JPS63219801A - Turbine for wave activated power generation with self-adjustable pitch blade - Google Patents

Turbine for wave activated power generation with self-adjustable pitch blade

Info

Publication number
JPS63219801A
JPS63219801A JP62050389A JP5038987A JPS63219801A JP S63219801 A JPS63219801 A JP S63219801A JP 62050389 A JP62050389 A JP 62050389A JP 5038987 A JP5038987 A JP 5038987A JP S63219801 A JPS63219801 A JP S63219801A
Authority
JP
Japan
Prior art keywords
turbine
rotor hub
turbine blade
blade
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62050389A
Other languages
Japanese (ja)
Inventor
Kenji Kaneko
賢二 金子
Toshiaki Setoguchi
俊明 瀬戸口
Masahiro Inoue
雅弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University NUC
Original Assignee
Saga University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University NUC filed Critical Saga University NUC
Priority to JP62050389A priority Critical patent/JPS63219801A/en
Publication of JPS63219801A publication Critical patent/JPS63219801A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/24Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy to produce a flow of air, e.g. to drive an air turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/40Flow geometry or direction
    • F05B2210/404Flow geometry or direction bidirectional, i.e. in opposite, alternating directions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

PURPOSE:To enhance starting characteristics by rotatably holding a turbine blade on a rotor hub on the entering edge side than at the moment center. CONSTITUTION:A holding rod 22 and a stopper pin 24 are provided on the flat surface of a mounting base portion 20 of a turbine blade 16. A recessed portion 28 to store the mounting base portion 20 of the turbine blade 16 is provided on the outer circumferential surface of a rotor hub 14. In the bottom portion of the recessed portion 28, a hole 30 which passes through the circumferential wall of the rotor hub 14 corresponding to the holding rod 22 and a groove 32 which stores the stopper pin 24 and conforms with the locus which is drawn by the pin 24 with the rotation of the turbine blade 16 are formed. The holding rod 22 is provided on the entering edge side than at the moment center of the turbine blade. With this arrangement, the self-starting characteristics of the turbine blade after the stalling can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、波浪の有するエネルギーを機械的な回転運動
に変換する装置、より具体的には、対称翼型をしたブレ
ードを有するタービンに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a device for converting the energy of waves into mechanical rotational motion, and more specifically to a turbine having symmetrical blades. It is.

(従来の技術) 四方を海で囲まれ、また石炭・石油などの化石燃料資源
の少ない我国において、温度差、波浪、潮汐、海流、濃
度差、そして生物などの海洋エネルギーの有効利用は、
エネルギー供給源の多様化に向けて解決しなければなら
ない技術的課題の一つである。
(Conventional technology) In Japan, which is surrounded by the ocean on all sides and has few fossil fuel resources such as coal and oil, the effective use of ocean energy such as temperature differences, waves, tides, ocean currents, concentration differences, and living organisms is
This is one of the technical issues that must be solved in order to diversify energy supply sources.

これらの各エネルギーの中、波浪エネルギーを利用する
ものとしては、波の上下運動を空気圧力に変換し、この
変換により生ずる空気流でタービンを回転させる装置が
あり、その一つに対称翼型ブレードを有するタービン(
以下従来の対称翼固定タービンをウェルズタービンと言
う)を用いた波力発電装置がある。
Among these types of energy, there are devices that utilize wave energy by converting the vertical motion of waves into air pressure and rotating a turbine using the airflow generated by this conversion.One of these is a device that uses symmetrical airfoil blades. A turbine with (
There is a wave power generation device using a conventional symmetrical blade fixed turbine (hereinafter referred to as a Wells turbine).

この装置は、第6図に模式的に示すように、波の上下運
動を空気圧力に変換する空気室1と、この変換により生
ずる空気流を外方又は空気室内方に導くガイド部2と、
ガイド部2内に配設されたタービン3とを具え、このタ
ービン3は、発電機を内蔵した発電ユニット4に、図示
しない軸を介して連結されている。
As schematically shown in FIG. 6, this device includes an air chamber 1 that converts the vertical motion of waves into air pressure, a guide section 2 that guides the air flow generated by this conversion to the outside or inside the air chamber.
The turbine 3 includes a turbine 3 disposed within the guide portion 2, and the turbine 3 is connected to a power generation unit 4 having a built-in generator via a shaft (not shown).

