JPS6321891Y2 - - Google Patents

Info

Publication number
JPS6321891Y2
JPS6321891Y2 JP13433282U JP13433282U JPS6321891Y2 JP S6321891 Y2 JPS6321891 Y2 JP S6321891Y2 JP 13433282 U JP13433282 U JP 13433282U JP 13433282 U JP13433282 U JP 13433282U JP S6321891 Y2 JPS6321891 Y2 JP S6321891Y2
Authority
JP
Japan
Prior art keywords
tube
light
glass
light source
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13433282U
Other languages
Japanese (ja)
Other versions
JPS5941858U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13433282U priority Critical patent/JPS5941858U/en
Publication of JPS5941858U publication Critical patent/JPS5941858U/en
Application granted granted Critical
Publication of JPS6321891Y2 publication Critical patent/JPS6321891Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、電子複写装置の除電用光源として使
用される放電管に関し特に管径に比して全長の長
い管体として、800〜1200nmの波長域の光をほぼ
遮断できるガラス管を使用し、このガラス管の両
端に相対向して電極を封止すると共に、上記ガラ
ス管内部に低圧のキセノンガス等の稀ガスを封入
し、また内周面に所定の螢光波長域を有する螢光
体を塗付した螢光放電管に関するものである。
[Detailed description of the invention] Industrial application field The present invention relates to a discharge tube used as a light source for static elimination in an electronic copying machine, and is particularly applicable to a discharge tube having a long overall length compared to the tube diameter, in the wavelength range of 800 to 1200 nm. A glass tube that can block most of the light is used, electrodes are sealed opposite each other at both ends of the glass tube, and a rare gas such as low-pressure xenon gas is filled inside the glass tube. This invention relates to a fluorescent discharge tube coated with a phosphor having a predetermined fluorescent wavelength range.

従来例の構成とその問題点 電子複写装置の除電用光源としては従来より
種々の光源が利用されており、その代表的なもの
としては、小型白熱ランプを複数個並べて線状光
源としたものや螢光灯、ELランプ等がよく知ら
れている。
Conventional configurations and their problems Various light sources have been used for static elimination in electronic copying machines. Typical examples include a linear light source made by arranging multiple small incandescent lamps. Fluorescent lamps, EL lamps, etc. are well known.

一方、電子複写装置自体の動向についてみてみ
ると、近年、特に装置全体の小型化および複写速
度の高速化の要望が強くなつてきている。
On the other hand, looking at trends in electronic copying machines themselves, in recent years there has been a strong demand for miniaturization of the entire machine and increased copying speed.

このため、感光ドラムの形状の小型化および増
感剤使用による高感度化がすすんできている。
For this reason, progress has been made in reducing the size of photosensitive drums and increasing sensitivity by using sensitizers.

従つて、除電用光源も上記如くの感光ドラムの
小型化、高感度化に追従できるものが要求されて
いるわけであるが、先に述べた如くの光源におい
ては以下のような感光ドラムの性質から夫々問題
点を有し、電子複写装置の小型化等には追従でき
ていないのが現状であつた。
Therefore, there is a need for a light source for static elimination that can keep up with the miniaturization and increased sensitivity of photosensitive drums as described above. Each of them has its own problems, and the current situation is that it has not been able to keep up with the miniaturization of electronic copying devices.

即ち、一般的に感光ドラムは、近赤外光が照射
されると感光体が疲労し、同一光源による除電能
力が低下することが知られており、この影響は近
赤外光を照射する光源による光除電操作を繰り返
して行なう場合大きな問題となる。尚、上記疲労
は、除電操作を停止すれば徐々に回復することも
知られている。
In other words, it is generally known that when a photosensitive drum is irradiated with near-infrared light, the photoreceptor becomes fatigued and the static elimination ability of the same light source decreases. This becomes a big problem when the photostatic charge removal operation is repeated. It is also known that the fatigue described above gradually recovers if the static elimination operation is stopped.

また、感光ドラムの感光体は除電用光源の発生
する赤外光等による熱によつても影響を受けるこ
とが知られておりこの場合は先の疲労とは異なり
感光体の機能低下という回復不可能な問題を引き
起こすことになる。
In addition, it is known that the photoreceptor of the photoreceptor drum is also affected by heat generated by infrared light generated by a light source for static elimination, and in this case, unlike the fatigue mentioned above, the photoreceptor's function deteriorates and cannot be recovered. This will cause possible problems.

