JPS63219501A - Method for molding sintered hard alloy powder - Google Patents
Method for molding sintered hard alloy powderInfo
- Publication number
- JPS63219501A JPS63219501A JP5478387A JP5478387A JPS63219501A JP S63219501 A JPS63219501 A JP S63219501A JP 5478387 A JP5478387 A JP 5478387A JP 5478387 A JP5478387 A JP 5478387A JP S63219501 A JPS63219501 A JP S63219501A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- water
- alloy powder
- hard alloy
- sintered hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 16
- 238000000465 moulding Methods 0.000 title claims description 5
- 239000000956 alloy Substances 0.000 title abstract 5
- 229910045601 alloy Inorganic materials 0.000 title abstract 5
- 239000011347 resin Substances 0.000 claims abstract description 16
- 229920005989 resin Polymers 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 9
- 238000001704 evaporation Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000011049 filling Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 3
- 238000007569 slipcasting Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超硬合金粉末の成形方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for compacting cemented carbide powder.
従来超硬合金の製造方法においては、粉末にパラフィン
系ワックスあるいはポリエチレン系ワックスを添加し機
械的なプレス成形をし所定の形を得るのが一般的である
。しかしながら粉末を金型に充填した後、上下方向から
圧力を加え、そして製品の取り出し、これらを連続的に
繰り返すこの方法では成形できる形状が限られており、
更に複雑な形状を得る場合には、プレス体を800℃〜
1.000℃位の温度で仮焼結を行ない、ある程度の強
度を持たせ、しかる後、電着ダイヤ砥石にて研削を行な
う方法がとられている。しかしこの方法では複雑形状を
得るまでの時間的問題や粉末を削る際の歩留まりの問題
は避は切れず、かつ研削で可能な形状にも限界がある。In the conventional method for manufacturing cemented carbide, it is common to add paraffin wax or polyethylene wax to powder and mechanically press-form the powder into a predetermined shape. However, after filling the powder into a mold, pressure is applied from above and below, and the product is removed.This method, which is repeated continuously, limits the shapes that can be molded.
If you want to obtain a more complex shape, press the press body at 800℃~
The method used is to perform temporary sintering at a temperature of about 1,000° C. to give it a certain degree of strength, and then grind it with an electrodeposited diamond grindstone. However, with this method, there are unavoidable problems with the time it takes to obtain a complex shape and the yield rate when grinding the powder, and there are limits to the shapes that can be achieved by grinding.
その他、押出成形法やラバープレス成形法があるが、こ
れらにおいては単純形状に限られる欠点がある。又スリ
ップキャスト法においては多量生産性はなく、かつ成形
体の強度も弱く取扱いが不便である欠点がある。Other methods include extrusion molding and rubber press molding, but these methods have the drawback of being limited to simple shapes. In addition, the slip casting method has disadvantages in that it is not capable of mass production, and the strength of the molded product is weak, making it inconvenient to handle.
又射出成形法においては型製作に時間と費用がかかるし
、射出後の脱脂工程で極めて時間を有する欠点がある。In addition, the injection molding method requires time and money to manufacture the mold, and the degreasing process after injection is extremely time consuming.
本発明の目的はこのような従来の問題点を克服し単純形
状から複雑形状に至るまでの成形を安易かつ早く行なう
ことができる成形方法を提供することである。An object of the present invention is to overcome these conventional problems and provide a molding method that can easily and quickly mold shapes ranging from simple shapes to complex shapes.
本発明は広い意味でスリップキャスト法、射出成形法の
応用であるが、熱硬化性樹脂と水を用いる事及び型の製
法が安易であることに特徴を有する。以下にこれを説明
する。The present invention is an application of slip casting and injection molding in a broad sense, and is characterized by the use of a thermosetting resin and water and by the ease of manufacturing the mold. This will be explained below.
型は第1(a)図に示すような超硬合金で作りたい形状
のモデルを木、プラスチックあるいは金属を加工するこ
とにより製作する8次に、これに例えばプラスチックを
流入して第1(c)図に示すようなモデルの上型と下型
よりなる割り型を製作する。この上型と下型を第2図に
示すようにモールド周囲にセットしこのモールド内にキ
ソロゾルあるいはキソロゲル状態にした超硬粉末を流入
もしくは圧入し、しかる後全体を加温することにより硬
化させる。The mold is made of cemented carbide as shown in Figure 1(a) by processing wood, plastic, or metal. ) Make a split mold consisting of an upper mold and a lower mold of the model as shown in the figure. The upper and lower molds are set around the mold as shown in FIG. 2, and the cemented carbide powder in the form of xorosol or xorogel is flowed or press-fitted into the mold, and then the whole is heated to harden.