たとえば、空気室1内の海面が図中矢印Aじ示すように
上昇すると空気室1内の空気は、圧縮されガイド部2を
介して、大気圧に等しい空気室外方に流出する。この時
、ガイド部2を流れる空気流によってタービンブレード
5には、揚力と抗力とが発生する。これら揚力と抗力と
は、タービンブレード5の弦長方向の力と、この力に直
角な方向の力とに分かれて作用し、ブレードの弦長方向
の力は、タービンを回転させるべく作用する。
For example, when the sea level within the air chamber 1 rises as indicated by arrow A in the figure, the air within the air chamber 1 is compressed and flows out through the guide portion 2 to the outside of the air chamber, which is equal to atmospheric pressure. At this time, lift and drag are generated on the turbine blade 5 due to the airflow flowing through the guide portion 2 . These lift and drag forces act separately into a force in the chordal length direction of the turbine blade 5 and a force in a direction perpendicular to this force, and the force in the chordal length direction of the blade acts to rotate the turbine.

一方、空気室1内の海面が図中矢印Bで示すように下降
すると、空気室1内の圧力は、その外方の圧力に比べて
低下するので、外方の空気がガイド部2を介して空気室
内に流入する。その流れの方向は、海面が上昇する場合
のそれとは逆向きであるが、ブレードの翼型が対称であ
るため、ブレードの弦方向に作用する力の方向は、空気
流の方向に拘わらず一定であり、弦長方向に直角な力の
方向が単に変化する。
On the other hand, when the sea level inside the air chamber 1 falls as shown by arrow B in the figure, the pressure inside the air chamber 1 decreases compared to the pressure outside, so the outside air flows through the guide part 2. and flows into the air chamber. The direction of the flow is opposite to that when the sea level rises, but because the airfoil of the blade is symmetrical, the direction of the force acting chordwise on the blade remains constant regardless of the direction of the airflow. , the direction of the force perpendicular to the chord length simply changes.

それゆえ、ウェルズタービンは、その回転方向が常に一
定であるので波力発電に適したタービンと言える。
Therefore, the Wells turbine can be said to be a turbine suitable for wave power generation because its rotation direction is always constant.

(発明が解決すべき問題点) しかしながら従来のウェルズ・タービンは、上述したと
ころから明らかなように、作動流体の往復流に対して常
に一定方向の回転を得ることができるよう、タービンブ
レードが対称翼形形状をしており、またロータハブに一
体に固着されているためタービンの起動特性および効率
が劣ると言う問題があった。
(Problem to be solved by the invention) However, as is clear from the above, in the conventional Wells turbine, the turbine blades are symmetrical so that rotation can always be obtained in a constant direction with respect to the reciprocating flow of the working fluid. Since it has an airfoil shape and is integrally fixed to the rotor hub, there is a problem that the starting characteristics and efficiency of the turbine are poor.

本発明は、このような問題に鑑みてなされたものであり
、ウェルズタービンの有する特徴を損なうことなく、そ
の特性を向上させたタービンを提供することを目的とす
る。
The present invention has been made in view of such problems, and an object of the present invention is to provide a turbine with improved characteristics without impairing the characteristics of the Wells turbine.

(発明の開示) この目的を達成するため、本発明タービンは、とくに、
各タービンブレードをそのモーメント中心より前縁側で
ロータハブに対して回動自在にそれぞれ支持し、タービ
ンブレードの回動角度をロータハブの回転方向に対して
±4〜±8°の範囲とする。
(Disclosure of the Invention) In order to achieve this object, the turbine of the present invention particularly has the following features:
Each turbine blade is rotatably supported relative to the rotor hub on the leading edge side of its moment center, and the rotation angle of the turbine blade is set in the range of ±4 to ±8° with respect to the rotational direction of the rotor hub.