上記如くの感光ドラムにおける問題点は、先に
述べた如くの高感度化が進むにつれ、その影響度
が大きくなることになり、このため前述した小型
白熱ランプを複数個並べて線状光源としたものは
近赤外光および赤外光共に多量に放射することか
ら、感光ドラムを高感度化した場合、そのままで
は当到使用できない問題点を有することになる。
加えて、構造的に、ランプの接続部分にて明るさ
の低下が生じ配光ムラを生じる問題点を有してい
る。
The problem with the above-mentioned photosensitive drums will become more significant as the sensitivity increases as mentioned above, and for this reason, the above-mentioned small incandescent lamps are lined up to form a linear light source. Since the photosensitive drum emits a large amount of both near-infrared light and infrared light, if the sensitivity of the photosensitive drum is made high, there is a problem that it cannot be used as is.
In addition, there is a structural problem in that the brightness decreases at the connection portion of the lamp, resulting in uneven light distribution.

従つて、最近ではランプと感光ドラムとの間に
赤外線吸収フイルタを配置せしめることも検討さ
れているが、赤外線吸収フイルタの使用自体が装
置の小型化に逆行するものであると共に、赤外線
は遮断できてもランプ自体の発熱による影響を取
り除くことはできず、高感度化された感光ドラム
の除電用光源としては、使用できなかつた。
Therefore, recently, it has been considered to place an infrared absorbing filter between the lamp and the photosensitive drum, but the use of an infrared absorbing filter itself goes against the miniaturization of the device, and it cannot block infrared rays. However, it was not possible to eliminate the effects of heat generated by the lamp itself, and it could not be used as a light source for eliminating static electricity from highly sensitive photosensitive drums.

一方、螢光灯、ELランプ等も検討されてはい
るが、螢光灯の場合、それ自体の形状が大きく加
えて明るさが明る過ぎるため、感光ドラムに近接
して配置できない問題点、即ち小型化に対して大
きな問題点を有し、またELランプの場合、それ
自体の値段が高く加えて明るさ不足で感光ドラム
が高感度となつても、高速化に追従しきれない問
題点を有していた。
On the other hand, fluorescent lamps, EL lamps, etc. have been considered, but in the case of fluorescent lamps, their size is large and their brightness is too bright, so they cannot be placed close to the photosensitive drum. There are major problems with miniaturization, and in the case of EL lamps, the price is high, the brightness is insufficient, and even if the photosensitive drum becomes highly sensitive, it cannot keep up with the increase in speed. had.

従つて、電子複写装置の小型化、高速化の要望
にともない、その除電用光源も優れた特性の光源
即ち、感光ドラムの感光体の特性に合致した光を
十分に放射できるとともに近赤外、赤外域の光の
放射のない、かつ発熱の少ない配光ムラのない光
源が強く要望されているわけである。
Therefore, with the demand for smaller size and faster speed of electronic copying devices, the light source for static elimination is also a light source with excellent characteristics, that is, a light source that can sufficiently emit light that matches the characteristics of the photoreceptor of the photosensitive drum, as well as near-infrared, There is a strong demand for a light source that does not emit light in the infrared region, generates little heat, and has no uneven light distribution.

考案の目的 本考案は、前述した如くの従来の除電用光源に
おける問題点を考慮し、電子複写装置の小型化、
高速化に追従できる、即ち上述した除電用光源と
しての要望を満たすことのできる新規な光源を提
供することを目的とする。
Purpose of the invention The present invention takes into consideration the problems with the conventional static elimination light source as described above, and aims to reduce the size of electronic copying equipment.
It is an object of the present invention to provide a novel light source that can keep up with the increase in speed, that is, that can meet the above-mentioned requirements as a light source for static elimination.

考案の構成 本考案による螢光放電管は管径に比して全長の
長い管体として800〜1200nmの波長域の光をほぼ
遮断できるガラス管を使用し、このガラス管の両
端に陽極、陰極を封止するとともに、上記ガラス
管内面に特定の螢光波長域を有する螢光体を塗付
し、内部に低圧のキセノンガス等の稀ガスを封入
して構成される。
Structure of the invention The fluorescent discharge tube according to the invention uses a glass tube which has a long overall length compared to the tube diameter and can block most of the light in the wavelength range of 800 to 1200 nm, and has an anode and a cathode at both ends of the glass tube. At the same time, the inner surface of the glass tube is coated with a phosphor having a specific fluorescent wavelength range, and a rare gas such as low-pressure xenon gas is sealed inside.

実施例の説明 以下、図面と共に本考案による螢光放電管につ
いて説明するが、その前に考案者らの行なつた実
験について簡単に述べておく。
DESCRIPTION OF EMBODIMENTS The fluorescent discharge tube according to the present invention will be described below with reference to the drawings, but before that, experiments conducted by the inventors will be briefly described.

