JPS63220201A - Lens made of transparent plastic vessel - Google Patents

Lens made of transparent plastic vessel

Info

Publication number
JPS63220201A
JPS63220201A JP5309287A JP5309287A JPS63220201A JP S63220201 A JPS63220201 A JP S63220201A JP 5309287 A JP5309287 A JP 5309287A JP 5309287 A JP5309287 A JP 5309287A JP S63220201 A JPS63220201 A JP S63220201A
Authority
JP
Japan
Prior art keywords
light
transparent plastic
plastic vessel
incident surface
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5309287A
Other languages
Japanese (ja)
Inventor
Kazumi Kaneko
和己 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP5309287A priority Critical patent/JPS63220201A/en
Publication of JPS63220201A publication Critical patent/JPS63220201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To reduce the cost of the title lens by filling the liq. having a low visible light absorption into a transparent plastic vessel with the light incident surface and/or emitting surface formed by curved surfaces having a required curvature. CONSTITUTION:The liq. 4 having a low visible light absorption is filled into the transparent plastic vessel 1 with the light incident surface 2 and/or emitting surface 3 formed by the curved surfaces having a required curvature. A lens can be formed at a low cost by this method. The diffusibity or convergence for solar light can be optionally set by changing the curvatures of the incident surface 2 and/or emitting surface 3. Furthermore, the light can be diffused and converged only in one direction or in two directions by changing the directions of the incident surface 2 and the emitting surface 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は太陽光集光装置等に使用されろ透明プラスチッ
ク容器類の伝送光束拡散、収束用レンズに係るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a lens for diffusing and converging light beams transmitted in transparent plastic containers used in solar light condensing devices and the like.

(従来の技術) 太陽光を光学系装置を用いて室内に伝送1.、照明とI
−て用いる場合、伝送光束が高密度であったり、照明部
面積を大きくI−だい等の理由によって、伝送光束を拡
散させる必要が生じる場合がある。
(Prior art) Transmission of sunlight indoors using an optical system 1. , lighting and I
When using the device, it may be necessary to diffuse the transmitted light beam due to reasons such as the high density of the transmitted light beam or the need to increase the area of the illumination part.

従来、光束断面を拡げたり縮めたりするために、ガラス
裂またはプラスチック製の凹レンズ、凸レンズ、フレネ
ルレンズ等が使用されていた。
Conventionally, concave lenses, convex lenses, Fresnel lenses, etc. made of glass or plastic have been used to expand or contract the cross section of the light beam.

(発明が解決しようとする問題点) しかしながらこれらのレンズでは、対象とする光束の断
面が大きい場合には規格品が少なく、所要の拡散度や収
束度を得るためには特注品となり、価格が嵩むという問
題点があった。
(Problem to be solved by the invention) However, in these lenses, when the cross section of the target light beam is large, there are few standard products, and in order to obtain the required degree of diffusion and convergence, they must be custom-made, and the price is high. There was a problem that it was bulky.

(問題点を解決するための手段) 本発明はこのような問題点を解決するために提案された
もので、光の入射面及び/または出射面が所要の曲率を
有する曲面に形成された透明プラスチック容器に、可視
光吸収の少ない液体を充填してなることを特徴とする透
明プラスチック容器製レンズに係るものである。
(Means for Solving the Problems) The present invention was proposed in order to solve the above problems, and the present invention is a transparent method in which the light incident surface and/or light exit surface is formed into a curved surface having a required curvature. This invention relates to a lens made of a transparent plastic container, characterized in that the plastic container is filled with a liquid that absorbs little visible light.

(作用) 本発明は前記したように、太陽光の入射面及び/または
出射面が所要の曲率を有する曲面に形成された透明プラ
スチック容器に、可視光吸収の少ない液体が充填されて
いるので、容器自体がレンズに形成され、太陽光がこの
レンズを透過する間に入射光が拡散または収束される。
(Function) As described above, in the present invention, a liquid that absorbs little visible light is filled in a transparent plastic container whose sunlight incident and/or exit surfaces are curved with a required curvature. The container itself is formed into a lens, which diffuses or converges the incident light while sunlight passes through the lens.