(実施例) 以下図面を参照して本発明装置について詳述する。(Example) The apparatus of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明タービンを模式的に示す平面図であり
、タービン10は、シャフト12に固着されるロータハ
ブ14と、ロータハブ外周に半径方向に突出して回動自
在に取付けられたタービンブレード16とを具える。な
お、第1図では、簡略のためタービンブレードを4枚と
したが、必要に応じてその数を増減するものとする。
FIG. 1 is a plan view schematically showing the turbine of the present invention. The turbine 10 includes a rotor hub 14 fixed to a shaft 12, and turbine blades 16 rotatably attached to the outer periphery of the rotor hub and protruding in the radial direction. and. In FIG. 1, the number of turbine blades is four for the sake of simplicity, but the number may be increased or decreased as necessary.

対称翼形形状としたそれぞれのタービンブレード16は
、第2図(a)に示すようにロータハブ14の外周にほ
ぼ適合する形状とした取付端面18に、ロータハブの半
径方向内方に突出させて設けた取付基部20を具える。
Each of the turbine blades 16 having a symmetrical airfoil shape is provided on a mounting end surface 18 having a shape that approximately conforms to the outer periphery of the rotor hub 14 so as to protrude inward in the radial direction of the rotor hub, as shown in FIG. 2(a). A mounting base 20 is provided.

この取付基部20の端面は、実質的に平坦であり、後述
するハブの外周に設けた凹部と共に衝合面を形成する。
The end surface of the mounting base 20 is substantially flat and forms an abutment surface together with a recess provided on the outer periphery of the hub, which will be described later.

なお、取付基部の翼厚方向高さを本実施例では、ブレー
ドの厚さより小としたが、これに限定されるものでなく
、ブレード厚さより大きくすることもできる。
Although the height of the attachment base in the blade thickness direction is set smaller than the blade thickness in this embodiment, the height is not limited to this, and can also be set larger than the blade thickness.

タービンブレードの取付基部20の平坦面に、ブレード
のスパン方向に延在する支持ロッド22と、このロッド
22に対して平行に前縁側に離間させたストッパーピン
24を設ける。支持ロッド22は、タービンブレード1
6に作用する相対的な空気流れに基づく縦揺れモーメン
トの中心より前縁側に偏移させて取付基部20に一体的
に固着されており、その自由端部には、おねじ部26を
具える。なお、これら支持ロッ”ドおよびストッパーピ
ンは、予めタービンブレードと一体に形成しても良く、
または、取付基部20に螺着若しくは溶接により固着し
ても良く、従来の固着方法を適用することができる。
A support rod 22 extending in the span direction of the blade, and a stopper pin 24 parallel to the rod 22 and spaced apart toward the leading edge are provided on the flat surface of the mounting base 20 of the turbine blade. The support rod 22 supports the turbine blade 1
It is integrally fixed to the mounting base 20 with a shift toward the front edge side from the center of the pitching moment based on the relative air flow acting on the air flow member 6, and the free end thereof is provided with a male threaded portion 26. . Note that these support rods and stopper pins may be formed integrally with the turbine blade in advance.
Alternatively, it may be fixed to the mounting base 20 by screwing or welding, and conventional fixing methods can be applied.

