JPS6322016B2 - - Google Patents
Info
- Publication number
- JPS6322016B2 JPS6322016B2 JP56051484A JP5148481A JPS6322016B2 JP S6322016 B2 JPS6322016 B2 JP S6322016B2 JP 56051484 A JP56051484 A JP 56051484A JP 5148481 A JP5148481 A JP 5148481A JP S6322016 B2 JPS6322016 B2 JP S6322016B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolysis
- electrode plate
- electrolytic
- electrode
- current collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005868 electrolysis reaction Methods 0.000 claims description 38
- 239000011149 active material Substances 0.000 claims description 26
- 239000007788 liquid Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 14
- 239000010419 fine particle Substances 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims 1
- 239000008151 electrolyte solution Substances 0.000 claims 1
- 238000009736 wetting Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002142 lead-calcium alloy Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/044—Activating, forming or electrochemical attack of the supporting material
- H01M4/0445—Forming after manufacture of the electrode, e.g. first charge, cycling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】
本発明は各種電池用極板など極板の改良に当た
つて、集電体にペースト状活物質を保持させた極
板に特殊な電解処理効果をほどこすのに適した新
しい極板の電解方法および装置に関するものであ
る。[Detailed Description of the Invention] The present invention improves electrode plates such as electrode plates for various batteries by applying a special electrolytic treatment effect to the electrode plates in which a paste-like active material is held in the current collector. The present invention relates to a suitable new electrode plate electrolysis method and apparatus.
電池用極板は、一般に金属などを主体とする集
電体に活物質を保持させて極板の基礎を形づく
り、これを乾燥し、さらに電池用電槽に組み込む
か、あるいは極板状態で化成用電槽に組み込み、
豊富な電解液に没した状態で陽分極あるいは陰分
極して電池機能を有する極板にするのが普通であ
る。 Generally, battery electrode plates are made by holding an active material in a current collector mainly made of metal to form the base of the electrode plate, then drying this, and then incorporating it into a battery case, or by chemically processing it in the plate state. Built into the battery case,
Normally, the plates are submerged in a rich electrolyte and polarized either positively or negatively to produce a battery-functioning plate.
ところで、この種の極板では活物質が見掛け上
集電体を覆うこともあるが、実態は多孔体内の空
間に活物質で完全に被覆されない部分があり、と
くに正極ではこの集電体のポアー内への露出部が
とくに酸化、侵食を受け、時には集電体が消滅し
たり断線したりする現象が見られる。 By the way, in this type of electrode plate, the active material may apparently cover the current collector, but in reality, there are parts of the porous body that are not completely covered with the active material, and especially in the positive electrode, the pores of the current collector are The parts exposed to the inside are particularly susceptible to oxidation and erosion, and sometimes the current collector disappears or breaks.
このような現象の抑制に当たつて、本発明者ら
は耐酸化性微粉末を分散した溶液中で、微粒子に
配位するイオンで形成されるジータ電位の助けを
かりて、たとえばフツ素樹脂の微粒子までも電気
化学的にポアー内へ露出する集電体表面に優先的
に電解電着させ、保護層あるいは保護膜を形成す
る方法を提案した。すなわち、ほとんど電解質を
含まない溶媒中に微粒子を分散し、かつ活物質が
事実上放電能力を有しない状態で極板の集電体を
正あるいは負に分散するのである。この効果はア
ルカリ電池、酸電池を問わず期待できるものであ
り、一方この処理は長時間行う必要がないのであ
る。 In order to suppress such a phenomenon, the present inventors used a solution in which oxidation-resistant fine powder was dispersed, using the zeta potential formed by ions coordinating with the fine particles to We proposed a method to form a protective layer or film by electrochemically electrolytically depositing even the smallest particles preferentially on the surface of the current collector that is exposed inside the pores. That is, fine particles are dispersed in a solvent containing almost no electrolyte, and the current collector of the electrode plate is dispersed in a positive or negative direction in a state where the active material has virtually no discharge ability. This effect can be expected for both alkaline and acid batteries, and on the other hand, this treatment does not need to be carried out for a long time.
