JPS63219013A - Temperature control circuit - Google Patents

Temperature control circuit

Info

Publication number
JPS63219013A
JPS63219013A JP5239487A JP5239487A JPS63219013A JP S63219013 A JPS63219013 A JP S63219013A JP 5239487 A JP5239487 A JP 5239487A JP 5239487 A JP5239487 A JP 5239487A JP S63219013 A JPS63219013 A JP S63219013A
Authority
JP
Japan
Prior art keywords
circuit
voltage
resistor
heater
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5239487A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5239487A priority Critical patent/JPS63219013A/en
Publication of JPS63219013A publication Critical patent/JPS63219013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

PURPOSE:To dispense with the detecting resistor of a load current, and besides, to make a heat generation smaller, and further, to eliminate the change of a temperature set value against the fluctuation of a power source by opening the resistance measuring part of a heater at the time when the heater is charged by electricity, and measuring under a low voltage only when it is necessitated. CONSTITUTION:An AC power source 1 is half-wave-rectified, and a capacitor 6 is charged by the Zener voltage of a voltage regulator diode 4. A control circuit 11 outputs periodically a signal to close a switch circuit 10, while the trigger pulse (PT) of a triode AC switch (TA) 2 is not outputted. When the circuit 10 is closed, a current flows in a resistor 8, and a voltage drop is obtained. When the temperature of the heater 3 is low, the resistance is also low, and the voltage of the resistor 8 is larger than a reference voltage 9. The circuit 11 controls the output/stop of the trigger signal and the close/open of the circuit 10 while storing these data. The TA 2 heats the heater 3 during the output of the pulse PT. Accordingly, because the voltage of the resistor 8 goes down lower, if the resistance value is set so that it comes just to be temperature set value when the voltage of the resistor 4 comes lower than the voltage 9, the TA 2 continues an OFF state during an interval until the circuit 10 is closed next time after the circuit 10 is closed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、温度制御回路に係り、特に、交流商用電源(
以下A(、z源という)でヒータをall熱することに
よって高温を得る電熱制御においてヒータ抵抗が温度に
より変化するものを使用することで、温度センナを不要
とした温度制御回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a temperature control circuit, and in particular to an AC commercial power supply (
The present invention relates to a temperature control circuit that eliminates the need for a temperature sensor by using a heater whose resistance changes depending on the temperature in electrothermal control that obtains a high temperature by heating all of the heaters with A (referred to as z source).

従来の技術 従来、この椙の温度制御回路は第3図に示すような構成
となっていた。第3図に2いて、lはAC電源、コはト
ライブックを示し、3はヒータであり、温度上昇と共に
抵抗値が増大するものとする。
Prior Art Conventionally, the temperature control circuit of this type has been constructed as shown in FIG. In FIG. 3, at 2, l is an AC power source, C is a trybook, and 3 is a heater, whose resistance value increases as the temperature rises.

13は抵抗、/IIは基準電源、/Sはオアゲート、/
6は比較器、/りはトライアラクコのゲートトリガ回路
(以下トリガ回路という)、lざは周期パルス発生回路
である。
13 is a resistor, /II is a reference power supply, /S is an OR gate, /
6 is a comparator, / is a tri-aracco gate trigger circuit (hereinafter referred to as a trigger circuit), and l is a periodic pulse generating circuit.