一方第2図(ハ)に示すように、ロータハブ14の外周
面には、タービンブレードの取付基部20を収容する凹
部28が、ブレードの数およびその取付は箇所に対応し
てそれぞれ形成されている。また、それら凹部28の底
部には、タービンブレード16の支持ロッド22および
ストッパービン24に対応させてロータハブ14の周壁
を貫通する貫通孔30と、この貫通孔に支持ロッド22
を挿通4させタービンブレード16をロータハブ14に
対して回動自在に支持した際に、ストッパービン24を
収容しタービンブレードの回動運動に伴ってビン24の
描く軌跡に一致する溝孔32とが形成されている。この
溝孔32は、シャフト12の軸線に直交する線分Hに対
し、ストッパービン24が溝孔の両端にある時にビンの
中心と貫通孔30との中心を結ぶ線分りがなす角度θ、
つまりロータハブ14に対するタービンブレード16の
相対回転角度が±4〜±8°の範囲にあるよう形成する
On the other hand, as shown in FIG. 2(c), recesses 28 for accommodating the mounting bases 20 of turbine blades are formed on the outer circumferential surface of the rotor hub 14, corresponding to the number of blades and their mounting locations. . Further, at the bottom of the recesses 28, there is a through hole 30 that penetrates the circumferential wall of the rotor hub 14 in correspondence with the support rod 22 and stopper bin 24 of the turbine blade 16, and a through hole 30 that penetrates the peripheral wall of the rotor hub 14 and supports the support rod 22 in this through hole.
When the turbine blade 16 is rotatably supported with respect to the rotor hub 14 by inserting the stopper pin 4 through the groove 32, a slot 32 that accommodates the stopper pin 24 and matches the locus drawn by the pin 24 as the turbine blade rotates is formed. It is formed. This slot 32 has an angle θ between the line segment H perpendicular to the axis of the shaft 12 and a line segment connecting the center of the bottle and the center of the through hole 30 when the stopper bin 24 is at both ends of the slot.
That is, the relative rotation angle of the turbine blades 16 with respect to the rotor hub 14 is formed to be in the range of ±4 to ±8°.

タービンブレード16をロータハブ14に回動自在に支
持するため、第3図(a)に示した実施例では、ハブ1
4の周壁に内周面に設けた肉厚部34の凹部に軸受け、
たとえばスラスト軸受36a1およびラジアル軸受36
bを直列に配置し、これら軸受に支持ロッド22を挿通
しカラー38を介してそのおねじ部26にナツト40が
螺着されている。また、タービンブレード16の取付基
部に支持ロッド螺着用のめねじ部を設け、支持ロッドと
してのボルトをそれら軸受を介してタービンブレードに
締結する構成としても良い。
In order to rotatably support the turbine blades 16 on the rotor hub 14, in the embodiment shown in FIG.
A bearing in a recess of a thick wall portion 34 provided on the inner peripheral surface of the peripheral wall of 4,
For example, the thrust bearing 36a1 and the radial bearing 36
b are arranged in series, and the support rod 22 is inserted through these bearings, and a nut 40 is screwed onto the male threaded portion 26 of the bearing through the collar 38. Further, a configuration may be adopted in which a female threaded portion for screwing the support rod is provided at the mounting base of the turbine blade 16, and a bolt serving as the support rod is fastened to the turbine blade via the bearing.

一方、第3図(b)に示した実施例では、支持ロッド2
2の自由端部に形成したおねじ部26に連結金具42a
を螺着し、またシャフト12の支持部にも連結金具42
bを固着し、これら連結金具間にガラス繊維又はカーボ
ン繊維よりなるひも44を張設する。なお、ひも44は
タービンブレードの回転運動に関連してねじりを受ける
ので引張力および耐摩擦力に対して優れたものであれば
、それら繊維に限定されるものではない。
On the other hand, in the embodiment shown in FIG. 3(b), the support rod 2
A connecting fitting 42a is attached to the male threaded portion 26 formed at the free end of 2.
A connecting fitting 42 is also screwed onto the support portion of the shaft 12.
b, and a string 44 made of glass fiber or carbon fiber is stretched between these connecting fittings. Note that since the string 44 is subjected to twisting in connection with the rotational movement of the turbine blade, it is not limited to these fibers as long as it has excellent tensile force and friction resistance.

このように構成した本発明タービンを作動流体が往復流
れを行う、たとえば第6図に示した装置のガイド部2内
に配設する。すると空気室1内の海面の矢印A方向に示
す上昇に伴って生起された海面から空気室外方に向かう
空気流れにより、タービンブレードには縦揺れモーメン
トが作用する。
The turbine of the present invention thus constructed is disposed within the guide portion 2 of the apparatus shown in FIG. 6, for example, in which the working fluid flows back and forth. Then, a pitching moment acts on the turbine blades due to the air flow from the sea surface toward the outside of the air chamber, which is generated as the sea surface inside the air chamber 1 rises in the direction of arrow A.

