JPS63218860A - Method for quantifying ammonia in solution - Google Patents

Method for quantifying ammonia in solution

Info

Publication number
JPS63218860A
JPS63218860A JP5239187A JP5239187A JPS63218860A JP S63218860 A JPS63218860 A JP S63218860A JP 5239187 A JP5239187 A JP 5239187A JP 5239187 A JP5239187 A JP 5239187A JP S63218860 A JPS63218860 A JP S63218860A
Authority
JP
Japan
Prior art keywords
ammonia
carrier liquid
solution
substance
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5239187A
Other languages
Japanese (ja)
Other versions
JPH0562949B2 (en
Inventor
Toyoaki Aoki
青木 豊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5239187A priority Critical patent/JPS63218860A/en
Publication of JPS63218860A publication Critical patent/JPS63218860A/en
Publication of JPH0562949B2 publication Critical patent/JPH0562949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To continuously and stably quantify ammonia in a specimen solution, by reacting the specimen solution with two reaction solutions and allowing ammonia after reaction to transmit through a microporous polymer membrane. CONSTITUTION:A transmission part 1 consists of an outside Teflon pipe 2 and an inside microporous Teflon pipe 3. A specimen solution is sent by a pump 4 to be mixed with the reaction solution A sent from a pump 5 in a three-way joint 6 and subsequently mixed with the reaction solution B sent from a pump 7 in a three-way joint 8 to be sent to the outside Teflon pipe 2 of the transmission part 1. A carrier liquid is allowed to flow in the microporous Teflon pipe 3 by a pump 9 and a hypochlorite ion or chlorine is preliminarily added to the carrier liquid. The inside microporous Teflon pipe 3 is connected to an ultraviolet spectrophotometer 10 and ammonia transmitted to the carrier liquid is reacted with the hypochlorite ion or chlorine and absorbancy is measured by the spectrophotometer 10 and the signal thereof is outputted to a recorder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶液中のアンモニアの定量方法に関するもの
である。溶液中のアンモニアの定量方法は、下水処理の
処理プロセスのモニターとして。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for quantifying ammonia in a solution. The method for quantifying ammonia in a solution is used as a monitor for sewage treatment processes.

又は河川、湖沼、海水などの水質のモニターなどとして
利用することができる。
Alternatively, it can be used to monitor water quality of rivers, lakes, seawater, etc.

(従来の技術) 試料水中のアンモニアの定量方法としては、一般に、イ
ンドフェノール比色法、アンモニア選沢性電極法が使用
されている。
(Prior Art) Generally, the indophenol colorimetric method and the ammonia-selective electrode method are used to quantify ammonia in sample water.

(発明が解決しようとする問題点) インドフェノール比色法は、水中の懸濁物や着色物の干
渉を受けるため、定量値はあまり正確ではない。また、
アンモニア選択性電極法は応答に時間を要するうえ、前
の試料水中のアンモニア濃度によって影響を受けやすい
。更に、長時間使用していると膜の表面に付着物が生じ
るため、安定した応答値が得られない。
(Problems to be Solved by the Invention) The indophenol colorimetric method is subject to interference from suspended matter and colored matter in water, so quantitative values are not very accurate. Also,
The ammonia-selective electrode method requires time to respond and is sensitive to the ammonia concentration in the previous sample water. Furthermore, if the membrane is used for a long time, deposits will form on the surface of the membrane, making it impossible to obtain stable response values.

本発明は、水中の懸濁物や着色物の干渉がなく試料水中
のアンモニアを連続して測定でき、前の試料水中のアン
モニアの影響をほとんど受けず、膜の表面に付着物がほ
とんどないため安定して才!1宝する方魂と丁監供Tろ
2とを目的ヒTろものて゛ある。
The present invention allows continuous measurement of ammonia in sample water without interference from suspended objects or colored substances in water, is hardly affected by ammonia in previous sample water, and has almost no deposits on the surface of the membrane. Stable and talented! 1. There are two types of people whose purpose is to treasure the soul and to protect the soul.