さらには、たとえば鉛蓄電池において、最近メ
ンテナンスフリー化の要求から集電体に水素発生
過電圧の大きい鉛−カルシウム系合金が好んで用
いられ、その構造も従来の鋳造格子からエクスパ
ンドメタル・穿孔板などに変つてきている。この
技術に関連して、とくにこの合金の性質によると
思われる深い放電サイクルでの初期に起こる劣化
現象に、先にのべた通常の化成を行う前に稀薄な
溶液や中性塩、また極端な場合には、ほとんど電
解質を含まない水中での化成が効果があることを
本発明者らは見出した。この場合は集電体のポア
ー内露出面あるいは活物質と集電体界面に、劣化
をひき起こしにくい強い酸化層を形成することを
目的とする。この時も、長時間の電解処理をする
と、逆に急放電に優れた特性を示す活物質が得ら
れにくいこともあつて、やはり短時間で処理する
方が得策である場合が多い。 Furthermore, in lead-acid batteries, for example, lead-calcium alloys with high hydrogen generation overvoltage have recently been used as current collectors due to the demand for maintenance-free storage, and their structures have changed from conventional cast grids to expanded metal and perforated plates. Things are changing. In connection with this technology, we are particularly concerned with the early deterioration phenomenon that occurs during deep discharge cycles, which seems to be due to the properties of this alloy. In some cases, the present inventors have found that chemical formation in water containing almost no electrolyte is effective. In this case, the purpose is to form a strong oxidation layer that is unlikely to cause deterioration on the exposed surface within the pores of the current collector or at the interface between the active material and the current collector. At this time as well, if the electrolytic treatment is carried out for a long time, it may be difficult to obtain an active material that exhibits excellent rapid discharge characteristics, so it is often better to carry out the treatment in a short time.
こうなると、同じように電解するとはいえ、従
来の活物質を起電反応せしめる物質に変化するい
わゆる化成処理とは大幅にその目的も、処理の方
法も変える必要性がでてくる。つまり、従来の化
成のうち電槽化成段階で上記のような方法を採る
と、短時間の電解のために、通常の化成液とは異
なる液体を電池内に投入し、また化成後は液替え
の必要性がでてくる。さらには放電反応には不要
の物質を添加することにより、逆にそれが電池特
性に影響を及ぼすことも考慮しなければならな
い。一方、別途化成槽を設ける化成法では、短時
間の特殊な電解処理のために、従来と同じ大きさ
の化成槽を2個以上必要とする。そればかりでな
く、処理液の管理、とくに電解により微粒子を析
出するごとき処理の場合には、消耗、あるいは沈
降する粒子を常時均一に分散することも難しい点
がある。 In this case, although electrolysis is performed in the same way, the purpose and treatment method will need to be significantly different from the conventional chemical conversion treatment, which changes an active material into a substance that causes an electromotive reaction. In other words, if the above method is adopted during the battery cell formation stage of conventional chemical formation, a liquid different from the normal chemical liquid is put into the battery for short-term electrolysis, and the liquid must be changed after formation. The need arises. Furthermore, it must be taken into account that adding substances that are unnecessary for the discharge reaction may adversely affect the battery characteristics. On the other hand, in the chemical conversion method in which a separate chemical conversion tank is provided, two or more chemical conversion tanks of the same size as conventional methods are required for short-time special electrolytic treatment. In addition, in managing the processing solution, particularly in the case of processing such as precipitation of fine particles by electrolysis, it is difficult to uniformly disperse particles that are consumed or settled at all times.
これらの観点から、従来のように電槽や電解槽
に入れるのではなく、極く簡単に同様の効果が期
待できる電解処理装置が望まれ、願わくば、裸の
極板で処理することが好ましい。 From these points of view, it is desirable to have an electrolytic treatment device that can achieve the same effect quite simply, rather than placing it in a battery tank or electrolytic bath as in the past, and it is preferable to process it with bare electrode plates. .
本発明は、これらの観点から、従来、電解とは
電槽中で行うものであるという発想から脱脚し
て、全く新しい電解処理装置を発明するに到つ
た。 From these viewpoints, the present invention has departed from the conventional idea that electrolysis is carried out in a battery container, and has invented a completely new electrolytic treatment apparatus.
すなわち、本発明は未完成の極板を、電槽を用
いることなくペースト状活物質の湿潤状態におい
て、上記極板の露出する集電体に圧接し電気的に
導通させる電解用端子と、上記集電体には直接導
通せず極板内を湿潤させる液体を介してイオン的
に導通する電解用対極との間に電解電圧を与える
ことによつて電解することを特徴とするものであ
る。この構成により、とくに短時間の電解処理が
電槽に極板を搬送するまでの工程で、裸の状態で
効率的に実施されるのである。 That is, the present invention provides an electrolytic terminal for press-contacting an unfinished electrode plate to an exposed current collector of the electrode plate in a wet state of a pasty active material without using a battery case to electrically conduct the electrode plate; It is characterized in that electrolysis is carried out by applying an electrolytic voltage between the current collector and a counter electrode for electrolysis, which is not directly electrically conductive but is ionically electrically electrically electrically electrically connected via a liquid that wets the inside of the electrode plate. With this configuration, the electrolytic treatment can be carried out efficiently in a bare state, especially in the process up to transporting the electrode plate to the battery case.