以上の方法の発明により極めて安易にかつ早く成形体を
得ることが可能である。By the invention of the method described above, it is possible to obtain a molded article extremely easily and quickly.
スリップキャストに比べ量産性があり、かつ熱硬化樹脂
と水を用いるため水分蒸発後の成形体は単にスリップキ
ャストしたものと比べ格段の強度を有する。又射出成形
と比べると射出成形は本発明における割り型を金型で凹
凸を切削あるいは放電加工により作製するが、これに比
べ格段に安易に型製造が可能であることは言うまでもな
い。It is easier to mass produce than slip casting, and because it uses a thermosetting resin and water, the molded product after water evaporation has much greater strength than that simply slip cast. Furthermore, compared to injection molding, the split mold according to the present invention is produced by cutting the unevenness with a metal mold or by electric discharge machining, but it goes without saying that the mold can be manufactured much more easily.
又熱硬化性樹脂と水を用いゾル、ゲル状態にするために
は水の量を多くすればよく、樹脂自体の量はせいぜい1
〜3重量%である。従って水分を乾燥した後は脱脂にお
いて100℃/時程度のスピードで脱脂が可能であり、
通常の射出成形における5〜b
格段に能率的である。Also, in order to make a sol or gel state using a thermosetting resin and water, it is sufficient to increase the amount of water, and the amount of the resin itself is at most 1
~3% by weight. Therefore, after drying the moisture, it is possible to degrease at a speed of about 100°C/hour.
5-b in normal injection molding It is much more efficient.
実施例1
市販のWC粉末(平均粒径1.5μ)とCo粉末(同1
.0μ)をCoが重量比で15%になるよう湿式にてボ
ールミル混合し乾燥した粉末に熱硬化性樹脂を2重量%
及び純水を8重量%添加し、ヘンシュルミキサ−にて混
錬をし、キソロゲル状の状態にした。これを第1(a)
図に示したモデル1を容器に入れ、この容器に市販の硬
化植込樹脂を流し、このモデルの型を作製した。尚この
場合硬化植込樹脂が硬化後2つに割り易いよう薄いゼニ
ールの薄板2(厚み0.31)をモデルに第1(b)図
に示すように取付ける。以上により硬化植込樹脂により
第1(c)図に示すようなモデルの上型41と下型42
よりなる割り型±を作製し、これを第2図のように6セ
ツト分セットしキソロゲル状の超硬合金素材3を矢印の
方向からプランジャー5にて圧入した。この場合圧入圧
力は5kg/−であった、尚第2図において且はモール
ドである。圧入後モールド6を取り除き残部を100℃
に除々に加熱し、上型下型を取り除くことにより第1(
a)図に示したモデル1と同一形状の超硬合金素材を得
た。この素材を100℃/分にて真空中にて昇温し、1
350℃ 1時間の焼結を行なった。得られた焼結体の
特性はWC粉末とCo粉末と湿式混合して得られる焼結
体と比べ何らの変化も認められなかった。その特性結果
を第1表に示す。Example 1 Commercially available WC powder (average particle size 1.5μ) and Co powder (average particle size 1.5μ)
.. 0μ) in a wet ball mill so that the Co content is 15% by weight, and then add 2% by weight of thermosetting resin to the dry powder.
and 8% by weight of pure water were added and kneaded in a Henschel mixer to form a xerogel-like state. This is the first (a)
Model 1 shown in the figure was placed in a container, and a commercially available hardened potting resin was poured into the container to create a mold of this model. In this case, a thin Zenyl plate 2 (thickness 0.31) is attached to the model as shown in FIG. 1(b) so that the hardened implant resin can be easily split into two after hardening. As a result of the above, the upper mold 41 and lower mold 42 of the model shown in FIG.
Six sets of split molds were prepared as shown in FIG. 2, and a xerogel-like cemented carbide material 3 was press-fitted with a plunger 5 in the direction of the arrow. In this case, the press-in pressure was 5 kg/-, as shown in FIG. 2 and in the mold. After press-fitting, remove the mold 6 and heat the remaining part to 100℃.