(問題点を解決するための手段) 本発明では、アンモニアと反応しない微孔性の有機、又
は無機の高分子膜を介して2つの流路が接触する膜分離
器を使用する。膜分離器の一方の流路にアルカリ性で水
酸化物となる金属性の少なくとも1つを含む反応溶液A
およびアルカリ金属もしくはアルカリ土類金属の水酸化
物の少なくとも1つを含む反応溶液Bと試料溶液との混
合溶液を流し、他方の流路にキャリヤー液を流してキャ
リヤー液中へ透過したアンモニアを定量測定して試料溶
液中のアンモニアを求める。
(Means for Solving the Problems) The present invention uses a membrane separator in which two channels are in contact with each other via a microporous organic or inorganic polymer membrane that does not react with ammonia. A reaction solution A containing at least one metal that is alkaline and becomes a hydroxide in one flow path of the membrane separator.
A mixed solution of a sample solution and reaction solution B containing at least one of alkali metal or alkaline earth metal hydroxides is flowed, and a carrier liquid is flowed through the other flow path to quantify ammonia permeated into the carrier liquid. Measure and find the ammonia in the sample solution.

(作用) 自然水中のアンモニアはアンモニウムイオンの形で水中
に溶存しているため、微孔性の高分子膜を透過できない
、しかし、アルカリ金属又はアルカリ土類金属の水酸化
物を加えることにより試料水はアルカリ性に変わり、ア
ンモニウムイオンはアンモニアに変わる。このアンモニ
アは気体として微孔性の高分子膜を透過できる。この透
過したアンモニアをキャリヤー液と反応させ、その反応
量を分光光度検出器や電気化学検出器などで検出して、
アンモニアを測定することができる。アルカリ性で水酸
化物となる金属塩を試料水に加えるのは、膜への付着物
を取り除くためであって、これを加えることによブてア
ンモニアの透過が一定となり、そのため安定した応答を
得ることができる。
(Function) Ammonia in natural water is dissolved in water in the form of ammonium ions, so it cannot pass through a microporous polymer membrane. However, by adding alkali metal or alkaline earth metal hydroxide, Water becomes alkaline and ammonium ions turn into ammonia. This ammonia can pass through the microporous polymer membrane as a gas. This permeated ammonia is reacted with a carrier liquid, and the amount of reaction is detected using a spectrophotometer or electrochemical detector.
Ammonia can be measured. The purpose of adding alkaline metal salts, which form hydroxides, to the sample water is to remove deposits from the membrane, and by adding this, ammonia permeation becomes constant, resulting in a stable response. be able to.

(実施例) 第1図は本発明の一実施例を表す。1は透過部であり、
外側のテフロン(ポリ四フッ化エチレンのDu  Po
nt社の商品名)管2と内側の微孔性テフロン管3の二
重管からなっている。内側の微孔性テフロン管3として
は例えばジャパン・ボアテックス社のTBシリーズ(気
孔率70%、最大孔径3.5μm)なとを使用すること
ができる。
(Example) FIG. 1 represents an example of the present invention. 1 is a transparent part,
Outer Teflon (polytetrafluoroethylene DuPo)
It consists of a double tube consisting of a tube (2) and an inner microporous Teflon tube (3). As the inner microporous Teflon tube 3, for example, the TB series (porosity: 70%, maximum pore diameter: 3.5 μm) manufactured by Japan Boretex Co., Ltd. can be used.

例えばTBOO1は内径1 m m、  外径1.8m
mである。微孔性テフロン管3の長さは感度に影響する
ので、適当な長さにして使用する0例えばその長さは5
0 amである。
For example, TBOO1 has an inner diameter of 1 mm and an outer diameter of 1.8 m.
It is m. The length of the microporous Teflon tube 3 affects the sensitivity, so use it at an appropriate length. For example, the length is 5.
It is 0 am.