以下、本発明を実施例によつて詳細に説明す
る。 Hereinafter, the present invention will be explained in detail with reference to Examples.
第1〜2図はペースト式鉛蓄電池やペースト式
アルカリ蓄電池などのように、集電体にペースト
状あるいはスラリー状の活物質を塗着した極板の
例を示すもので、長尺のエクスパンドメタル、ス
クリーン、穿孔板などに適用した場合である。a
は集電体、bは活物質の塗着層であり、一般には
端子を取出すために非塗着部cを備えるのが普通
である。 Figures 1 and 2 show examples of electrode plates in which a paste or slurry active material is applied to the current collector, such as in paste-type lead-acid batteries and paste-type alkaline batteries. , when applied to screens, perforated plates, etc. a
is a current collector, b is a coating layer of active material, and generally a non-coating portion c is provided for taking out the terminal.
第3図は鋳造格子a′に活物質層b′を塗着するな
どにより得られた極板の例で、極板2枚分が形成
された場合である。ここでも同様に非塗着部c′を
有する。塗着量が少ない場合には集電体が一部活
物質層の表面に露出することがある。 FIG. 3 shows an example of an electrode plate obtained by applying an active material layer b' to a cast grid a', in which two electrode plates are formed. Here, too, there is a non-applied portion c'. When the coating amount is small, a portion of the current collector may be exposed on the surface of the active material layer.
この他集電体そのものが多孔体のスケルトン構
造で、その中に化学含浸や熱分解によつて活物質
がつめられた構造のものがあり、とくにアルカリ
電池用極板のような場合である。この場合は表面
に集電用多孔体の一部が露出する場合が多いが、
端子取出しのために周辺部をプレスして活物質が
入らない部分をつくるとか、別に非多孔質の導体
を集電体に予め溶接するなどの処置がなされる。 In addition, there are also structures in which the current collector itself has a porous skeleton structure in which an active material is packed by chemical impregnation or thermal decomposition, especially in the case of electrode plates for alkaline batteries. In this case, a part of the current collecting porous body is often exposed on the surface,
In order to take out the terminal, measures are taken such as pressing the peripheral part to create a part where the active material does not enter, or welding a non-porous conductor to the current collector in advance.
さて、このようにして得られた電極は表面に集
電体またはその延長として集電体に導通する導体
部と活物質多孔体が露出する。 Now, on the surface of the electrode thus obtained, the current collector or, as an extension of the current collector, a conductor portion connected to the current collector and a porous body of active material are exposed.
第4図はこれらの極板に電解処理を与える基本
的な装置の構成を示すものである。1は電解処理
すべき前記のような極板を示す。2は架台で、そ
の上面にはプラスチツクなどの絶縁体からなる電
極支持台3が設けてあり、その中央には周囲を絶
縁体4で保護された電解用対極5が設けてある。
6は対極5の導線である。7は架台2上に設けた
枠体で、ここには絶縁体8で保護された電解用端
子9が設けてあり、極板1における集電体の露出
部に圧接されるようになつている。端子9を集電
体へ圧接するためにばねなどの付勢手段を用いる
のは好ましい。10は端子9の導線である。支持
台3上に供給される極板1は直接電解用対極5上
に載せることもできるが、この例では対極5上に
非電導性多孔体11を設けている。 FIG. 4 shows the configuration of a basic apparatus for applying electrolytic treatment to these electrode plates. 1 designates an electrode plate as described above to be electrolytically treated. Reference numeral 2 denotes a pedestal, on the top of which is provided an electrode support 3 made of an insulator such as plastic, and in the center of which is provided a counter electrode 5 for electrolysis whose periphery is protected by an insulator 4.
6 is a conducting wire of the counter electrode 5. Reference numeral 7 denotes a frame provided on the pedestal 2, on which an electrolytic terminal 9 protected by an insulator 8 is provided, and is adapted to be pressed against the exposed portion of the current collector on the electrode plate 1. . It is preferable to use biasing means such as a spring to press the terminal 9 into contact with the current collector. 10 is a conductive wire of the terminal 9. Although the electrode plate 1 supplied on the support stand 3 can be placed directly on the counter electrode 5 for electrolysis, in this example, a non-conductive porous body 11 is provided on the counter electrode 5.
