JPH0562949B2 - - Google Patents

Info

Publication number
JPH0562949B2
JPH0562949B2 JP5239187A JP5239187A JPH0562949B2 JP H0562949 B2 JPH0562949 B2 JP H0562949B2 JP 5239187 A JP5239187 A JP 5239187A JP 5239187 A JP5239187 A JP 5239187A JP H0562949 B2 JPH0562949 B2 JP H0562949B2
Authority
JP
Japan
Prior art keywords
ammonia
carrier liquid
solution
amount
reacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5239187A
Other languages
Japanese (ja)
Other versions
JPS63218860A (en
Inventor
Toyoaki Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUROMATO SAIENSU KK
Original Assignee
KUROMATO SAIENSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUROMATO SAIENSU KK filed Critical KUROMATO SAIENSU KK
Priority to JP5239187A priority Critical patent/JPS63218860A/en
Publication of JPS63218860A publication Critical patent/JPS63218860A/en
Publication of JPH0562949B2 publication Critical patent/JPH0562949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶液中のアンモニアの定量方法に関
するものである。溶液中のアンモニアの定量方法
は、下水処理の処理プロセスのモニターとして、
又は河川、湖沼、海水などの水質のモニターなど
として利用することができる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for quantifying ammonia in a solution. The method for quantifying ammonia in solution is used as a monitor of the sewage treatment process.
Alternatively, it can be used to monitor water quality of rivers, lakes, seawater, etc.

(従来の技術) 試料水中のアンモニアの定量方法としては、一
般に、インドフエノール比色法、アンモニア選択
性電極法が使用されている。
(Prior Art) Generally, the indophenol colorimetric method and the ammonia-selective electrode method are used to quantify ammonia in sample water.

(発明が解決しようとする問題点) インドフエノール比色法は、水中の懸濁物や着
色物の干渉を受けるため、定量値はあまり正確で
はない。また、アンモニア選択性電極法は応答に
時間を要するうえ、前の試料水中のアンモニア濃
度によつて影響を受けやすい。更に、長時間使用
していると膜の表面に付着物が生じるため、安定
した応答値が得られない。
(Problems to be Solved by the Invention) The indophenol colorimetric method is subject to interference from suspended matter and colored matter in water, so quantitative values are not very accurate. Furthermore, the ammonia-selective electrode method requires time to respond and is susceptible to the ammonia concentration in the previous sample water. Furthermore, if the membrane is used for a long time, deposits will form on the surface of the membrane, making it impossible to obtain stable response values.

本発明は、水中の懸濁物や着色物の干渉がなく
試料水中のアンモニアを連続して測定でき、前の
試料水中のアンモニアの影響をほとんど受けず、
膜の表面に付着物がほとんどないため安定して測
定する方法を提供することを目的とするものであ
る。
The present invention enables continuous measurement of ammonia in sample water without interference from suspended objects or colored substances in water, and is almost unaffected by ammonia in previous sample water.
The purpose is to provide a method for stable measurement since there is almost no deposit on the surface of the membrane.

(問題点を解決するための手段) 本発明では、アンモニアと反応しない微孔性の
有機、又は無機の高分子膜を介して2つの流路が
接触する膜分離器を使用する。膜分離器の一方の
流路にアルカリ性で水酸化物となる金属性の少な
くとも1つを含む反応溶液Aおよびアルカリ金属
もしくはアルカリ土類金属の水酸化物の少なくと
も1つを含む反応溶液Bと試料溶液との混合溶液
を流し、他方の流路にキヤリヤー液を流してキヤ
リヤー液中へ透過したアンモニアを定量測定して
試料溶液中のアンモニアを求める。
(Means for Solving the Problems) The present invention uses a membrane separator in which two channels are in contact with each other via a microporous organic or inorganic polymer membrane that does not react with ammonia. Reaction solution A containing at least one metal that is alkaline and becomes a hydroxide, reaction solution B containing at least one hydroxide of an alkali metal or alkaline earth metal, and a sample in one flow path of the membrane separator. Ammonia in the sample solution is determined by flowing a mixed solution with the sample solution, flowing a carrier liquid into the other channel, and quantitatively measuring ammonia that has permeated into the carrier liquid.