次に第3図に示された回路の動作について説明すると、
今トライアツクコが1オン”状態でヒータ3が通電中で
あるとする。このとき、ヒータ3の抵抗と、直列に接続
された抵抗13の電圧降下のピーク値と、基準電源/4
’の値が等しいときに@度の設定値となるように調整す
る。通電直後は、ヒータ3の抵抗は設定温度時よりも低
いので、抵抗13の電圧降下は温度安定時より犬きく、
基準電源/IIの値より大きいこれを比較器16で検出
増幅してトリガ回路17を駆動するので、トライアック
λは連続してゲート信号が印加され1オン”を継続する
。ヒータ3の温度が上昇して、その抵抗が大きくなると
、抵抗/3の電圧降下が基準電源/lの値より小さくな
る(温度が設定値に達する)。それにより、比較器/6
はトリガ回路/7の駆動を停止するので、トライアラク
コは“オフ”する。トライアラクコが1オフ”すると、
ヒータ3を含む回路の抵抗は極めて大きい状態となり、
温度でいえば著しく高温の状態と等価であるので1回路
はそのまま安定してしまう。周期パルス発生回路/lは
、ヒータJの熱時定数より十分短かい周期でトライアッ
クをlサイクルトリガするものであり、これによりヒー
タ3の抵抗が小さい場合(温度が設定値に達しない場合
)には、その後比較器/6の検出信号によりトライアラ
クコをトリガする。この繰返しでヒータ3の温度はほぼ
設定値に制御される。
Next, the operation of the circuit shown in Fig. 3 will be explained.
Assume that the heater 3 is currently energized with the triator in the 1-on state.At this time, the resistance of the heater 3, the peak value of the voltage drop of the resistor 13 connected in series, and the reference power supply/4
Adjust so that when the values of ' are equal, the set value of @ degree is achieved. Immediately after energization, the resistance of the heater 3 is lower than when the temperature is set, so the voltage drop across the resistor 13 is higher than when the temperature is stable.
Since the comparator 16 detects and amplifies the value larger than the reference power supply /II and drives the trigger circuit 17, the gate signal is continuously applied to the triac λ and it continues to be 1" on. The temperature of the heater 3 rises. As the resistance increases, the voltage drop across the resistor /3 becomes smaller than the value of the reference power supply /l (the temperature reaches the set value).Therefore, the comparator /6
stops the driving of the trigger circuit/7, so the tri-aracco is turned off. When Triarakuco gets 1 off,
The resistance of the circuit including the heater 3 becomes extremely large.
In terms of temperature, this is equivalent to an extremely high temperature state, so one circuit remains stable as it is. The periodic pulse generation circuit/l triggers the triac for l cycles at a cycle sufficiently shorter than the thermal time constant of the heater J, so that when the resistance of the heater 3 is small (when the temperature does not reach the set value), then triggers the trial arco by the detection signal of comparator/6. By repeating this process, the temperature of the heater 3 is controlled to approximately the set value.

発明が解決しようとする問題点 ところで、第3図に2ける回路の抵抗13は、電力損失
の点では十分小さいことが必要であるが、例えばIOA
のヒータ電流の場合には、o、 orΩでも電圧降下o
、sV消費電力!Wと発熱が大きくなるために、この方
式による温度制御回路の応用は、せいぜい/A以下の制
御に限られていた。
Problems to be Solved by the Invention By the way, the resistor 13 of the circuit 2 in FIG. 3 needs to be sufficiently small in terms of power loss.
In the case of a heater current of , the voltage drop o even at o, orΩ
, sV power consumption! Because of the increase in W and heat generation, the application of temperature control circuits using this method has been limited to control below /A at most.

また、第3図による回路では、ACl[源変動により設
定温度が変動するという欠点もあった。
Furthermore, the circuit shown in FIG. 3 has the disadvantage that the set temperature fluctuates due to fluctuations in the ACl source.

本発明は従来の上記実情に鑑みてなされたものであり、
従って本発明の目的は、従来の技術に内在する上記諸欠
点を解消することを可能とした新規な温度制御回路を提
供することにある。
The present invention has been made in view of the above-mentioned conventional situation,
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a novel temperature control circuit which makes it possible to eliminate the above-mentioned disadvantages inherent in the conventional technology.

問題点を解決するための手段 上記目的を達成する為に、本発明に係る温度・制御回路
は、AC電源に負荷ヒータと直列接続されたトライアッ
クと、前記AC電源を整流して所定の直流電源を0作る
手段と、前記負荷ヒータと直列接続され、前記トライブ
ックの1オフ”時に閉じるスイッチ回路を介して前記直
流電源に接続された抵抗と、この抵抗の電圧降下と基準
電圧とを比較し前記抵抗の電圧降下が大きいときに所定
期間前記トライアックをトリガするトリガ回路とを具備
して構成される。
Means for Solving the Problems In order to achieve the above object, the temperature control circuit according to the present invention includes a triac connected in series with a load heater to an AC power source, and a triac that rectifies the AC power source to provide a predetermined DC power source. 0, a resistor connected in series with the load heater and connected to the DC power supply via a switch circuit that closes when the trybook is off, and a voltage drop across this resistor is compared with a reference voltage. and a trigger circuit that triggers the triac for a predetermined period when the voltage drop across the resistor is large.