The first mold (
a) A cemented carbide material having the same shape as Model 1 shown in the figure was obtained. This material was heated in vacuum at 100°C/min, and
Sintering was performed at 350°C for 1 hour. No change was observed in the properties of the obtained sintered body compared to the sintered body obtained by wet mixing WC powder and Co powder. The characteristic results are shown in Table 1.
第1表
実施例2
市販のWC粉末(平均粒径1.5μ)とCo粉末(同1
.0μ)をGoが重量比で15%になるよう湿式ボール
判ル混合し乾燥した粉末に熱硬化性樹脂を2重量%及び
純水を12重量%添加し、ヘンシュルミキサ−にて混錬
しキソロゾル状の状態にした。実施例1と同様な方法に
て硬化植込樹脂の代わりに石膏を用い割り型(上型と下
型)を作製し、これにキソロゾル状の超硬素材を注入し
た。Table 1 Example 2 Commercially available WC powder (average particle size 1.5μ) and Co powder (average particle size 1.5μ)
.. 0 μ) was mixed in a wet bowl so that the Go content was 15% by weight. To the dried powder, 2% by weight of thermosetting resin and 12% by weight of pure water were added, and the mixture was kneaded in a Henschl mixer. It was made into a xorosol state. In the same manner as in Example 1, split molds (upper mold and lower mold) were made using plaster instead of the hardened implant resin, and a xorosol-like carbide material was injected into these molds.
注入後0.5℃/分の昇温スピードにて100℃まで昇
温した。昇温後、石膏を取ることによりモデルと同一形
状の成形体を得た。この場合熱硬化性樹脂を含有するた
め成形体の強度は充分な強度を有していた。この成形体
を実施例1と同様にして焼結体を作製した。得られた焼
結体の特性には何ら問題が見られなかった。After injection, the temperature was raised to 100°C at a heating rate of 0.5°C/min. After raising the temperature, the plaster was removed to obtain a molded body having the same shape as the model. In this case, the molded product had sufficient strength because it contained a thermosetting resin. A sintered body was produced from this molded body in the same manner as in Example 1. No problems were observed in the properties of the obtained sintered body.
尚本発明方法によれば、実施例1,2ともに焼結体を得
るまでに1日を要するのに比べ、従来のように粉末をプ
レスし仮焼結をし、ダイヤモンド砥石で研削をし、更に
焼結をする方法では4日をようした。According to the method of the present invention, it takes one day to obtain the sintered body in both Examples 1 and 2, but unlike the conventional method, the powder is pressed, pre-sintered, ground with a diamond grindstone, The method of further sintering took 4 days.
実施例3
実施例1と同様な方法において、φ10■×100+m
長さの割り型を1セット作製し、これに実施例1で用い
たのと同様のキソロゲル状超硬合金素材を5 kg/a
iにて圧入した。これを型内で両端に端子を付は電流が
流れるようにし、通電により加熱を行なった。この場合
電流値は水分の蒸発量により徐々に変化するが、30A
〜100A。Example 3 In the same method as Example 1, φ10×100+m
One set of split molds of different lengths was prepared, and 5 kg/a of xologel-like cemented carbide material similar to that used in Example 1 was applied to the molds.
It was press-fitted at i. This was placed in a mold with terminals attached to both ends to allow current to flow through it, and heating was performed by passing the current through. In this case, the current value will gradually change depending on the amount of water evaporation, but it will be 30A.
~100A.
20〜50Vの条件により発熱し硬化させることが可能
であった。従って本方法により成形を行なったものは通
電加熱によっても硬化が可能である。It was possible to generate heat and cure under the conditions of 20 to 50V. Therefore, products formed by this method can also be cured by heating with electricity.
本発明によれば割り型の製作が可能な限り、複雑形状品
を短期間にかつ削りカスも生ずることなく作ることが可
能である。According to the present invention, as long as split molds can be manufactured, products with complex shapes can be manufactured in a short period of time and without producing scraps.
第1(a)図は超硬素材として成形したいものと同一形
状のモデルであり、第1(b)図は割り型を作るための
モデルに薄板のプラスチックを取付けた状態を示す概略
斜視図、第1(c)図はこれにより製作した割り型を示
す概略斜視図で(イ)は上型、(ロ)は下型であり、(
ハ)は組み合わせた状態であり、第2図は成形のための
圧入状態を示す概略図である。Fig. 1(a) is a model with the same shape as the one desired to be molded as a carbide material, and Fig. 1(b) is a schematic perspective view showing a state in which a thin plastic plate is attached to the model for making a split mold. Fig. 1(c) is a schematic perspective view showing the split mold thus manufactured, in which (a) is the upper mold, (b) is the lower mold, and (
c) shows the combined state, and FIG. 2 is a schematic diagram showing the press-fitted state for molding.