本考案の出願人は、先に実開昭57−121965号に
おいて、1つの除電用光源をすでに提案してい
る。
The applicant of the present invention has previously proposed a light source for static elimination in Japanese Utility Model Application Publication No. 121965/1983.

上記提案によつて得られる光源は、ガラス管内
にビードにより平行に相対向せしめられた二本の
棒状電極と、キセノン、ネオン、アルゴンの混合
ガスとを封入した放電管であり、従来知られてい
る小型ランプ等の光源より格段に優れている。
The light source obtained by the above proposal is a discharge tube in which a glass tube is filled with two rod-shaped electrodes placed parallel to each other by beads and a mixed gas of xenon, neon, and argon. It is much superior to other light sources such as small lamps.

しかし、上記放電管も厳密にみるとビード部分
での明るさの低下が生じており感光ドラムにより
近接した使用が行なえない問題を有していた。
However, strictly speaking, the discharge tube has a problem in that the brightness decreases at the bead portion, making it impossible to use the discharge tube in close proximity to the photosensitive drum.

このため本考案者らは、配光特性の改善を計る
べく種々検討した結果、特定の螢光波長領域を有
する螢光体を使用すれば極めて好ましい特性が得
られるとの結論を得た。
For this reason, the inventors of the present invention have conducted various studies to improve the light distribution characteristics, and have concluded that extremely favorable characteristics can be obtained by using a phosphor having a specific fluorescent wavelength range.

上述した事実より、本考案者らは螢光体と、グ
ロー放電により生じる光との組み合わせが配光特
性の均一な光源を提供していると推測し、つぎに
螢光体とグロー放電を行ない螢光を生ぜしめる内
部ガスとの関係ついて検討を加えた。
Based on the above-mentioned facts, the present inventors inferred that the combination of the phosphor and the light generated by glow discharge provides a light source with uniform light distribution characteristics, and then performed glow discharge with the phosphor. We also investigated the relationship with the internal gas that causes fluorescence.

この時、本考案者らはグロー放電の形成に必ず
しも先の提案の如くの構成は必要ないと判断し、
上記の如くの検討はガラス管体の両端に電極を有
する放電管に限定して行なつた。
At this time, the present inventors determined that the configuration as proposed above was not necessarily necessary for the formation of glow discharge,
The above study was limited to discharge tubes having electrodes at both ends of the glass tube body.

係る検討に使用した放電管の仕様を述べておく
と、管体となるガラス管は除電用光源としては小
型となる外径10mm以下の内径4mm、肉厚0.9mm、
全長は複写装置の能力を考慮した300mmのものを
使用し、内部に螢光波長領域が電子複写装置の除
電に必要な波長を含む400〜650mmである螢光体を
塗布した後前述したように種々のガスを種々の圧
力で封入して、両端に電極を封止したものであ
る。尚この時、陰極には、放電を開始させやすく
するため、エミツターを有するエミツター供給部
材を設けて実験を行なつた。その結果の一例を示
すと、第1図イ,ロの如くとなつた。
The specifications of the discharge tube used in this study are as follows: The glass tube that forms the tube body has an outer diameter of 10 mm or less, an inner diameter of 4 mm, and a wall thickness of 0.9 mm, which is small enough to be used as a light source for static elimination.
The total length was 300 mm considering the capacity of the copying machine, and after coating the inside with a phosphor whose fluorescent wavelength range was 400 to 650 mm, which included the wavelength necessary for static elimination in the electronic copying machine, as described above. Various gases are sealed at various pressures and electrodes are sealed at both ends. At this time, in order to facilitate the initiation of discharge, an emitter supplying member having an emitter was provided at the cathode for the experiment. An example of the results is shown in Figure 1 A and B.

第1図イは、上記の如くの種々の放電管におい
て、3〜5kVのトリガー電圧を供給した場合にお
ける放電開始電圧と、ガス圧力およびガスの種類
との関係を調べたものであり、一方、第1図ロは
同様の放電管について内部ガスを15torrとし種々
の印加電圧にて放電させた場合の照度を調べたも
のである。
Figure 1A shows the relationship between the discharge starting voltage, gas pressure, and type of gas when a trigger voltage of 3 to 5 kV was supplied to various discharge tubes as described above. FIG. 1B shows the illuminance of a similar discharge tube when the internal gas was set at 15 torr and the tube was discharged at various applied voltages.