ポンプ4により試料溶液が送られ、ポンプ5から送られ
た反応溶液Aと3方ジヨイント6で混合され、次に、ポ
ンプ7から送られた反応溶液Bと3万ジヨイント8で混
合されて透過部1の外側のテフロン管2に送られる。
The sample solution is sent by the pump 4, mixed with the reaction solution A sent from the pump 5 at the 3-way joint 6, and then mixed with the reaction solution B sent from the pump 7 at the 3-way joint 8 to pass through the permeation section. It is sent to the Teflon tube 2 outside of 1.

微孔性テフロン管3の内側にはポンプ9によりキャリヤ
ー液が流される。キャリヤー液中には次亜塩素酸イオン
又は塩素を添加しておく。内側の微孔性テフロン管3は
紫外分光光度計10に接続されている。紫外分光光度計
10ではキャリヤー液中に透過したアンモニアを次亜塩
素酸イオン又は塩素の吸光度の測定により行い、その信
号が記録計に出力される。
A carrier liquid is flowed inside the microporous Teflon tube 3 by a pump 9. Hypochlorite ions or chlorine are added to the carrier liquid. The inner microporous Teflon tube 3 is connected to an ultraviolet spectrophotometer 10. The ultraviolet spectrophotometer 10 measures the absorbance of hypochlorite ions or chlorine on the ammonia that has passed through the carrier liquid, and outputs the signal to a recorder.

反応溶液A及びBの混合順序が逆であってもよい。The mixing order of reaction solutions A and B may be reversed.

また、あらかじめ反応溶液A及びBが混合された溶液を
試料溶液と混合してもよい。
Alternatively, a solution in which reaction solutions A and B are mixed in advance may be mixed with the sample solution.

さらに、キャリヤー液が微孔性テフロン管3の外側を、
一方、試料溶液と反応溶液(A及びB)の混合溶液がそ
の内側を流れろようにしてもよい。
Furthermore, the carrier liquid covers the outside of the microporous Teflon tube 3.
On the other hand, a mixed solution of the sample solution and the reaction solution (A and B) may flow inside it.

この場合、検出器lOは排液11側に接続する必要があ
る。検出器10は電気化学的検出器であってもよい。
In this case, the detector IO needs to be connected to the drain 11 side. Detector 10 may be an electrochemical detector.

第2図に示すように、微孔性テフロン管3を出たキャリ
ヤー液と次亜塩素酸イオンあるいは塩素によって酸化さ
れて発色する発色剤を含む反応溶液Cがポンプにより送
られて3方ジヨイン)13で混合され検出器10で検出
してもよい0発色剤としではN、  N−ジエチル−p
−フェニレンジアミンやo −) )kンを使用するこ
とができる。この場合、検出器10として可視分光光度
計を使用することができる。
As shown in Fig. 2, a reaction solution C containing a carrier liquid and a coloring agent that is oxidized by hypochlorite ions or chlorine is pumped out of the microporous Teflon tube 3 to form a three-way injection. The coloring agent that may be mixed in step 13 and detected by detector 10 is N, N-diethyl-p.
-phenylenediamine and o-)) can be used. In this case, a visible spectrophotometer can be used as the detector 10.

検出器としては、以上に例示の他に、例えば蛍光検出器
や化学発光検出器などを用いることができる。蛍光検出
器を用いるときはキャリヤー液にニコチンアミド、もし
くは0−フタルアルデヒド溶液を添加し、化学発光検出
器を用いるときにはキャリヤー液にルミノール溶液を添
加すればよい。
As the detector, in addition to those exemplified above, for example, a fluorescence detector, a chemiluminescence detector, etc. can be used. When using a fluorescence detector, nicotinamide or 0-phthalaldehyde solution may be added to the carrier liquid, and when using a chemiluminescence detector, a luminol solution may be added to the carrier liquid.

第3図はさらに他の実施例における透過部14を示す。FIG. 3 shows a transmission section 14 in yet another embodiment.