極板1の活物質層に電解用対極5が直接接触す
ることは、一般に化成前の極板の活物質が硫酸
鉛、水酸化ニツケルのような非導電性物質である
場合、短時間では導体化しないので差しつかえな
いが、集電体の一部が活物質層の表面に露出して
いることも多いので、極板と電極用対極の間に非
導電性多孔体11を配するのが良い。この構造に
おいて、極板が湿潤状態にあれば、多孔板11を
用いる構造でも、連続的な処理操作では極板の液
体が多孔体11に移動して蓄積されるし、また処
理に先立つて多孔体11を電解に用いる液体で湿
潤せしめておくことによつても多孔体は湿潤す
る。直接にしろ間接にしろ、このような構造をと
ることによつて、極板内の液体に電解用対極5は
イオン的に導通する。 Direct contact of the electrolytic counter electrode 5 with the active material layer of the electrode plate 1 generally means that if the active material of the electrode plate before chemical formation is a non-conductive material such as lead sulfate or nickel hydroxide, it will become a conductor in a short period of time. However, since a part of the current collector is often exposed on the surface of the active material layer, it is recommended to place a non-conductive porous body 11 between the electrode plate and the counter electrode. good. In this structure, if the electrode plate is in a wet state, even if the porous plate 11 is used, the liquid in the electrode plate will move and accumulate in the porous body 11 during continuous processing operations, and the liquid in the electrode plate will be transferred to the porous body 11 and accumulated prior to processing. The porous body is also moistened by keeping the body 11 moist with a liquid used for electrolysis. With such a structure, whether directly or indirectly, the electrolytic counter electrode 5 is ionically connected to the liquid in the electrode plate.
以上のようにして、予め極板を湿潤させるか、
装置の内部で湿潤させた状態で電解処理すると、
極板内の集電体と電解用対極との間に多孔体内部
に存在する液体が媒体となつて電解が起こる。こ
れらの極性は必要に応じて選択し、あるいは必要
に応じて交流または交流と直流、直流の選択が可
能である。このようにして、活物質層を設けた後
に電解処理を行えることは、とくに活物質と集電
体の界面あるいは多孔体内空間に露出する集電体
の表面の改質に効果的で、しかも短時間の処理に
対して、電槽に入れる手間もなく簡単にその作業
を終了することができる。 Either moisten the electrode plate in advance as described above, or
When electrolyzed in a wet state inside the device,
Electrolysis occurs between the current collector in the electrode plate and the counter electrode for electrolysis using the liquid present inside the porous body as a medium. These polarities can be selected as necessary, or alternating current, alternating current and direct current, or direct current can be selected as necessary. The ability to perform electrolytic treatment after forming the active material layer in this way is particularly effective in modifying the surface of the current collector exposed at the interface between the active material and the current collector or in the space within the porous body, and is also quick and effective. In terms of processing time, you can easily complete the task without having to put it in a container.
第5図は第4図と基本的に同じであるが、対極
5を極板の上面から押圧するようにした構成例で
あり、集電体は極板面全体に入つているので、対
極5と端子9は対面する必要性はないのである。 FIG. 5 is basically the same as FIG. 4, but is an example of a configuration in which the counter electrode 5 is pressed from the top surface of the electrode plate, and the current collector is included in the entire surface of the electrode plate, so the counter electrode 5 is pressed from the top surface of the electrode plate. There is no need for terminal 9 to face each other.
一方、極板の集電体を押圧する電解用端子9は
第6図のように、ローラ電極とし、その支柱12
を導体とするか、別途端子9に通電極を接触させ
る方式を採ると、極板に損傷を与える危険性が少
ない。同じことが対極側にも言えることであつ
て、対極5をローラ式とし、その周囲に非導電性
多孔体11を設け、その支柱13を通電経路とす
るか、別途導体14から対極5に導通させる構造
が有効である。第7図はその一例で、ローラ本体
15の上に対極5をドラム状に固定し、その上に
多孔体11を備えた電解用対極の構造で、対極5
にはブラシ16によつて導通が与えられる。極板
1はこの下をくぐりぬけ電解を受ける。17はロ
ーラ本体15を軸支した架台である。 On the other hand, the electrolytic terminal 9 that presses the current collector of the electrode plate is a roller electrode as shown in FIG.