上記した第1図イ,ロに示した検討結果より明
らかではあるが、本考案者らは内部ガスとしてキ
セノンガス単体を低い気圧例えば5〜20torrの範
囲で用いたものが放電開始電圧は低く、かつ、照
度も明るく極めて有効であることを見出した。即
ち、放電開始電圧が低いということは、電源部の
構成を簡単、かつ小型化できることになるため、
電子複写装置全体にとつて極めて大きな意味を持
ち、また発生する光も強いことから、高速度の処
理においても充分な除電能力を有することが期待
できることになるわけである。
It is clear from the study results shown in Figure 1 A and B above that the present inventors used xenon gas alone as the internal gas at a low pressure, for example in the range of 5 to 20 torr, and the discharge starting voltage was low. Moreover, it was found that the illuminance was bright and extremely effective. In other words, the low discharge starting voltage means that the configuration of the power supply section can be simplified and miniaturized.
Since it has an extremely important meaning for the entire electronic copying apparatus, and the light it generates is strong, it can be expected to have sufficient static elimination ability even in high-speed processing.

次いで、第1図の結果を得る実験に使用した螢
光放電管の中の例えばキセノンガス6torrが封入
されたものを350Vで放電させた場合のガラス管
表面の発熱特性、配光特性、および分光特性につ
いて調べてみると、第2図イ,ロ,ハに示す如く
の結果が得られた。
Next, we will examine the heat generation characteristics, light distribution characteristics, and spectroscopy of the glass tube surface when the fluorescent discharge tube used in the experiment to obtain the results shown in Figure 1, for example one filled with 6 torr of xenon gas, is discharged at 350V. When the characteristics were investigated, the results shown in Figure 2 A, B, and C were obtained.

尚、第2図イ,ロ中に破線で示した特性は従来
極めて一般的に使用されている小型ランプを複数
個並べて線状光源とした光源を上述した螢光放電
管と同程度の明るさに点灯させた場合の特性を示
している。
The characteristics shown by the broken lines in Figure 2 A and B indicate that a linear light source made by arranging multiple small lamps, which has been very commonly used in the past, has a brightness comparable to that of the fluorescent discharge tube described above. This shows the characteristics when the light is turned on.

第2図イ,ロ,ハからも明らかであるが、上述
したキセノンガス6torrが封入された螢光放電管
は、除電に必要な領域450〜600nmの光を放出す
るとともに発熱、配光ムラもなく、従来の光源の
代替光源としての使用は極めて有利になると想定
されるが、800〜1200nmの領域の光も放出してお
り、冒頭で述べた如くの増感剤を使用して高感度
化され近赤外、赤外光によつて疲労および劣化し
てしまう感光体の除電用光源としては、依然とし
て使用できない問題点を有していることが判明し
た。
As is clear from Figures 2 (a), (b), and (c), the fluorescent discharge tube filled with 6 torr of xenon gas as described above emits light in the 450 to 600 nm range necessary for static elimination, does not generate heat, and has no uneven light distribution, and it is expected to be extremely advantageous for use as an alternative light source to conventional light sources. However, it has been found that it still has the problem that it cannot be used as a light source for static elimination of photoconductors, which have been made highly sensitive using the sensitizer mentioned at the beginning and which become fatigued and deteriorated by near-infrared and infrared light.

そこで、本考案者らは、上述した如くの螢光放
電管において近赤外から赤外域の光を遮断すべく
種々の検討を行なつた。尚、かかる検討は、赤外
吸収フイルター等の別部材を使用することは、電
子複写装置全体の小型化に対して逆行するため、
螢光放電管自体の構造、主として管体であるガラ
スの成分について行なつた。
Therefore, the inventors of the present invention conducted various studies in order to block light in the near-infrared to infrared range in the fluorescent discharge tube as described above. It should be noted that such consideration is necessary because the use of separate components such as infrared absorption filters goes against the overall miniaturization of the electronic copying apparatus.
We investigated the structure of the fluorescent discharge tube itself, mainly the components of the glass that makes up the tube.

即ち、種々のガラスについての分光透過特性に
ついて調査してみた。
That is, we investigated the spectral transmission characteristics of various glasses.

その結果の一例を第3図に示す。 An example of the results is shown in FIG.

第3図中Aで示した特性は、先の実験にも使用
した光源用として極めて一般的なSiO2・PbO・
Na2Oを主成分とする鉛ガラスの特性を示し、同
図中Bで示した特性は、SiO2・BaO・K2O・
Na2Oを主成分としてFe2O3を数%含むガラスの
特性を示している。
The characteristics indicated by A in Figure 3 are the characteristics of SiO 2 PbO, which is extremely common for light sources used in the previous experiment.
The characteristics of lead glass whose main component is Na 2 O are shown, and the characteristics indicated by B in the figure are SiO 2・BaO ・K 2 O ・
It shows the characteristics of a glass whose main component is Na 2 O and a few percent of Fe 2 O 3 .