発明の独創性 上述した従来の温度制御回路に対し1本発明は、負荷電
流を検出する抵抗を必要とせず、したがって、その部分
での損失、発熱がなく、さらにAC電源の変動に対して
温度設定値が変化しないという独創的内容を有する。
Originality of the Invention In contrast to the conventional temperature control circuit described above, the present invention does not require a resistor to detect the load current, so there is no loss or heat generation in that part, and the temperature control circuit does not respond to fluctuations in the AC power supply. It has an original content in that the setting value does not change.

実施例 以下に本発明をその好ましい各実施例について図面を参
照しながら具体的に説明する。
EXAMPLES Below, preferred embodiments of the present invention will be specifically explained with reference to the drawings.

第1図は本発明の第1の実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

第1図において、参照番号lはAC電源、コはトライア
ック、3はヒータ、ダは定電圧ダイオード、5は整流ダ
イオード、6はコンデンサ、?、ffは抵抗、9は基準
電圧、lOはスイッチ回路をそれぞれ示し、//は制御
回路であり、比較部、メモリ部、制御信号出力部等から
構成される。
In Figure 1, reference number l is an AC power supply, ko is a triac, 3 is a heater, da is a constant voltage diode, 5 is a rectifier diode, 6 is a capacitor, ? , ff are resistors, 9 is a reference voltage, IO is a switch circuit, and // is a control circuit, which is composed of a comparison section, a memory section, a control signal output section, and the like.

次に、第1図に示された回路の動作を説明すると、AO
9源lt−整流ダイオードよ、抵抗7を通じて半波整流
し、コンデンサ6は定電圧ダイオードダのツェナ電圧に
充電されている。ここで制御回路l/は、トライアラク
コのトリガパルスを出力していないとき周期的にスイッ
チ回路IOを閉じる信号を出力する。スイッチ回路lO
が閉じると、コンデンサ6、ヒータ3.抵抗tの閉回路
を電流が流れ、抵抗tに電圧降下が得られる。このとき
と−タ3の温度が低い場合抵抗も小さく、抵抗ざの電圧
降下は基準電圧9より大きい。制御回路//は、この比
較結果をメそりし、所定の期間トライアラクコのトリガ
信号を出力した後、そのトリガ信号を停止し、その後、
スイッチ回路10を閉じる信号を出力する。トライアラ
クコは制御回路//のトリガパルス出力中は1オン”し
、ヒータ3を加熱するのでその抵抗値は少しづつ増大す
る。したがって、次にスイッチ回路IOを閉じたときに
抵抗tの電圧降下は小さくなっている。これを繰返して
抵抗tの電圧降下が、基準電圧よシ低くなったときが温
度の設定値であるように抵抗t、あるいは基準電圧を設
定しておけば、スイッチ回路10が閉じた後、次にスイ
ッチ回路lOが閉じるまでの期間トライアラクコは“オ
フ”状態のttである。また次にスイッチ回路10が閉
じたときにヒータ3が冷えて抵抗が小さくなり抵抗tの
電圧降下が大きくなると、再びトライアラクコはトリガ
されてヒータ3が刀口熱され、そうでなければ、トライ
アラクコの1オフ”が次にスイッチ回路ioを閉じる時
点まで継続する。
Next, to explain the operation of the circuit shown in FIG.
The 9-source lt-rectifier diode performs half-wave rectification through the resistor 7, and the capacitor 6 is charged to the Zener voltage of the constant voltage diode. Here, the control circuit l/ periodically outputs a signal that closes the switch circuit IO when it is not outputting the trigger pulse of the tri-arco. switch circuit lO
When closed, capacitor 6, heater 3. Current flows through the closed circuit of resistor t, and a voltage drop is obtained across resistor t. At this time, when the temperature of the resistor 3 is low, the resistance is also small, and the voltage drop across the resistor is greater than the reference voltage 9. The control circuit // memorizes this comparison result, outputs a trigger signal for the trial raccoon for a predetermined period, then stops the trigger signal, and then
A signal for closing the switch circuit 10 is output. Triaraco is turned on during the output of the trigger pulse from the control circuit // and heats the heater 3, so its resistance value increases little by little. Therefore, the next time the switch circuit IO is closed, the voltage drop across the resistor t will be By repeating this process and setting the resistance t or the reference voltage so that the temperature setting value is reached when the voltage drop across the resistance t becomes lower than the reference voltage, the switch circuit 10 After closing, the trial arco is in the "off" state tt until the next time the switch circuit 10 is closed.Also, when the switch circuit 10 is closed next, the heater 3 cools down and its resistance becomes smaller, causing a voltage drop across the resistance t. When becomes large, the tri-arakuco is triggered again and the heater 3 is heated up, otherwise the tri-arakuco's 1 OFF'' continues until the next time the switch circuit io is closed.