ところが本発明タービンによれば、各タービンブレード
がそのモーメント中心より前縁側でロータハブに回動自
在に支持されているので、各ブレードは、第2図(ハ)
に矢印■で示す方向に回動する。
However, according to the turbine of the present invention, since each turbine blade is rotatably supported by the rotor hub on the leading edge side of the moment center, each blade is rotated as shown in FIG.
Rotate in the direction shown by the arrow ■.

一方、第3図において空気室1内の海面の矢印B方向に
示す下降に伴って生起された空気流れにより縦揺れモー
メントがタービンブレードに作用する。しかしながらそ
のモーメントの方向は、海面が上昇する際のモーメント
とは反契であるため、各タービンブレードは第2図0)
)辷゛矢印■で示す方向に回動することになる。したが
って本発明タービンにおいては、作動流体の往復流れに
より自動的にブレードがロータハブに対して回動するこ
とがわかる。
On the other hand, a pitching moment acts on the turbine blades due to the air flow generated as the sea level within the air chamber 1 descends in the direction of arrow B in FIG. However, the direction of the moment is opposite to the moment when the sea level rises, so each turbine blade is
) It will rotate in the direction shown by the sliding arrow ■. Therefore, it can be seen that in the turbine of the present invention, the blades automatically rotate relative to the rotor hub due to the reciprocating flow of the working fluid.

次に本発明タービンと従来のウェルズタービンとを用い
て比較実験を行った。なお、実験に供するタービンは、
翼厚比20%、翼弦長1=90mm、ハブ比h = 0
.7、先端ソリディテ0.57のNACA翼を6枚有す
るものであり、これを流速12m/秒の定常流れの中に
配置しロータハブ14に対するタービンブレード16の
相対回転角度θを0゜から種々変化させてパラメータと
し、トルク係数C7およびタービン効率ηと平均迎え角
α、との関係を求めた。ここでトルク係数CTは、ター
ビンに生起されたトルクをTとすると次の式で表される
無次元化した値であり、タービンの自己起動特性を特徴
づけるものである。
Next, a comparative experiment was conducted using the turbine of the present invention and a conventional Wells turbine. The turbine used in the experiment is
Blade thickness ratio 20%, blade chord length 1 = 90mm, hub ratio h = 0
.. 7. It has six NACA blades with a tip solidity of 0.57, which are placed in a steady flow with a flow velocity of 12 m/s, and the relative rotation angle θ of the turbine blade 16 with respect to the rotor hub 14 is varied from 0°. The relationship between the torque coefficient C7, the turbine efficiency η, and the average angle of attack α was determined. Here, the torque coefficient CT is a dimensionless value expressed by the following equation, where T is the torque generated in the turbine, and characterizes the self-starting characteristics of the turbine.

C7=□ 一・ρ・Wt2 ・Z−n−2−r。C7=□ 1・ρ・Wt2 ・Z-n-2-r.

ここで、p、Wt、Z、n、rtは、それぞれ空気密度
、翼先端の相対速度、翼枚数、翼幅、ハブの中心から翼
先端までの半径を示している。
Here, p, Wt, Z, n, and rt respectively indicate air density, relative speed of the blade tip, number of blades, blade width, and radius from the center of the hub to the blade tip.

一方、タービン効率ηは次式で与えられる無次元化した
値である。
On the other hand, the turbine efficiency η is a dimensionless value given by the following equation.

ここで、ω、AP、Qはそれぞれタービンの角速度、タ
ービンの前後の差圧、そしてタービンを通過する空気の
流量である。
Here, ω, AP, and Q are the angular velocity of the turbine, the differential pressure before and after the turbine, and the flow rate of air passing through the turbine, respectively.

比較実験の結果を第4図(a)、 (b)に示す。第4
図(a)は、平均迎え角α、とトルク係数07との関係
を示す図であり、第4図(b)は、平均迎え角α、とタ
ービン効率ηとの関係を示す。ここで平均迎え角α、は
、タービンブレードの先端における周速Utに対する空
気流のシャフト軸線方向における速度V、の比であり、
αt −tan−’ (va/ tyt)である。
The results of the comparative experiment are shown in Figures 4(a) and (b). Fourth
FIG. 4(a) is a diagram showing the relationship between the average angle of attack α and the torque coefficient 07, and FIG. 4(b) is a diagram showing the relationship between the average angle of attack α and the turbine efficiency η. Here, the average angle of attack α is the ratio of the speed V of the airflow in the shaft axial direction to the circumferential speed Ut at the tip of the turbine blade,
αt -tan-' (va/tyt).