If a method is adopted in which the terminal 9 is made a conductor or a live electrode is brought into contact with the terminal 9 separately, there is less risk of damaging the electrode plate. The same thing can be said for the counter electrode side, and the counter electrode 5 is a roller type, a non-conductive porous body 11 is provided around it, and the support 13 is used as a current-carrying path, or a separate conductor 14 is connected to the counter electrode 5. It is effective to have a structure that allows FIG. 7 shows an example of the structure of an electrolytic counter electrode in which a counter electrode 5 is fixed in a drum shape on a roller body 15 and a porous body 11 is provided on top of the counter electrode 5.
is provided with electrical continuity by a brush 16. The electrode plate 1 passes under this and receives electrolysis. Reference numeral 17 denotes a pedestal on which the roller body 15 is pivotally supported.
第8図は電解用端子9および対極5を同一ロー
ラ上に設定した例を示す。18は軸19を設けた
架台であり、軸19に固定した固定具20に絶縁
体21が固定され、さらにはドラム状の対極5が
左右に分離して配備され、対極5の表面には非導
電性多孔体11が備えられる。この例では中央に
電解用端子9がリング状に配備され、端子9と対
極5にはそれぞれブラシ22と23から通電され
る。左右の対極5の導通は絶縁性21の中をとお
つて短絡されている。ローラ24は極板の下部側
のすべりによる損傷の防止と送りの円滑さを増す
ためのものであり、極板は端子9および対極5と
ローラ24の間をぬける構成である。この構成で
は、このローラにはさまれている間に電解が行わ
れる。 FIG. 8 shows an example in which the electrolytic terminal 9 and the counter electrode 5 are set on the same roller. Reference numeral 18 denotes a frame provided with a shaft 19, an insulator 21 is fixed to a fixture 20 fixed to the shaft 19, and a drum-shaped counter electrode 5 is disposed separately on the left and right, and a non-contact material is provided on the surface of the counter electrode 5. A conductive porous body 11 is provided. In this example, an electrolytic terminal 9 is arranged in a ring shape in the center, and the terminal 9 and the counter electrode 5 are energized from brushes 22 and 23, respectively. The conduction between the left and right counter electrodes 5 is short-circuited through the insulation 21. The roller 24 is used to prevent damage caused by sliding of the lower part of the electrode plate and to increase the smoothness of feeding, and the electrode plate is configured to pass between the terminal 9 and the counter electrode 5 and the roller 24. In this configuration, electrolysis is performed while being held between the rollers.
次に、極板そのものは外部で湿潤させてから電
解部に搬送するものも良いが、作業上は手間がか
かるので、対極の表面に配した多孔体11に常時
液槽25から導管26を用いて液27を供給して
もよい。その間の液量の制御は任意である。第8
図に示す形式は、たまたま第1〜2図に示すよう
に被電解極板の中央に集電体の導体部があるもの
に適用するよう設計したもので、必要に応じその
位置を変更できる。 Next, it is also possible to wet the electrode plate itself externally before transporting it to the electrolytic section, but since this is time-consuming, a conduit 26 is always used from the liquid tank 25 to the porous body 11 placed on the surface of the counter electrode. The liquid 27 may also be supplied. The liquid amount can be controlled arbitrarily during this period. 8th
The format shown in the figure happens to be designed to be applied to a device in which the conductor portion of the current collector is located in the center of the electrode plate to be electrolyzed, as shown in FIGS. 1 and 2, and its position can be changed as required.
一方、液の供給に関しては極板の搬送の過程
で、直接極板を浸潤するか、シヤワーで湿潤させ
ることもできるが、第9図のように、一度多孔体
のローラ28に浸ませ、それを転写する方法は工
程の管理上便利である。これは上からでも下から
でも可能である。また第4図のように、対極が下
方にある場合は多孔体11のいずれかの方向の延
長上に液槽を設け、表面張力で多孔体を常に湿潤
させ、電解に必要な成分を供給することができ
る。 On the other hand, regarding the supply of liquid, it is possible to directly infiltrate the electrode plate or moisten it with a shower during the process of conveying the electrode plate, but as shown in FIG. The method of transferring is convenient for process control. This can be done from above or below. In addition, as shown in Fig. 4, when the counter electrode is located below, a liquid tank is provided on the extension of the porous body 11 in either direction to keep the porous body constantly moistened by surface tension and supply the components necessary for electrolysis. be able to.