Claims (1)
混錬し、キソロゾル、キソロゲル状態にしてこれを所定
形状を有する型に流入もしくは圧入した後、型全体を加
温し水分を蒸発させると同時に樹脂を硬化せしめ所定形
状を得ることを特徴とする超硬合金粉末の成形方法。Cemented carbide powder, water-soluble thermosetting resin, and water are mixed and kneaded to form a xorosol or xorogel, which is then flowed or press-fitted into a mold having a predetermined shape, and then the entire mold is heated to remove moisture. A method for molding cemented carbide powder, characterized by curing the resin at the same time as evaporating it to obtain a predetermined shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62054783A JP2592599B2 (en) | 1987-03-10 | 1987-03-10 | Molding method of cemented carbide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62054783A JP2592599B2 (en) | 1987-03-10 | 1987-03-10 | Molding method of cemented carbide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63219501A true JPS63219501A (en) | 1988-09-13 |
JP2592599B2 JP2592599B2 (en) | 1997-03-19 |
Family
ID=12980362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62054783A Expired - Lifetime JP2592599B2 (en) | 1987-03-10 | 1987-03-10 | Molding method of cemented carbide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2592599B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01261251A (en) * | 1988-04-12 | 1989-10-18 | Koransha Co Ltd | Forming of powder |
JPH06279804A (en) * | 1992-12-28 | 1994-10-04 | Pilot Corp:The | Material for sintering, sintered body and mold for molding |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5013206A (en) * | 1973-06-09 | 1975-02-12 | ||
JPS51126307A (en) * | 1975-04-28 | 1976-11-04 | Shinroku Saito | Process for producing a super alloy plate |
-
1987
- 1987-03-10 JP JP62054783A patent/JP2592599B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5013206A (en) * | 1973-06-09 | 1975-02-12 | ||
JPS51126307A (en) * | 1975-04-28 | 1976-11-04 | Shinroku Saito | Process for producing a super alloy plate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01261251A (en) * | 1988-04-12 | 1989-10-18 | Koransha Co Ltd | Forming of powder |
JPH06279804A (en) * | 1992-12-28 | 1994-10-04 | Pilot Corp:The | Material for sintering, sintered body and mold for molding |
Also Published As
Publication number | Publication date |
---|---|
JP2592599B2 (en) | 1997-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2454847A (en) | Mold, mold charging, and molding process | |
CN106007709A (en) | Method for preparing high-strength ceramic through gel casting | |
US4609527A (en) | Powder consolidation and machining | |
CN104599834B (en) | A kind of manufacturing method of thermoplastic composite macromolecule bonded permanent magnet | |
JPS63403A (en) | Composition for plastic molding useful as stock for industrial art works and its production | |
JPS63219501A (en) | Method for molding sintered hard alloy powder | |
JPS63219502A (en) | Method for molding sintered head alloy powder | |
CN100434388C (en) | Raw material formulation for ceramics polymer composite material and preparing method | |
JP4018532B2 (en) | Molding material, use thereof and method for producing oxide ceramics sintered body | |
JPS606244A (en) | Manufacture of simple mold for molding plastic | |
CN106003368A (en) | Manufacturing method of gypsum female die | |
AU2003210165A1 (en) | Method for producing dentures or an artificial tooth | |
TW200936530A (en) | Method for forming a ceramic | |
JPH02171207A (en) | Ceramic injection-molded body and its molding method | |
CN1301210A (en) | Method for producing shaped bodies | |
KR850001421B1 (en) | Molding process for pottery having hollows and projects | |
SE9501843D0 (en) | Process for making a molded mold body | |
CN111302765A (en) | Metal powder modified full-information surface silica gel mold boron slag waste material gel-casting forming method | |
KR940006416B1 (en) | Process for the preparation of ornaments using plaster | |
SU1070128A1 (en) | Method for making cellular concrete products | |
JPS60230957A (en) | Manufacture of permanent magnet | |
Sustarsic et al. | Injection moulding of NdFeB plastic bonded magnets | |
JPS61116502A (en) | Manufacture of refractory molded shape | |
JPH03104801A (en) | Injection compacting method | |
JPS54127459A (en) | Method of making mold for forming plastics |