第4図(a)から明らかなように、タービンブレードの
失速開始後、すなわち平均迎え角α、が20’乃至30
°の範囲にある時のトルク係数C1は、相対回転角度θ
の増加に伴って増大することがわかる。
As is clear from FIG. 4(a), after the turbine blades start stalling, that is, the average angle of attack α is 20' to 30'.
The torque coefficient C1 when it is in the range of ° is the relative rotation angle θ
It can be seen that it increases as the value increases.

一方、第4図[有])から明らかなように、タービン効
率ηも相対回転角度θの増加に伴って向上することがわ
かる。
On the other hand, as is clear from FIG. 4), it can be seen that the turbine efficiency η also improves as the relative rotation angle θ increases.

ところで比較実験においてタービンは、作動流体の定常
流れの中に配設されていたが、実際の波力発電において
は、一定の波高の波だけが作用するわけではなく、様々
な波の成分が含まれている。
By the way, in the comparative experiment, the turbine was placed in a steady flow of working fluid, but in actual wave power generation, not only waves of a fixed wave height act, but various wave components are involved. It is.

そこである海域における実際の波の運動スペクトルの一
つであるI S S (International 
5hipStructure Congrees)スペ
クトルに合わせた作動流体の流れを送り、この流れの中
にタービンを設置したところ第5図に示す結果を得た。
Therefore, ISS (International
When a flow of working fluid matched to the spectrum was sent and a turbine was installed in this flow, the results shown in FIG. 5 were obtained.

この図は相対回転角度θをパラメータとして横軸は不規
則波群の有義波高と平均周期より決まる軸流速度を■、
として(V、/Ut)を、縦軸は平均タービン効率7を
表している。なお、平均タービン効率7とは不規則波群
に対する平均のタービン効率を表す。この図から明らか
なように、平均タービン効率7もタービンブレードの相
対回転角度θの増加に伴って漸次向上しθ=6°の時最
大平均効率を示し、以後漸減する。これは既述したよう
に、実際の海域における波の運動には様々な振動成分が
含まれており、波高の高い波も低い波も存在することに
起因しているものと思われる。そこで第4図および第5
図を考慮し各タービンブレードの回動角度θが±4〜±
8°の範囲となるよう設定すれば平均タービン効率に優
れたタービンを得ることがわかった。
In this figure, the relative rotation angle θ is used as a parameter, and the horizontal axis represents the axial velocity determined by the significant wave height and average period of the irregular wave group.
(V, /Ut), and the vertical axis represents the average turbine efficiency 7. Note that the average turbine efficiency 7 represents the average turbine efficiency for irregular wave groups. As is clear from this figure, the average turbine efficiency 7 also gradually increases as the relative rotation angle θ of the turbine blades increases, exhibits the maximum average efficiency when θ=6°, and gradually decreases thereafter. This is thought to be due to the fact that, as mentioned above, wave motion in actual sea areas contains various vibrational components, and there are waves with both high and low wave heights. Therefore, Figures 4 and 5
Considering the figure, the rotation angle θ of each turbine blade is ±4 to ±
It has been found that if the angle is set within a range of 8°, a turbine with excellent average turbine efficiency can be obtained.