第3図からも明らかであるが、鉛ガラスは光源
用ということで透過率は極めて広い範囲で高くな
つており一方Fe2O3を含むガラスは、全体的な透
過特性は鉛ガラスに比して極めて悪くなつている
が、近赤外から赤外域にかけての光の透過特性と
感光体の除電に必要な400〜650nmの範囲の光の
透過特性との間に大きな差を有している。
As is clear from Figure 3, because lead glass is used as a light source, its transmittance is high over an extremely wide range, while glass containing Fe 2 O 3 has overall transmission characteristics that are lower than that of lead glass. However, there is a large difference between the transmission characteristics of light in the near-infrared to infrared region and the transmission characteristics of light in the range of 400 to 650 nm, which is necessary for removing static from the photoreceptor.

これは上記SiO2等を主成分としFe2O3を少量含
んだガラスが発光効率の問題となる照明用光源に
使用する目的で開発されたものではなく、発熱部
分に配置されるスイツチ等の熱に弱い部分を保護
するために開発されたガラス、即ち熱に対する保
護材として開発されたからであると考えられ、も
ちろん現実に光源用としては全く用いられていな
い。
This was not developed for the purpose of using glass as a main component such as SiO 2 mentioned above and a small amount of Fe 2 O 3 as a light source for lighting, where luminous efficiency would be an issue, but for use in switches etc. placed in heat generating parts. This is thought to be because glass was developed to protect parts that are sensitive to heat, that is, it was developed as a protective material against heat, and of course it is not actually used as a light source at all.

尚、上述した如くの特性が現われる原因を調べ
るべく鉛ガラスに特性Bを有するガラスの成分を
混入して調べた結果、酸化第2鉄Fe2O3を含ませ
た場合、同様の傾向、即ち近赤外から赤外域にか
けての光が押さえられることが判明した。
In addition, in order to investigate the cause of the appearance of the above-mentioned characteristics, as a result of mixing components of glass having characteristic B into lead glass, a similar tendency was observed when ferric oxide Fe 2 O 3 was included. It was found that light in the near-infrared to infrared region can be suppressed.

上記如くの結果および先に説明した如くのグロ
ー放電と螢光体とにより発生せられる光の強度
は、感光ドラムの除電用として考えた場合強く、
また、発熱および配光特性から、感光ドラムへの
極めて近接した配置も可能と思われることから本
考案者らは、第3図に示した如くの透過特性、即
ち透過率は極めて悪いものの近赤外、赤外域の光
の透過率と除電に必要な波長域の透過率とに大き
な差のある特性を十分に利用できると推測した。
The intensity of the light generated by the glow discharge and the phosphor as described above and as described above is strong when considered for use in neutralizing the photosensitive drum.
In addition, considering the heat generation and light distribution characteristics, it seems possible to place the photosensitive drum extremely close to the photosensitive drum. It is assumed that the characteristic that there is a large difference between the transmittance of light in the external and infrared regions and the transmittance of the wavelength range necessary for static elimination can be fully utilized.

以上述べたような検討、実験、推測の結果によ
り本考案による螢光放電管は創作され、第4図に
その一実施例の正面図を示す。
As a result of the above-mentioned studies, experiments, and speculations, a fluorescent discharge tube according to the present invention was created, and FIG. 4 shows a front view of one embodiment thereof.

第4図において、図番1は例えばFe2O3を数%
含みSiO2,BaO・Na2O・K2Oを主成分とする
800〜1200nmの波長域をほぼ遮断できるガラスで
構成された管体、2は例えば除電に必要な520nm
にピーク螢光波長を有する螢光体、3は上記ガラ
ス管体1の一端部に封止される陰極を示しガラス
管体1内に位置せしめられるタングステンコイル
3aを保持している。
In Figure 4, figure number 1 is, for example, a few percent of Fe 2 O 3 .
Contains SiO 2 , BaO・Na 2 O・K 2 O as main components
The tube body is made of glass that can almost block wavelengths from 800 to 1200 nm, and 2 is for example 520 nm, which is necessary for static elimination.
A phosphor having a peak fluorescence wavelength of 3 represents a cathode sealed at one end of the glass tube 1, and holds a tungsten coil 3a positioned within the glass tube 1.