複数のホロファイバ15が束ねられ、それらのホロファ
イバ16の内側を試料溶液と反応溶液(AおよびB)の
混合溶液が流れ、外側をキャリヤー液が流れる。この場
合ホロファイバ15の内側にキャリヤー液を流し、外側
に混合溶液を流してもよい。微孔性ホロファイバ15の
材質としては、テフロンや酢酸セルロースが好ましい。
A plurality of holofibers 15 are bundled, a mixed solution of a sample solution and a reaction solution (A and B) flows inside the holofibers 16, and a carrier liquid flows outside. In this case, the carrier liquid may be flowed inside the hollow fiber 15, and the mixed solution may be flowed outside. The material for the microporous hollow fiber 15 is preferably Teflon or cellulose acetate.

第4図はさらに他の実施例における透過部16を表す。FIG. 4 shows a transparent section 16 in yet another embodiment.

上室と下室の境に微孔性高分子膜17が板状にはさまっ
ている。試料溶液と反応溶液(AおよびB)の混合溶液
を王室に導き、下室にキャリヤー液を流す。この場合、
上、下室が逆であってもよい。
A plate-shaped microporous polymer membrane 17 is sandwiched between the upper chamber and the lower chamber. A mixed solution of the sample solution and reaction solution (A and B) is led into the chamber, and the carrier liquid is flowed into the lower chamber. in this case,
The upper and lower chambers may be reversed.

第5図は検出器として紫外分光光度計を用いた場合に得
られた試料溶液中のアンモニア濃度と信号との間の検量
関係を示している。測定波長としては290nmに設定
した。キャリヤー液には次亜塩素酸イオンを含む溶液、
反応溶液Aに1100ppの第二鉄溶液、反応溶液Bに
2M水酸化ナトリウム溶液をそれぞれ用いた。アンモニ
ア濃度0.55−1ONppと信号との間に良好な直線
関係が認められた。
FIG. 5 shows the calibration relationship between the ammonia concentration in the sample solution and the signal obtained when an ultraviolet spectrophotometer is used as a detector. The measurement wavelength was set at 290 nm. The carrier liquid contains a solution containing hypochlorite ions,
A 1100 pp ferric iron solution was used as the reaction solution A, and a 2M sodium hydroxide solution was used as the reaction solution B. A good linear relationship was observed between the ammonia concentration of 0.55-1 ONpp and the signal.

検出器として電気分析検出器の一種であるアンペロメト
リー検出器を用いた場合の例を第6図に示す、設定電位
としては金電極に一〇、05v(対AgCl/Ag極)
の電位を負荷している。この場合もアンモニア濃度0.
22−7Nppと信号との間に良好な直線関係が認めら
れた。
Figure 6 shows an example in which an amperometric detector, which is a type of electroanalytical detector, is used as a detector.The set potential is 10.05 V for the gold electrode (vs. AgCl/Ag electrode).
is loaded with a potential of In this case as well, the ammonia concentration is 0.
A good linear relationship was observed between 22-7Npp and the signal.

第7図は反応溶液Aくここでは1100pp第二鉄溶液
を用いた)を加えた場合と、加えない場合の試料溶液と
して1.ONppmアンモニアを流した場合、18閏の
得られた信号の経時変化を示した。反応溶液Aを加えな
いと信号は低く、かつ徐々に減少しており安定しなかっ
た。一方、反応溶液Aを加えた場合、信号は高く、かつ
安定していた。
Figure 7 shows the sample solutions 1. When flowing ON ppm ammonia, the time course of the obtained signal of 18 leaps was shown. If reaction solution A was not added, the signal was low and gradually decreased and was not stable. On the other hand, when reaction solution A was added, the signal was high and stable.

(発明の効果) 本発明では試料溶液を反応溶液A、  Bと反応させ、
反応後のアンモニアを微孔性高分子膜を透過させること
により、試料溶液中のアンモニアを連続して安定に定量
することができた。
(Effect of the invention) In the present invention, a sample solution is reacted with reaction solutions A and B,
By passing the ammonia after the reaction through the microporous polymer membrane, we were able to continuously and stably quantify the ammonia in the sample solution.