(発明の効果) 以上詳述したように本発明によれば、ウェルズタービン
の有する特徴を損なうことなく、特にタービンブレード
の失速開始後の自己起動特性が改善され、また作動流体
の有する運動エネルギーを効率良く回転運動に変換する
ことができる。しがも、各タービンブレードは、作動流
体の往復流れに対応して自動的に回動運動を行い、その
ための特別の駆動手段を必要としない構成としたので製
造コスト的に有利であるばかりでなく、保守、点検の容
易な波力発電用タービンを得る。
(Effects of the Invention) As detailed above, according to the present invention, without impairing the characteristics of the Wells turbine, in particular, the self-starting characteristics after the turbine blades start stalling are improved, and the kinetic energy of the working fluid is improved. It can be efficiently converted into rotational motion. However, since each turbine blade automatically rotates in response to the reciprocating flow of the working fluid, and does not require any special driving means, it is advantageous in terms of manufacturing costs. To obtain a wave power generation turbine that is easy to maintain and inspect without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明タービンを模式的に示す平面図、 第2図(a)は、第1図に示すタービンのタービンブレ
ードを示す斜視図、 第2図Φ)は、第1図に示すタービンのロータハブの一
部を示す正面図、 第3図(a)および(ハ)は、第2図に示すタービンブ
レードをロータハブに取付けた状態をそれぞれ示す説明
図、 第4図(a)および(b)は、本発明タービンのトルク
特性およびタービン効率を示す図、 第5図は、本発明タービンの平均タービン効率を示す図
、そして 第6図は、タービンを用いた波力発電装置を示す路線図
である。 1・・・空気室      2・・・ガイド部3.10
・・・タービン  4・・・発電ユニット5.16・・
・タービンブレード 12・・・シャフト    14・・・ロータハブ18
・・・取付端面    2o・・・取付基部22・・・
支持ロッド   24・・・ストッパーピン26・・・
おねじ部    28・・・凹部30・・・貫通孔  
   32・・・溝孔34・・・肉厚部     36
a、36b・・・軸受38・・・カラー     40
・・・ナツト42a、42b・・・連結金具 44・・・ひも 第1図 第2図 (a) (b) 第3図 (a) U 、(b) 免/Let
FIG. 1 is a plan view schematically showing the turbine of the present invention, FIG. 2(a) is a perspective view showing a turbine blade of the turbine shown in FIG. 1, and FIG. 3(a) and (c) are explanatory views showing the turbine blades shown in FIG. 2 attached to the rotor hub, and FIGS. 4(a) and (c) are front views showing a part of the rotor hub of the turbine. b) is a diagram showing the torque characteristics and turbine efficiency of the turbine of the present invention, Figure 5 is a diagram showing the average turbine efficiency of the turbine of the present invention, and Figure 6 is a diagram showing a wave power generation device using a turbine. It is a diagram. 1... Air chamber 2... Guide part 3.10
...Turbine 4...Power generation unit 5.16...
・Turbine blade 12...Shaft 14...Rotor hub 18
...Mounting end surface 2o...Mounting base 22...
Support rod 24...stopper pin 26...
Male thread part 28... recessed part 30... through hole
32... Slot hole 34... Thick part 36
a, 36b...Bearing 38...Color 40
... Nuts 42a, 42b ... Connecting fittings 44 ... String Fig. 1 Fig. 2 (a) (b) Fig. 3 (a) U, (b) Immunity/Let

Claims (1)

【特許請求の範囲】[Claims] 1、対称翼型をしたタービンブレードを複数枚有し、作
動流体の往復流れに対し常に一方向に回転するタービン
において、各タービンブレードをそのモーメント中心よ
り前縁側でロータハブに対して回動自在にそれぞれ支持
し、タービンブレードの回動角度をロータハブの回転方
向に対して±4〜±8°の範囲としたことを特徴とする
自己可変ピッチ翼を有する波力発電用タービン。
1. In a turbine that has multiple turbine blades with a symmetrical airfoil shape and always rotates in one direction in response to the reciprocating flow of working fluid, each turbine blade can freely rotate relative to the rotor hub on the leading edge side of its moment center. 1. A wave power generation turbine having self-variable pitch blades, each of which is supported by a rotor hub, and the rotation angle of the turbine blades is within a range of ±4 to ±8 degrees with respect to the rotational direction of a rotor hub.
JP62050389A 1987-03-06 1987-03-06 Turbine for wave activated power generation with self-adjustable pitch blade Pending JPS63219801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050389A JPS63219801A (en) 1987-03-06 1987-03-06 Turbine for wave activated power generation with self-adjustable pitch blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050389A JPS63219801A (en) 1987-03-06 1987-03-06 Turbine for wave activated power generation with self-adjustable pitch blade