第2図は本発明の第2の実施例を示す回路図である。第
2図を参照するに、第2図において第1図と同じ機能の
部品は同一の符号で示されている。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention. Referring to FIG. 2, parts having the same functions in FIG. 2 as in FIG. 1 are designated by the same reference numerals.

その他の機能として、7.2はAC電源の零点検出回路
(以下零点検出回路という)である。この第2の実施例
では、スイッチ回路ioの閉信号を零点検出回路12か
ら得ている。したがって、トライアラクコの1オン”状
態あるいは1オフ“状態を問わず、負荷電流が零の状態
においてヒータ3の抵抗を測定することができるので、
FM記した第1の実施例に比較してきめの細かい制御が
できる利点がある。
As for other functions, 7.2 is an AC power supply zero point detection circuit (hereinafter referred to as zero point detection circuit). In this second embodiment, the closing signal for the switch circuit io is obtained from the zero point detection circuit 12. Therefore, the resistance of the heater 3 can be measured in a state where the load current is zero, regardless of the 1-ON state or 1-OFF state of the TRIARACCO.
Compared to the first embodiment described as FM, this embodiment has the advantage of allowing finer control.

すなわち、一般に温度制御では必要ないが、制御回路/
/を位相制御回路にすることも可能である。
In other words, although generally not required for temperature control, the control circuit/
It is also possible to use / as a phase control circuit.

発明の詳細 な説明したように、本発明によれば、トライアックの1
オン”、1オフ”が繰返されて温度制御が行なわれるが
、ヒータ通電時にはヒータの抵抗測定部は開かれており
、必要時にだけ低い電圧で測定するので、電力消費、発
熱が小さく、またAC電源が変動しても抵抗測定用の電
源は安定化されて2す、温度制御への影響が小さい効果
が得られる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, one of the triacs
Temperature control is performed by repeating "on" and "1 off", but when the heater is energized, the resistance measurement part of the heater is open and measurements are made at a low voltage only when necessary, so power consumption and heat generation are small, and AC Even if the power supply fluctuates, the power supply for resistance measurement is stabilized, resulting in less influence on temperature control.

【図面の簡単な説明】[Brief explanation of drawings]