(発明の効果) このように本発明によれば光の入射面及び/または出射
面を所要の曲率の曲面に形成した透明プラスチック容器
に可視光吸収の少ない液体を充填することによりて安価
にレンズを構成1−1前記入射面及び/または出射面の
曲率を変化させることによって太陽光の拡散度または収
束度を任意に設定でき、入射面及び出射面の曲面の向き
を変えることにより、一方向のみの拡散、収束、二方向
の拡散、収束の何れも可能になる。
(Effects of the Invention) As described above, according to the present invention, a lens can be manufactured at low cost by filling a transparent plastic container in which the light incident surface and/or light exit surface is formed into a curved surface with a desired curvature with a liquid that absorbs little visible light. Configuration 1-1 By changing the curvature of the entrance surface and/or the exit surface, the degree of diffusion or convergence of sunlight can be set arbitrarily, and by changing the direction of the curved surfaces of the entrance surface and the exit surface, it is possible to Diffusion and convergence in only one direction, diffusion in two directions, and convergence are all possible.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

(1)はアクリル樹脂より構成された透明8器で、太陽
光の入射面(2)及び出射面(3)が所要の曲率を有す
る凹曲面に形成され、内部に蒸留水、脱イオン水等の可
視元部吸収率の低い液体(4)が充填されている。
(1) is a transparent octave made of acrylic resin, the incident surface (2) and the exit surface (3) of sunlight are formed into concave curved surfaces with the required curvature, and inside is distilled water, deionized water, etc. It is filled with a liquid (4) having a low visible absorption rate.

次に前記実施例の光の拡散、収束機構について説明する
Next, the light diffusion and convergence mechanism of the above embodiment will be explained.

第4図のa、b、cに示すように光が前記容器(1)″
を透過する際、第5図において、入射光線の空気−アク
リル樹脂界面への入射角をX、出射角をyとすると、 sin x  X  1.00  = sin y  
X  1.49 −41sin y  X  1.49
  = sin z  X  1.33 −−(2)が
成立し となる。
As shown in Figure 4 a, b, and c, the light is
In Fig. 5, if the incident angle of the incident ray to the air-acrylic resin interface is X and the outgoing angle is y, then sin x X 1.00 = sin y
X 1.49 -41 sin y X 1.49
= sin z X 1.33 --(2) holds true.

ここで出射光と入射光とのなす角をAとすれば、A  
−x−z   −−−(4) (4)式に(3)式を代入して となる。
Here, if the angle between the emitted light and the incident light is A, then A
-x-z ---(4) By substituting equation (3) into equation (4).

従って0≦X≦90°においては、Xの増大とともにA
も増大する。
Therefore, when 0≦X≦90°, as X increases, A
also increases.

なお第5図において入射面の曲率中心0より延びる直線
p、  qはアクリル樹脂厚を誇張して図示しているた
め同一直線となっていないが、実際は入射面の曲率半径
に比してアクリル樹脂厚が著しく薄いので、同一直線と
みなせる。
Note that in Figure 5, the straight lines p and q extending from the center of curvature 0 of the entrance surface are not the same straight line because the thickness of the acrylic resin is exaggerated, but in reality, the acrylic resin is thinner than the radius of curvature of the entrance surface. Since the thickness is extremely thin, they can be considered to be the same straight line.

このことは第4図のa、  b、  c各党線について
いえば、アクリル樹脂−水界面からの出射光はa。
This means that for each party line a, b, and c in Figure 4, the light emitted from the acrylic resin-water interface is a.

b、  cの順に拡がることを示している。It shows that it spreads in the order of b and c.

第6図において水−アクリル樹脂界面の入射角をA、出
射角をβ、アクリル樹脂−空気界面の入射角をβ、出射
角frとすると。
In FIG. 6, suppose that the incident angle at the water-acrylic resin interface is A, the outgoing angle is β, the incident angle at the acrylic resin-air interface is β, and the outgoing angle fr.

sin A X  1.33  = sinβX  1
.49sinβX  1.49  = sin r  
X  1.00が成立し、 γ −5in ’″”(1,33sin A)  とな
る。
sin A X 1.33 = sin βX 1
.. 49sin βX 1.49 = sin r
X 1.00 is established, and γ −5in ''''' (1,33sin A).

従ってO≦α≦90  においては、Aの増大とともに
γも増大する。
Therefore, when O≦α≦90, γ also increases as A increases.

このことは第4図の各光線a、b、cについていえば、
アクリル樹脂−空気界面からの出射光はa、b、cの順
に更に拡がることを示す。
This means that for each of the rays a, b, and c in Figure 4,
It is shown that the light emitted from the acrylic resin-air interface further spreads in the order of a, b, and c.