第6図にもとづいてS/N=3を定量下限とすれば、本
発明の方法によって溶液中のアンモニアを0.O2pp
m以上を選択的に定量できる。
Based on FIG. 6, if S/N=3 is the lower limit of quantification, the method of the present invention can reduce ammonia in the solution to 0. O2pp
m or more can be selectively quantified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第2図はそれぞれ本発明の実施例を示す概
略断面図、第3図はさらに他の実施例における透過部を
示す概略断面図、第4図はさらに他の実施例における透
過部を示す概略斜視図、第5図は紫外分光光度計を用い
た場合、第6図はアンベロメトリー検出器を用いた場合
の、それぞれの検量関係を示す図、第7図は反応溶液A
を加えた場合と加えない場合に得られた信号の経時変化
を示す図である。 1.14.16・・φ・透過部、 3.15. 10・・・・微孔性テフロン管、】7・・
・・・・・・・微孔性テフロン膜、2・・・・・・・・
・・テフロン管、 lO・・・・・・・・・紫外分光光度計。
1 and 2 are schematic cross-sectional views showing embodiments of the present invention, FIG. 3 is a schematic cross-sectional view showing a transmitting part in yet another embodiment, and FIG. 4 is a schematic cross-sectional view showing a transmitting part in yet another embodiment. Fig. 5 is a diagram showing the calibration relationship when using an ultraviolet spectrophotometer, Fig. 6 is a diagram showing the calibration relationship when using an umberometry detector, and Fig. 7 is a diagram showing the calibration relationship when using the reaction solution A.
FIG. 4 is a diagram showing changes over time in signals obtained when and without addition of . 1.14.16...φ・Transmission part, 3.15. 10... Microporous Teflon tube, ]7...
・・・・・・Microporous Teflon membrane, 2・・・・・・・・・
・・Teflon tube, lO ・・・UV spectrophotometer.

Claims (4)

【特許請求の範囲】[Claims] (1)アンモニアと反応しない微孔性の有機、又は無機
の高分子膜を介して2つの流路が接触する膜分離器の一
方の流路にアルカリ性で水酸化物となる金属性の少なく
とも1つを含む反応溶液A及びアルカリ金属もしくはア
ルカリ土類金属の水酸化物の少なくとも1つを含む反応
溶液Bと試料溶液との混合溶液を流し、他方の流路にキ
ャリヤー液を流してキャリヤー液中へ透過したアンモニ
アを測定して試料溶液中のアンモニアを求める定量方法
(1) At least one metallic substance that is alkaline and becomes a hydroxide is placed in one flow path of a membrane separator in which two flow paths are in contact with each other through a microporous organic or inorganic polymer membrane that does not react with ammonia. A mixed solution of a sample solution and a reaction solution A containing at least one alkali metal or alkaline earth metal hydroxide is flowed, and a carrier liquid is flowed into the other flow path. A quantitative method that determines the amount of ammonia in a sample solution by measuring the amount of ammonia permeated into the sample solution.
(2)キャリヤー液中にはアンモニアと反応する物質を
添加し、キャリヤー液中へ透過したアンモニアの定量測
定を、前記物質の反応生成物の測定により行う特許請求
の範囲第1項に記載の定量方法。
(2) The quantitative determination according to claim 1, wherein a substance that reacts with ammonia is added to the carrier liquid, and the quantitative measurement of ammonia permeated into the carrier liquid is performed by measuring a reaction product of the substance. Method.
(3)アンモニアと反応する前記物質が次亜ハロゲノ酸
イオン又はハロゲン又はクロラミンT又はo−フタルア
ルデヒドである特許請求の範囲第2項に記載の定量方法
(3) The quantitative method according to claim 2, wherein the substance that reacts with ammonia is a hypohalite ion, a halogen, chloramine T, or o-phthalaldehyde.
(4)キャリヤー液中に第3項に記載の前記物質の他に
この前記物質によって酸化されて発色する発色剤を添加
し、キャリヤー液中へ透過したクロラミンの定量測定を
その発色剤の光吸収の測定により行う特許請求の範囲第
3項に記載の定量方法。
(4) In addition to the substance described in item 3, a coloring agent that develops color when oxidized by the substance is added to the carrier liquid, and the quantitative measurement of chloramine that has permeated into the carrier liquid is performed by light absorption of the coloring agent. The quantitative method according to claim 3, which is carried out by measuring.
JP5239187A 1987-03-07 1987-03-07 Method for quantifying ammonia in solution Granted JPS63218860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5239187A JPS63218860A (en) 1987-03-07 1987-03-07 Method for quantifying ammonia in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5239187A JPS63218860A (en) 1987-03-07 1987-03-07 Method for quantifying ammonia in solution

