04 2017-10-17 Nec Corporation Band-pass filter comprised of a dielectric substrate having a pair of conductive layers connected by sidewall through holes and center through holes
US9230726B1 (en) 2015-02-20 2016-01-05 Crane Electronics, Inc. Transformer-based power converters with 3D printed microchannel heat sink

Similar Documents

Publication Publication Date Title
US4963844A (en) Dielectric waveguide-type filter
JPS63220603A (en) Ceramic waveguide filtering circuit
JP3650957B2 (en) Transmission line, filter, duplexer and communication device
US5825263A (en) Low radiation balanced microstrip bandpass filter
US4731596A (en) Band-pass filter for hyperfrequencies
JPH08330806A (en) Dielectric filter and antenna sharing unit
CA2383777A1 (en) High-frequency band pass filter assembly, comprising attenuation poles
US5192926A (en) Dielectric filter with attenuation poles
US9859599B2 (en) Bandstop filters with minimum through-line length
JPH0211163B2 (en)
JPH0369202B2 (en)
KR100694252B1 (en) Elliptic function Band-Pass Filter Using the microstrip split ring resonators
EP2982005B1 (en) A waveguide e-plane filter structure
Al-Juboori et al. Millimeter wave cross-coupled bandpass filter based on groove gap waveguide technology
US6023206A (en) Slot line band pass filter
KR20010021163A (en) Dielectric Duplexer and Communication Apparatus
US6104262A (en) Ridged thick walled capacitive slot
KR101160560B1 (en) Coupled line filter and method for placing thereof
JPS6311802B2 (en)
JPH0328561Y2 (en)
JPH11355009A (en) Strip line resonator, strip line filter, strip line duplexer and communication equipment
CA1041619A (en) Adjustable interdigital microwave filter
RU2150770C1 (en) Multiplexer
JPH01101701A (en) Microstrip type band-pass filter
JPH051122Y2 (en)