このように前記実施例によれば、光の入射面及び出射面
に位置する透明プラスチック容器(1)の曲率を変化さ
せることによって拡散度を任意に設定でき、また入射面
(2)を上方に凸な曲面とすれば収束度を任意に設定で
き、また入射面及び出射面の曲面の向きを変えることに
より、一方向のみの拡散、収束、二方向の拡散、収束の
何れもが可能となる。
As described above, according to the above embodiment, the degree of diffusion can be set arbitrarily by changing the curvature of the transparent plastic container (1) located on the light incident surface and the light exit surface, and the degree of diffusion can be set arbitrarily by By using a convex curved surface, the degree of convergence can be set arbitrarily, and by changing the direction of the curved surfaces of the entrance and exit surfaces, diffusion and convergence in only one direction, and diffusion and convergence in two directions are possible. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る透明プラスチック製レンズの一実
施例を示す斜面図、第2図はその縦断正面図、第3図は
その縦断側面図、第4図はその光線透過状態を示す縦断
正面図、第5図及び第6図は夫々第4図の部分v並に部
分■の拡大図である。 (l)−透明容器、   f2)−入射面、(3)−出
射面゛、     (41=−液体代理人 弁理士 岡
 本 重 文  外2名   ゛抄 出射光 第2図
Fig. 1 is a perspective view showing an embodiment of the transparent plastic lens according to the present invention, Fig. 2 is a longitudinal front view thereof, Fig. 3 is a longitudinal side view thereof, and Fig. 4 is a longitudinal cross-sectional view showing its light transmission state. The front view, FIGS. 5 and 6 are enlarged views of portions v and 2 of FIG. 4, respectively. (l)-transparent container, f2)-incident surface, (3)-output surface゛, (41=-liquid agent patent attorney Shigefumi Okamoto and two others ゛Exiting light Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 光の入射面及び/または出射面が所要の曲率を有する曲
面に形成された透明プラスチック容器に、可視光吸収の
少ない液体を充填してなることを特徴とする透明プラス
チック容器製レンズ。
1. A lens made of a transparent plastic container, characterized in that the transparent plastic container has a curved surface with a light entrance and/or exit surface having a predetermined curvature, and is filled with a liquid that absorbs little visible light.
JP5309287A 1987-03-10 1987-03-10 Lens made of transparent plastic vessel Pending JPS63220201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5309287A JPS63220201A (en) 1987-03-10 1987-03-10 Lens made of transparent plastic vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5309287A JPS63220201A (en) 1987-03-10 1987-03-10 Lens made of transparent plastic vessel

Publications (1)

Publication Number Publication Date
JPS63220201A true JPS63220201A (en) 1988-09-13

Family

ID=12933138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5309287A Pending JPS63220201A (en) 1987-03-10 1987-03-10 Lens made of transparent plastic vessel

Country Status (1)

Country Link
JP (1) JPS63220201A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332047A (en) * 1976-09-06 1978-03-25 Shigeru Kobiyama Device for utilizing solar energy
JPS5395654A (en) * 1977-02-01 1978-08-22 Mitsubishi Electric Corp Radiant energy condenser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332047A (en) * 1976-09-06 1978-03-25 Shigeru Kobiyama Device for utilizing solar energy
JPS5395654A (en) * 1977-02-01 1978-08-22 Mitsubishi Electric Corp Radiant energy condenser

Similar Documents

Publication Publication Date Title
US4615579A (en) Prism light guide luminaire
US4767186A (en) Front projection screen with rear light concentrating lens array
US4750798A (en) Prism light guide luminaire
US5550657A (en) Liquid crystal display device having an optimized ridged layer to improve luminosity
EP0467608B1 (en) Uniform intensity profile catadioptric lens
US5150966A (en) Uniform intensity profile catadioptric lens
JP2003515779A (en) Device for concentrating or collimating radial energy
RU94040366A (en) Process of making reverse image unit
JP2002267819A (en) Optically transparent film
JPH02503131A (en) One-piece collimator
KR940011595B1 (en) Optimum riser angle for fresnel lenses in projection screens
GB2087590A (en) Reflection rejecting optical train
JPS57195205A (en) Optical waveguide
JP2006128041A (en) Light emitting device and liquid crystal display
KR920008058B1 (en) Front projection screen
JPS63220201A (en) Lens made of transparent plastic vessel
SE8403074D0 (en) LIGHT DISTRIBUTING LENS
KR890000783B1 (en) Rear projection screen
JPS59200211A (en) Optical multibranching device
CN1231810C (en) Projection screen for TV
JP6542889B2 (en) Light guide plate, back light module and liquid crystal display device
JPS6210637A (en) Rear projection screen
RU2000524C1 (en) Solar radiation concentrator
JPS578407A (en) Reflector
FR2346734A1 (en) Terrestrial telescope with image erecting device - comprises two aspherical concave mirrors and converging refractive system