4はガラス管体1の他端部に封止される陽極、
5はガラス管体1内部に封入される例えばキセノ
ンガスである稀ガスを夫々示している。
4 is an anode sealed at the other end of the glass tube 1;
Reference numeral 5 indicates a rare gas, for example, xenon gas, which is sealed inside the glass tube 1.

陰極3のタングステンコイル3aには放電開始
電圧を下降せしめるべく例えばBa・Sr・Caの酸
化物を混合したエミツターが塗付されており、こ
のタングステンコイル3aは、エミツター供給部
材ということができる。
The tungsten coil 3a of the cathode 3 is coated with an emitter made of a mixture of oxides of Ba, Sr, and Ca, for example, in order to lower the discharge starting voltage, and this tungsten coil 3a can be called an emitter supply member.

なお、陰極3がエミツターを有さない場合、詳
述はしないが放電開始電圧が高くなると共に放電
管自体の寿命も短くなつてしまい実用化は困難と
なる。また、同様に陽極4にはゲツター供給部材
を設けてもよく、この場合、ゲツターがなくても
一応の実用化は可能で、ゲツター供給部材が設け
られれば、よりよい放電管を提供できることにな
る。
Incidentally, if the cathode 3 does not have an emitter, the discharge starting voltage becomes high and the life of the discharge tube itself becomes short, although not described in detail, making it difficult to put it into practical use. Similarly, a getter supply member may be provided on the anode 4; in this case, it is possible to put it into practical use even without a getter, and if a getter supply member is provided, a better discharge tube can be provided. .

尚、上記如くの螢光放電管は、トリガー電圧の
供給方法、即ち陽・陰極間に直接供給するか、外
囲器の表面より供給するのかによつて導電ペイン
トや透明導電性膜あるいは、全長方向に所定幅で
貼り付けられる金属テープ等のトリガー電極を形
成する必要があることはいうまでもない。
Incidentally, the fluorescent discharge tube as described above has a conductive paint, a transparent conductive film, or a total length depending on the method of supplying the trigger voltage, that is, whether it is supplied directly between the anode and cathode or from the surface of the envelope. Needless to say, it is necessary to form a trigger electrode such as a metal tape that is pasted with a predetermined width in the direction.

つぎに上記如くの構成を有する本考案による螢
光放電管の特性について、下記に示す如くの仕様
を有した一具体例によつて説明する。
Next, the characteristics of the fluorescent discharge tube according to the present invention having the above structure will be explained using a specific example having the specifications as shown below.

ガラス管体1の内径−4mm、外径−6mm、管長
−300mm、螢光体2−Zn2・SiO・Mn系螢光体、
(ピーク螢光波長520mm)、陰極3−ジユメツト線
とニツケル線との結合体、タングステンコイル
3a−外径0.2mmの線を外径1mmの芯線に巻き付け
た長さ5mmのコイル、陽極4−ジユメツト線とニ
ツケル線との結合体、稀ガス5−ガス圧6torrの
キセノンガス、 上記如くの仕様の本考案による螢光放電管は、
その陽、陰極間に例えば15KΩの外部抵抗を介し
て350Vの直流電圧を印加し、例えば図示してい
ないトリガー電極を介して3〜5kVのトリガー電
圧を供給すると、グロー放電を生じ、緑色光を発
生する。
Inner diameter of glass tube 1 - 4 mm, outer diameter - 6 mm, tube length - 300 mm, phosphor 2 - Zn 2 / SiO / Mn based phosphor,
(peak fluorescence wavelength 520mm), combination of cathode 3-dimum wire and nickel wire, tungsten coil
3a - A coil of length 5 mm in which a wire with an outer diameter of 0.2 mm is wound around a core wire with an outer diameter of 1 mm, anode 4 - a combination of a composite wire and a nickel wire, a rare gas 5 - xenon gas at a gas pressure of 6 torr, as described above. The specifications of the fluorescent discharge tube according to this invention are as follows:
When a DC voltage of 350V is applied between the positive and negative electrodes via an external resistor of, for example, 15KΩ, and a trigger voltage of 3 to 5kV is supplied via a trigger electrode (not shown), a glow discharge is generated and a green light is emitted. Occur.

これは、グロー放電によつて生じた光、特に陽
光柱領域の波長350nm以下の光が520nmにピーク
螢光波長を持つ螢光体2を励起しているためであ
ると考えられ、実際に分光分布特性を調べてみる
と第5図に示す如くの結果が得られた。
This is thought to be because the light generated by the glow discharge, especially the light with a wavelength of 350 nm or less in the positive column region, excites the phosphor 2, which has a peak fluorescence wavelength of 520 nm. When the distribution characteristics were investigated, the results shown in FIG. 5 were obtained.