Publications (1)

Publication Number Publication Date
JPS63219801A true JPS63219801A (en) 1988-09-13

Family

ID=12857514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050389A Pending JPS63219801A (en) 1987-03-06 1987-03-06 Turbine for wave activated power generation with self-adjustable pitch blade

Country Status (1)

Country Link
JP (1) JPS63219801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059038B3 (en) * 2007-12-06 2009-06-04 Voith Patent Gmbh Wells turbine with passive rotor blade adjustment
WO2010124762A2 (en) 2009-04-28 2010-11-04 Voith Patent Gmbh Bidirectionally impingeable turbine
WO2010124778A3 (en) * 2009-04-27 2011-06-30 Voith Patent Gmbh Underwater power plant comprising a water turbine with bidirectional fluid flow and unidirectional rotation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891304A (en) * 1981-11-26 1983-05-31 Tohoku Electric Power Co Inc Reciprocating flow air turbine device
JPS6098103A (en) * 1983-11-02 1985-06-01 Tohoku Electric Power Co Inc Air turbine unit with roter blade
JPS6125973A (en) * 1984-07-14 1986-02-05 Masahisa Shimizu Kinetic direction converting mechanism by blade

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891304A (en) * 1981-11-26 1983-05-31 Tohoku Electric Power Co Inc Reciprocating flow air turbine device
JPS6098103A (en) * 1983-11-02 1985-06-01 Tohoku Electric Power Co Inc Air turbine unit with roter blade
JPS6125973A (en) * 1984-07-14 1986-02-05 Masahisa Shimizu Kinetic direction converting mechanism by blade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059038B3 (en) * 2007-12-06 2009-06-04 Voith Patent Gmbh Wells turbine with passive rotor blade adjustment
US9062650B2 (en) 2007-12-06 2015-06-23 Voith Patent Gmbh Wells turbine having passive rotor blade displacement
WO2010124778A3 (en) * 2009-04-27 2011-06-30 Voith Patent Gmbh Underwater power plant comprising a water turbine with bidirectional fluid flow and unidirectional rotation
WO2010124762A2 (en) 2009-04-28 2010-11-04 Voith Patent Gmbh Bidirectionally impingeable turbine
DE102009018924A1 (en) 2009-04-28 2010-11-04 Voith Patent Gmbh Bidirectional flowable turbine

Similar Documents

Publication Publication Date Title
US6132181A (en) Windmill structures and systems
US4313711A (en) Turbine and like rotary machines
US4256435A (en) Mounting support blocks for pivotal rotor of wind turbine
WO2001048374A2 (en) Turbine for free flowing water
US20120128500A1 (en) Turbines
US6053700A (en) Ducted turbine
US20230399952A1 (en) Rotor for an electricity generator
Kiwata et al. Performance of a vertical axis wind turbine with variable-pitch straight blades utilizing a linkage mechanism
TWI710698B (en) Vertical axis fluid energy converting device
US20160172934A1 (en) Contra rotor wind turbine system using a hydraulic power transmission device
US20140161615A1 (en) Water Turbine Propeller
JPS63219801A (en) Turbine for wave activated power generation with self-adjustable pitch blade
JPH0264270A (en) Impulse turbine with self-variable pitch guide vanes
CN204226104U (en) Small-sized hybrid vertical axis wind energy collecting device
JPS5928754B2 (en) Vertical axis wind turbine blade
RU2392486C1 (en) Wind turbine rotor
CN205876600U (en) Screw -tupe vertical axis aerogenerator
CN109989872B (en) Ocean current energy power generation device with automatic adjusting function
CN107762725B (en) Wind driven generator
JPH0478801B2 (en)
JP2014145293A (en) Wind turbine
CN103147909B (en) Lift-type ellipsoid vacuum magnetic suspension wind turbine
Khan et al. Review Paper on Wind Turbine
RU2300011C1 (en) Rotary blade engine for convection air and liquid flows
JPH0689645B2 (en) Wave Power Generator Using Symmetrical Wing Type Biplane Wells Turbine with Mounting Angle