Publications (2)

Publication Number Publication Date
JPS63218860A true JPS63218860A (en) 1988-09-12
JPH0562949B2 JPH0562949B2 (en) 1993-09-09

Family

ID=12913503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5239187A Granted JPS63218860A (en) 1987-03-07 1987-03-07 Method for quantifying ammonia in solution

Country Status (1)

Country Link
JP (1) JPS63218860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270391A (en) * 1993-08-31 1995-10-20 Nec Corp Analysis of silica in water and pretreatment apparatus used therein
KR20160048204A (en) * 2013-08-30 2016-05-03 유니버시티 오브 메릴랜드, 컬리지 파크 Device and methods of using device for detection of hyperammonemia
JPWO2022039125A1 (en) * 2020-08-19 2022-02-24

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270391A (en) * 1993-08-31 1995-10-20 Nec Corp Analysis of silica in water and pretreatment apparatus used therein
KR20160048204A (en) * 2013-08-30 2016-05-03 유니버시티 오브 메릴랜드, 컬리지 파크 Device and methods of using device for detection of hyperammonemia
JPWO2022039125A1 (en) * 2020-08-19 2022-02-24
WO2022039125A1 (en) * 2020-08-19 2022-02-24 株式会社日吉 Sensitizer for use in measurement of chemiluminescence of ammonium ion, ammonium ion analysis method, ammonium ion analysis device

Also Published As

Publication number Publication date
JPH0562949B2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
Li et al. Detection methods of ammonia nitrogen in water: A review
Zhujun et al. A carbon dioxide sensor based on fluorescence
US6016372A (en) Chemical sensing techniques employing liquid-core optical fibers
Martz et al. A submersible autonomous sensor for spectrophotometric pH measurements of natural waters
US4892383A (en) Reservoir fiber optic chemical sensors
JPH02145961A (en) Determination and analyzer of trihalomethane
US6011882A (en) Chemical sensing techniques employing liquid-core optical fibers
US10302552B2 (en) Apparatus, composition and method for determination of chemical oxidation demand
Alizadeh et al. Poly (vinyl chloride)-membrane ion-selective bulk optode based on 1, 10-dibenzyl-1, 10-diaza-18-crown-6 and 1-(2-pyridylazo)-2-naphthol for Cu2+ and Pb2+ ions
AU2008279794B2 (en) Continuous monitor for cyanide and cyanogen blood agent detection in water
Korenaga et al. Continuous-flow injection analysis of aqueous environmental samples for chemical oxygen demand
Mahendra et al. Investigation of a Cu (II) fibre optic chemical sensor using fast sulphon black F (FSBF) immobilised onto XAD-7
Pujol-Vila et al. based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction
JPS63218860A (en) Method for quantifying ammonia in solution
Tan et al. Reflectance based optical fibre sensor for ammonium ion using solid-state Riegler's reagent
JPH01223345A (en) Determination of free chlorine in solution
JPH0765990B2 (en) Method for determination of chloramine and free chlorine in solution
WO2021184077A1 (en) A chlorine sensor
Choi et al. A fibre-optic oxygen sensor based on contact charge-transfer absorption
Costa-Fernández et al. Portable fibre optic oxygen sensor based on room-temperature phosphor escence lifetime
Kuswandi et al. A simple optical flow injection ammonia sensor
US20220362766A1 (en) Microfluidic Sensor for Continuous or Semi-Continuous Monitoring of Quality of an Aqueous Solution
Choi et al. A novel oxygen and/or carbon dioxide-sensitive optical transducer
Berman et al. Flow optrodes for chemical analysis
US20170212048A1 (en) Analyte sensing system and method utilizing separate equilibrium and measurement chambers