第9図でのもう一つの重要な点は、電解用端子
9と電解用対極5を極板の搬送方向に対して離し
た点にある。これは極板がまだ長尺の段階で適用
する。この前後の位置関係は、とくに大きな差は
ない。電解用端子と対極が近接していると、集電
体と電解用端子の間の電解電流の他に、インピー
ダンスの関係で電解用端子と対極の間に流れる電
流が大きくなり、電解用端子そのものが腐食した
り、不動熊化したり、また微粒子を析出する場合
では非導電性微粒子が析出し、その保守の必要性
が増大する。いずれにあつても端子9が極板の集
電体に接触している限り、連続する極板内の集電
体は荷電されていて、その電解質のインピーダン
スが対極との距離によつて異なることにより、搬
送方向に対する電解の強度が変化する。つまり対
極5より遠い場合はそれより前であつても後であ
つても小さく、近づくにしたがつて大きくなり、
対極の近傍で極大になる。なお、30は架台であ
る。 Another important point in FIG. 9 is that the electrolytic terminal 9 and the electrolytic counter electrode 5 are separated from each other in the transport direction of the electrode plate. This is applied when the electrode plate is still long. There is no particular difference in the positional relationship between the front and back. When the electrolytic terminal and the counter electrode are close to each other, in addition to the electrolytic current between the current collector and the electrolytic terminal, the current flowing between the electrolytic terminal and the counter electrode increases due to impedance, and the electrolytic terminal itself In the case where the conductive material corrodes, becomes immobile, or deposits fine particles, non-conductive fine particles are deposited, increasing the need for maintenance. In either case, as long as the terminal 9 is in contact with the current collector of the electrode plate, the current collectors in successive electrode plates are charged, and the impedance of the electrolyte varies depending on the distance from the counter electrode. As a result, the strength of electrolysis in the transport direction changes. In other words, if it is far from the opposite pole 5, it will be small whether it is before or after it, and as it gets closer, it will become larger.
It becomes maximum near the opposite pole. Note that 30 is a pedestal.
長尺の第1図による鉛電池用電極の未化成板に
1モル/のボウ硝の水溶液を湿潤させ、2.4V
で電解した場合の電解電流の強度を集電体の電圧
降下の差から第9図の要領で調べた結果を第10
図に示す。電解電圧によつてその分布は異なる
が、傾向は同じである。このことから、搬送して
ゆく過程で、小さい電流から徐々に電流を増加
し、強い電解が行われた後に減衰するという特殊
な電解パターンが端子9、対極5間に与える電圧
をプログラムすることなく一定の電圧でできるこ
とがわかる。このことは集電体の表面に酸化膜の
結晶を生長させるとか、微粒子を析出させる場合
に、まず強く大きな結晶を生長させ、ついで不十
分な部分に緻密な結晶を生長させることにつなが
ることが期待できる。 A long unformed plate of the lead battery electrode shown in Figure 1 was moistened with a 1 mol/aqueous solution of sulfur salt, and the voltage was set at 2.4V.
The intensity of the electrolytic current when electrolyzed with the current collector was investigated using the method shown in Figure 9 from the difference in the voltage drop of the current collector, and the results are shown in Figure 10.
As shown in the figure. Although the distribution differs depending on the electrolysis voltage, the tendency is the same. From this, a special electrolytic pattern in which the current is gradually increased from a small current during the conveyance process, strong electrolysis is performed, and then attenuated can be realized without programming the voltage applied between the terminal 9 and the counter electrode 5. You can see that this can be done with a constant voltage. This means that when growing oxide film crystals on the surface of a current collector or depositing fine particles, strong and large crystals will grow first, and then dense crystals will grow in areas where there is insufficient space. You can expect it.
なお、電解酸化による皮膜形成をほとんど中性
の領域で行うことを目的にする場合は新しい電解
液を付与することは必ずしも必要としない。たと
えば鉛蓄電池用ペースト極の場合は塗着されたペ
ーストは十分な水分を保有しており、液体はほぼ
中性でかつ若干の硫酸鉛の溶解が液中にある。し
たがつて抵抗は大きいけれども、電圧を10〜20V
かければ集電体の酸化がわずかずつ起こる。この
ような状況を利用して、ペーストやスラリーの塗
着あるいは充てん工程後の乾燥される前の工程で
本発明を適用することができ、この効果は得られ
る極板の寿命特性に良い影響を与える。 Note that if the purpose is to form a film by electrolytic oxidation in an almost neutral region, it is not necessarily necessary to apply a new electrolyte. For example, in the case of paste electrodes for lead-acid batteries, the applied paste retains sufficient moisture, the liquid is approximately neutral, and some lead sulfate is dissolved in the liquid. Therefore, although the resistance is large, the voltage is 10 to 20V.
If exposed to heat, oxidation of the current collector will occur little by little. Taking advantage of this situation, the present invention can be applied in the process of applying paste or slurry or in the process of filling before drying, and this effect will have a positive effect on the life characteristics of the resulting electrode plate. give.