第5図からも明らかなように、管体として従来
一般的な鉛ガラスを使用した場合の第2図ハに示
した如くの特性に比較して、得られる除電に必要
な範囲の光の強度は確かに低くなつてはいるもの
の、波長800〜1200nmの範囲の光、即ち近赤外か
ら赤外域にかけての光はほとんど遮断できてい
る。
As is clear from Figure 5, compared with the characteristics shown in Figure 2(C) when the tube body is made of conventional lead glass, the intensity of the light required for static elimination is certainly lower, but light in the wavelength range of 800 to 1200 nm, i.e., light from the near infrared to infrared regions, is almost entirely blocked.

尚、上述した光の強度の低下であるが実際の使
用時においては、先の第2図イ,ロにおいて説明
したように発熱特性、配光特性が極めて優れてい
るため、感光体に極めて近接して配置できると共
に、比較した第2図ハに示した特性の光の強度も
十分に高いことから、何ら問題はなく、本考案に
よる螢光放電管は、増感剤の使用により高感度化
された感光体の除電用光源として極めて優れた特
性を有する光源となる。
Although the above-mentioned reduction in light intensity occurs, in actual use, as explained in Figure 2 A and B, the heat generation characteristics and light distribution characteristics are extremely excellent, so when the light is used very close to the photoreceptor. There is no problem because the intensity of the light with the characteristics shown in Figure 2 (c) for comparison is sufficiently high, and the fluorescent discharge tube according to the present invention can be highly sensitive by using a sensitizer. The resulting light source has extremely excellent characteristics as a light source for eliminating static electricity from a photoreceptor.

さらに、本考案による螢光放電管の消費エネル
ギーであるが、グロー放電により発光動作を得て
いるため極めて少なく、例えば先の一具体例の場
合、グロー放電中の陽陰極間の電圧は100〜
110V、流れる電流は15mA前後であり約1.5W程
度であるが、従来一般的に使用されている小型ラ
ンプの場合通常10W以上のエネルギー消費量とな
つておりかかる点からも本考案による螢光放電管
は極めて実用的である。
Furthermore, the energy consumption of the fluorescent discharge tube according to the present invention is extremely small because the light emitting operation is obtained by glow discharge.For example, in the case of the previous example, the voltage between the anode and cathode during glow discharge is 100~
110V, the current flowing is around 15mA, which is about 1.5W, but the energy consumption of conventionally commonly used small lamps is usually more than 10W, so the fluorescent discharge according to the present invention Tubes are extremely practical.

尚、上述してきた一具体例は、キセノンガスを
封入したものについて述べてきたが、これは得ら
れる光の強度を基準に選択しただけであり、他の
稀ガスの使用も除電能力を考慮してやれば可能で
あることはいうまでもなく、また、螢光体も同様
に感光体の特性に応じて種々のものを使用しても
よいことはいうまでもない。
In addition, the specific example mentioned above is one filled with xenon gas, but this was only selected based on the intensity of the light obtained, and other rare gases may also be used, taking into account the static elimination ability. It goes without saying that this is possible, and that various phosphors may be used depending on the characteristics of the photoreceptor.

考案の効果 以上述べてきたように、本考案は、稀ガスによ
るグロー放電と螢光体とによつて光を発生させる
と共に、管体をFe2O3を含んだガラスで構成する
ことにより、上記発生する光から近赤外から赤外
域にわたる範囲の光を遮断できた増感剤使用によ
る高感度の感光体の除電用光源として極めて実用
価値の高い螢光放電管を提供できる効果を有す
る。
Effects of the Invention As described above, the present invention generates light by a glow discharge caused by a rare gas and a phosphor, and by constructing the tube body from glass containing Fe 2 O 3 , The present invention has the effect of providing a fluorescent discharge tube with extremely high practical value as a light source for static elimination of a highly sensitive photoreceptor by using a sensitizer that can block light in the range from the near infrared to the infrared region from the above-mentioned generated light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロおよび第2図イ,ロ,ハは本考案
者らの行なつた実験の結果を示した図であり、第
3図は本考案による螢光放電管に使用されるガラ
スと従来よく知られているガラスの分光透過特性
を示した図、第4図は本考案による螢光放電管の
一実施例を示す部分断面を含む正面図、第5図は
本考案による螢光放電管の一実施例の分光特性図
を夫々示している。 1……ガラス管体、2……螢光体、3…陰極、
4……陽極、5……稀ガス。
Figure 1 A, B and Figure 2 A, B, and C are diagrams showing the results of experiments conducted by the present inventors, and Figure 3 shows the glass used in the fluorescent discharge tube according to the present invention. FIG. 4 is a front view including a partial cross section showing an embodiment of a fluorescent discharge tube according to the present invention, and FIG. 5 is a diagram showing a fluorescent discharge tube according to the present invention. The spectral characteristic diagram of one example of a discharge tube is shown, respectively. 1... Glass tube body, 2... Fluorescent material, 3... Cathode,
4... Anode, 5... Rare gas.