@I図は本発明の第1の実施例を示す回路図。 第2図は本発明の第2の実施例を示す回路図、第3図は
従来におけるこの種の回路の構成例を示す回路図である
。 l・・・AC’1lfi、コ・・・トライアック、3・
・・ヒ・−タ、ダ・・・定電圧ダイオード、j・・・整
流ダイオード、6・・・コンデンサ、?、 ff・・・
抵抗、9・・・基準電源、lO・・・スイッチ回路、/
/・・・制御回路、/2・・・零点検出回路、13・・
・抵抗、 /4’・・・基準電源、15・・・オアゲー
ト、16・・・比較器、/7・・・トリガ回路、7g・
・・周期パルス発生回路 代 理 人   弁理士 Hh 谷雄太部+4 !*電
源 第3図
@I Figure is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a circuit diagram showing a second embodiment of the present invention, and FIG. 3 is a circuit diagram showing an example of the configuration of a conventional circuit of this type. l...AC'1lfi, co...triac, 3.
...heater, da...regulating diode, j...rectifier diode, 6...capacitor, ? , ff...
Resistor, 9... Reference power supply, lO... Switch circuit, /
/...control circuit, /2...zero point detection circuit, 13...
・Resistance, /4'... Reference power supply, 15... OR gate, 16... Comparator, /7... Trigger circuit, 7g.
...Representative of periodic pulse generation circuit Patent attorney Hh Yutabe Tani +4! *Power supply diagram 3

Claims (1)

【特許請求の範囲】[Claims] 交流電源に第1の開閉手段と直列接続された温度により
抵抗値の変化するヒータ負荷と、前記交流電源を整流し
て所定の直流電源を得る手段と、該直流電源と前記ヒー
タ負荷と抵抗と第2の開閉手段からなる閉回路と、前記
抵抗の電圧降下と基準電圧の比較結果により前記第1の
開閉手段を所定の期間閉じる制御手段と、前記第2の開
閉手段を第1の開閉手段の開時あるいはヒータ負荷電流
が所定の値より小さいときに所定の期間閉じる手段とを
有することを特徴とする温度制御回路。
A heater load whose resistance value changes depending on temperature is connected in series with a first switching means to an AC power source, means for rectifying the AC power source to obtain a predetermined DC power source, and the DC power source, the heater load, and the resistor. a closed circuit including a second switching means; a control means for closing the first switching means for a predetermined period based on a comparison result between the voltage drop of the resistor and a reference voltage; and means for closing for a predetermined period when the heater load current is opened or when the heater load current is smaller than a predetermined value.
JP5239487A 1987-03-06 1987-03-06 Temperature control circuit Pending JPS63219013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5239487A JPS63219013A (en) 1987-03-06 1987-03-06 Temperature control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5239487A JPS63219013A (en) 1987-03-06 1987-03-06 Temperature control circuit

Publications (1)

Publication Number Publication Date
JPS63219013A true JPS63219013A (en) 1988-09-12

Family

ID=12913584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5239487A Pending JPS63219013A (en) 1987-03-06 1987-03-06 Temperature control circuit

Country Status (1)

Country Link
JP (1) JPS63219013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229313A (en) * 1990-02-05 1991-10-11 Toyota Motor Corp Heater temperature control circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229313A (en) * 1990-02-05 1991-10-11 Toyota Motor Corp Heater temperature control circuit

Similar Documents

Publication Publication Date Title
US4546239A (en) Non-continuous sensing apparatus for a temperature control
US5847367A (en) Circuit arrangement for controlling the temperature of a heating element
US3548157A (en) Heating control circuit with triac-diac combination
JPH09103366A (en) Control circuit for electric rice cooker
GB2072887A (en) Control of electrical heating elements
US3912967A (en) Heater temperature-regulating circuit for sensor of halogen leak detector
JPS63219013A (en) Temperature control circuit
US3040156A (en) Control circuit
US3354358A (en) Anticipating temperature controller
JP2591178B2 (en) Cordless iron
JPS6355754B2 (en)
JPH056230A (en) Electronic control type kotatsu
SU1265732A1 (en) Two-position temperature controller
SU593199A1 (en) Temperature regulator
JPH0337552Y2 (en)
JP3009387B2 (en) Heater control circuit
JPS5998220A (en) Controller
JPH09219278A (en) Cooker
KR900005323Y1 (en) Temperature control circuit for electromagnetic cooker
JP2766570B2 (en) Heating equipment
SU809109A1 (en) Temperature regulator
RU1783500C (en) Device for temperature control
SU930292A1 (en) Temperature regulating device
JPS6250759B2 (en)
JPH0762811B2 (en) Power supply circuit