以上のべたように、本発明は電解というものが
液の豊富な電槽中で行われるという発想から脱脚
し、とくに集電体近傍の性質を改善するごとき予
備的な短時間の電解処理に広く活用できる電解装
置を与えるものであつて、その工業的価値は大で
ある。 As described above, the present invention departs from the idea that electrolysis is carried out in a liquid-rich battery tank, and is particularly suitable for preliminary short-time electrolytic treatment such as improving the properties near the current collector. It provides an electrolytic device that can be used widely, and its industrial value is great.
なお、上記に記載した各種要素の材質、電解質
液体などの材料、印加電圧等はその処理の目的、
電極の種類によつて選択されるべきもので、その
制限を問わない。かつ安全性については、電解液
が適用される場合は数V以内、実質的に電解質を
ほとんど含まない微粒子析出のような場合は数V
から100V前後で作業ができるので大きな危険は
ない。強いていえば、必要に応じて長尺ものでは
適切な長さに切断することにより他の装置との絶
縁を考慮する。電解時間の調整は搬送の速度で以
て制御できる。なお、長尺物については少なくと
も対極を複数個備えても良いし、複数のローラ間
をベルト式に回転させる端子を用いることもでき
る。 The materials of the various elements described above, the materials of the electrolyte liquid, the applied voltage, etc., depend on the purpose of the treatment,
It should be selected depending on the type of electrode, and there are no restrictions. In terms of safety, it is within a few volts when an electrolyte is applied, and a few volts when depositing fine particles that do not substantially contain electrolyte.
Since the work can be done at around 100V, there is no major danger. In other words, consider insulation from other equipment by cutting long items to an appropriate length as necessary. Adjustment of electrolysis time can be controlled by the speed of conveyance. Note that for a long object, at least a plurality of counter electrodes may be provided, or a terminal that rotates between a plurality of rollers in a belt manner may also be used.
第1図はペースト式極板の例を示す一部欠截正
面図、第2図はその縦断面図、第3図は極板の他
の例を示す正面図、第4図は電解装置の構成例を
示す縦断面図、第5図は他の例の縦断面図、第6
図は電解用端子および対極の構成例を示す正面
図、第7図はその電解用対極の要部を欠截した側
面図、第8図は電解装置の他の例を示す要部欠截
側面図、第9図はさらに他の例を示す正面図、第
10図は電解時における対極との距離と電解強度
との関係を示す図である。
a……集電体、b……活物質、1……極板、5
……電解用対極、9……電解用端子、11……非
電導性多孔体、25……液槽。
Fig. 1 is a partially cutaway front view showing an example of a paste-type electrode plate, Fig. 2 is a longitudinal sectional view thereof, Fig. 3 is a front view showing another example of an electrode plate, and Fig. 4 is an electrolytic device. FIG. 5 is a vertical cross-sectional view of another example, and FIG.
The figure is a front view showing an example of the configuration of an electrolytic terminal and a counter electrode, Fig. 7 is a side view with main parts cut out of the electrolytic counter electrode, and Fig. 8 is a side view with main parts cut out showing another example of an electrolytic device. FIG. 9 is a front view showing still another example, and FIG. 10 is a diagram showing the relationship between the distance to the counter electrode and the electrolytic strength during electrolysis. a... Current collector, b... Active material, 1... Electrode plate, 5
... Counter electrode for electrolysis, 9 ... Terminal for electrolysis, 11 ... Non-conductive porous body, 25 ... Liquid tank.