Claims (1)

【実用新案登録請求の範囲】 (1) 電子複写装置における除電用光源であつて、
管径に比較して全長が長く酸化第2鉄Fe2O3
含んだガラス管体と、前記管体内面に塗布され
る蛍光波長域が前記電子複写装置の感光ドラム
の除電に必要な特定波長域の蛍光体と、前記管
体の両端に封止される陽極とエミツター供給部
材を有する陰極と、前記ガラス管体内に封入さ
れる低気圧の稀ガスとを有してなる蛍光放電
管。 (2) ガラス管体は、SiO2・BaO・Na2O・K2Oを
主成分としFe2O3を数%含むガラスである実用
新案登録請求の範囲第1項に記載の蛍光放電
管。
[Scope of claims for utility model registration] (1) A light source for static elimination in an electronic copying device, which
A glass tube containing ferric oxide (Fe 2 O 3 ) , which has a longer overall length than the tube diameter, and a fluorescent wavelength range coated on the inner surface of the tube have a specific characteristic required for static neutralization of the photosensitive drum of the electronic copying device. A fluorescent discharge tube comprising a wavelength range phosphor, a cathode having an anode and an emitter supply member sealed at both ends of the tube, and a low-pressure rare gas sealed in the glass tube. (2) The fluorescent discharge tube according to the utility model registration claim 1, wherein the glass tube body is made of glass mainly composed of SiO 2・BaO ・Na 2 O ・K 2 O and containing several % of Fe 2 O 3 .
JP13433282U 1982-09-03 1982-09-03 fluorescent discharge tube Granted JPS5941858U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13433282U JPS5941858U (en) 1982-09-03 1982-09-03 fluorescent discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13433282U JPS5941858U (en) 1982-09-03 1982-09-03 fluorescent discharge tube

Publications (2)

Publication Number Publication Date
JPS5941858U JPS5941858U (en) 1984-03-17
JPS6321891Y2 true JPS6321891Y2 (en) 1988-06-16

Family

ID=30302717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13433282U Granted JPS5941858U (en) 1982-09-03 1982-09-03 fluorescent discharge tube

Country Status (1)

Country Link
JP (1) JPS5941858U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452933Y2 (en) * 1985-11-06 1992-12-11

Also Published As

Publication number Publication date
JPS5941858U (en) 1984-03-17

Similar Documents

Publication Publication Date Title
JP3714952B2 (en) Dielectric disturbing discharge fluorescent lamp
CA2220571C (en) Discharge lamp and device for operating it
US2317265A (en) Fluorescent lamp
JPH079796B2 (en) Discharge lamp
JPS5837663B2 (en) Teiatsu Gashodento
US4940918A (en) Fluorescent lamp for liquid crystal backlighting
JPS6321891Y2 (en)
US4988914A (en) Red fluorescent lamp suitable for reprographic applications
US6806648B2 (en) Light source device and liquid crystal display device
JP3189285B2 (en) Electrodeless low pressure discharge lamp
JPS6362865B2 (en)
US4769576A (en) Metal vapor discharge lamp
JP2732455B2 (en) Metal vapor discharge lamp
JPH02201860A (en) Metal halide lamp
EP4125112A1 (en) Mercury free cold cathode lamp internally coated with a luminescent down shifting layer
JPH03250549A (en) Metal vapor electric discharge lamp
JPS6313255A (en) Lighting equipment
JPS58119150A (en) Low pressure gas discharge lamp emitting light approximate to infrared rays
WO2002015226A1 (en) Highly loaded fluorescent lamp
KR100731154B1 (en) Electrodeless xenon phosphor lamp
JP2000133204A (en) Fluorescent lamp and light source device
JPH09199085A (en) Fluorescent lamp and lighting system using it
JPS61126756A (en) Metallic haloid lamp
JPH0817090B2 (en) Hot cathode low pressure rare gas discharge fluorescent lamp
JPH0311055B2 (en)