Claims (1)
を備える極板を、ペースト状活物質の湿潤状態に
おいて、前記活物質に直接もしくは非電導性多孔
体を介して圧接させた電解用対極と前記集電体と
の間に通電して電解することを特徴とする極板の
電解方法。 2 集電体とこれに保持されたペースト状活物質
を有する極板を支持する手段と、前記集電体に圧
接し電気的に導通させる電解用端子と、前記集電
体に電気的には接触せず極板内の液体を界してイ
オン的に導通する電解用対極と、前記電解用端子
と電解用対極間に通電する電解機構とを備えたこ
とを特徴とする極板の電解装置。 3 電解用対極が、その表面に非導電性多孔体を
有する特許請求の範囲第2項記載の極板の電解装
置。 4 電解用端子がローラ状である特許請求の範囲
第2項記載の極板の電解装置。 5 電解用対極がローラ状である特許請求の範囲
第2項記載の極板の電解装置。 6 電解用端子と電解用対極とが、1つのローラ
に相互に絶縁して設けられた特許請求の範囲第2
項記載の極板の電解装置。 7 電解用端子と電解用対極が長尺の極板の搬送
方向に対して前後に隔離して設けられた特許請求
の範囲第2項記載の極板の電解装置。 8 電解を受ける極板に溶媒、電解質溶液、微粒
子のデイスパージヨン等を供給して湿潤させる機
構を備えた特許請求の範囲第2〜7項のいずれか
に記載の極板の電解装置。[Scope of Claims] 1. An electrode plate comprising a current collector and a paste-like active material held therein is pressure-bonded to the active material directly or through a non-conductive porous material in a wet state of the paste-like active material. A method for electrolyzing an electrode plate, characterized in that electrolysis is carried out by passing current between the counter electrode for electrolysis and the current collector. 2 means for supporting a current collector and an electrode plate having a paste-like active material held therein; an electrolytic terminal that presses into contact with the current collector and provides electrical continuity; and a means for electrically connecting the current collector. An electrolysis device for an electrode plate, comprising: a counter electrode for electrolysis that conducts ionically by separating the liquid within the electrode plate without contact; and an electrolysis mechanism that conducts current between the terminal for electrolysis and the counter electrode for electrolysis. . 3. The electrode plate electrolysis device according to claim 2, wherein the counter electrode for electrolysis has a non-conductive porous material on its surface. 4. The electrode plate electrolysis device according to claim 2, wherein the electrolysis terminal is roller-shaped. 5. The electrode plate electrolysis device according to claim 2, wherein the counter electrode for electrolysis is roller-shaped. 6. Claim 2, in which the electrolytic terminal and the electrolytic counter electrode are provided on one roller insulated from each other.
An electrolysis device for the electrode plate described in Section 1. 7. The electrode plate electrolyzer according to claim 2, wherein the electrolytic terminal and the electrolytic counter electrode are provided separated from each other in the front and back with respect to the transport direction of the long electrode plate. 8. An electrolytic device for an electrode plate according to any one of claims 2 to 7, comprising a mechanism for supplying and wetting a solvent, an electrolyte solution, a dispersion of fine particles, etc. to the electrode plate undergoing electrolysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56051484A JPS57165960A (en) | 1981-04-06 | 1981-04-06 | Electrolytic method and apparatus for plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56051484A JPS57165960A (en) | 1981-04-06 | 1981-04-06 | Electrolytic method and apparatus for plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57165960A JPS57165960A (en) | 1982-10-13 |
JPS6322016B2 true JPS6322016B2 (en) | 1988-05-10 |
Family
ID=12888225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56051484A Granted JPS57165960A (en) | 1981-04-06 | 1981-04-06 | Electrolytic method and apparatus for plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57165960A (en) |
-
1981
- 1981-04-06 JP JP56051484A patent/JPS57165960A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57165960A (en) | 1982-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2539455A (en) | Electrolytic polishing of metals | |
CN105088321A (en) | Electroplating cell, and method of forming metal coating | |
EP0198978B1 (en) | Formation of an adherent metal deposit on an exposed surface of an electrically-conducting ceramic | |
RU2635058C2 (en) | Device and method of applying electrolytic coating to object | |
Musiani et al. | Oxygen evolution reaction at composite anodes containing Co3O4 particles | |
US2750332A (en) | Method and apparatus for electrodeposition of a layer of uniform thickness on a conductive surface | |
US4097357A (en) | Method and device for regenerating zinc | |
US4748091A (en) | Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell | |
US3278410A (en) | Electrolytic anode | |
US4337124A (en) | Non-pulsed electrochemical impregnation of flexible metallic battery plaques | |
JPH0324022B2 (en) | ||
JPS5912760B2 (en) | Zone electrolytic polishing of conductive metal surfaces | |
JPS6322016B2 (en) | ||
US3873367A (en) | Zinc-container electrode | |
US3726783A (en) | Apparatus for producing an aluminum foil or band with an electrically insulating or decorative coating thereon | |
US2865973A (en) | Storage battery plates | |
US3979223A (en) | Electrochemical impregnation of electrode for rechargeable cell | |
US3585119A (en) | Method for making a battery electrode | |
US3930883A (en) | Zinc-containing electrode | |
JPS6393892A (en) | Polishing device for conductive roll of electroplating line | |
GB412582A (en) | Method for the electrodeposition of metal | |
JPS6434611A (en) | Continuous polishing method for metal strip | |
JP3035299U (en) | Semi-osmotic ion dialysis device | |
JPS621241Y2 (en) | ||
US1941376A (en) | Electrolytic apparatus |