(作用) 自然水中のアンモニアはアンモニウムイオンの
形で水中に溶存しているため、微孔性の高分子膜
を透過できない。しかし、アルカリ金属又はアル
カリ土類金属の水酸化物を加えることにより試料
水はアルカリ性に変わり、アンモニウムイオンは
アンモニアに変わる。このアンモニアは気体とし
て微孔性の高分子膜を透過できる。この透過した
アンモニアをキヤリヤー液と反応させ、その反応
量を分光光度検出器や電気化学検出器などで検出
して、アンモニアを測定することができる。キヤ
リヤー液中にはアンモニアと反応する物質として
次亜ハロゲノ酸イオンやハロゲンが含まれている
ので、アンモニアはこれらの物質と反応してクロ
ラミンに変化する。この透過したアンモニア量を
分光光度検出器で測定する第1の方法は、生成し
たクロラミンの特徴ある紫外吸収を測定すること
である。クロラミンは243nmに特徴のある吸収
をもつので、分光光度検出器の測定波長を243n
mに設定しておくことにより、その検出光強度が
アンモニア量として測定することができる。この
透過したアンモニア量を分光光度検出器で測定す
る第2の方法は、キヤリヤー液中の次亜ハロゲノ
酸イオンやハロゲンなどの反応物質の特徴のある
吸収を測定することである。次亜ハロゲノ酸イオ
ンやハロゲンは290nmに特徴のある吸収をもち、
分光光度検出器を290nmに設定しておくことに
より、検出器による検出強度の減少分をアンモニ
ア量として測定することができる。
(Function) Ammonia in natural water is dissolved in water in the form of ammonium ions, so it cannot pass through microporous polymer membranes. However, by adding an alkali metal or alkaline earth metal hydroxide, the sample water becomes alkaline and ammonium ions are converted to ammonia. This ammonia can pass through the microporous polymer membrane as a gas. Ammonia can be measured by reacting the transmitted ammonia with a carrier liquid and detecting the amount of the reaction using a spectrophotometric detector, an electrochemical detector, or the like. Since the carrier liquid contains hypohalite ions and halogens as substances that react with ammonia, ammonia reacts with these substances and turns into chloramines. The first method of measuring the amount of transmitted ammonia using a spectrophotometric detector is to measure the characteristic ultraviolet absorption of the produced chloramine. Chloramine has a characteristic absorption at 243nm, so the measurement wavelength of the spectrophotometer is set to 243nm.
By setting the value to m, the detected light intensity can be measured as the amount of ammonia. A second method for measuring the amount of transmitted ammonia with a spectrophotometric detector is to measure the characteristic absorption of reactants such as hypohalite ions and halogens in the carrier liquid. Hypohalite ions and halogens have characteristic absorption at 290 nm,
By setting the spectrophotometric detector to 290 nm, the decrease in detection intensity by the detector can be measured as the amount of ammonia.

電気化学検出器の場合は、測定電位をアンモニ
アから変化したクロラミンの酸化還元電位に設定
しておくことによつてアンモニアから変化したク
ロラミンの量を測定することができる。第二鉄イ
オンを含む反応溶液Aを試料水に加えるのは、微
孔性高分子膜に対するアンモニアの透過率を一定
にして安定した応答を得るためである。微孔性高
分子膜を介して接触する2つの流路の一方の流路
に反応溶液A、反応溶液B及び試料溶液の混合溶
液を流し、他方の流路にキヤリヤー液を流して測
定を開始すると、最初はアンモニアの検出出力が
低下していき、やがて安定する。その安定した状
態では試料溶液側の流路で微孔性高分子膜への沈
澱物の付着と脱離が平衡状態になつていると考え
られる。試料溶液側の流路にこの反応溶液Aを添
加しないときは、アンモニアの検出出力が安定し
にくい。
In the case of an electrochemical detector, the amount of chloramine converted from ammonia can be measured by setting the measurement potential to the redox potential of chloramine converted from ammonia. The reaction solution A containing ferric ions is added to the sample water in order to maintain a constant ammonia permeability through the microporous polymer membrane and obtain a stable response. A mixed solution of reaction solution A, reaction solution B, and sample solution is flowed into one of the two flow channels that are in contact with each other via a microporous polymer membrane, and a carrier liquid is flowed into the other flow channel to start measurement. Then, the ammonia detection output decreases at first, and then stabilizes. In this stable state, it is thought that the attachment and desorption of the precipitate to the microporous polymer membrane are in equilibrium in the flow path on the sample solution side. When this reaction solution A is not added to the flow path on the sample solution side, the ammonia detection output is difficult to stabilize.

(実施例) 第1図は本発明の一実施例を表す。1は透過部
であり、外側のテフロン(ポリ四フツ化エチレン
のDu Pont社の商品名)管2と内側の微孔性テフ
ロン管3の二重管からなつている。内側の微孔性
テフロン管3としては例えばジヤパン・ゴアテツ
クス社のTBシリーズ(気孔率70%、最大孔径
3.5μm)などを使用することができる。例えば
TBOO1は内径1mm、外径1.8mmである。微孔性テ
フロン管3の長さは感度に影響するので、適当な
長さにして使用する。例えばその長さは50cmであ
る。
(Example) FIG. 1 represents an example of the present invention. Reference numeral 1 denotes a transmission section, which consists of a double tube consisting of an outer Teflon (trade name of polytetrafluoroethylene, manufactured by Du Pont) tube 2 and an inner microporous Teflon tube 3. As the inner microporous Teflon tube 3, for example, Japan Gore-Tex's TB series (70% porosity, maximum pore diameter) can be used.
3.5 μm) etc. can be used. for example
TBOO1 has an inner diameter of 1 mm and an outer diameter of 1.8 mm. Since the length of the microporous Teflon tube 3 affects the sensitivity, it is used at an appropriate length. For example, its length is 50cm.

ポンプ4により試料溶液が送られ、ポンプ5か
ら送られた反応溶液Aと3方ジヨイント6で混合
され、次に、ポンプ7から送られた反応溶液Bと
3方ジヨイント8で混合されて透過部1の外側の
テフロン管2に送られる。
A sample solution is sent by pump 4, mixed with reaction solution A sent from pump 5 at three-way joint 6, and then mixed with reaction solution B sent from pump 7 at three-way joint 8 to pass through the permeation section. It is sent to the Teflon tube 2 outside of 1.

微孔性テフロン管3の内側にはポンプ9により
キヤリヤー液が流される。キヤリヤー液中には次
亜塩素酸イオン又は塩素を添加しておく。内側の
微孔性テフロン管3は紫外分光光度計10に接続
されている。紫外分光光度計10ではキヤリヤー
液中に透過したアンモニアを次亜塩素酸イオン又
は塩素の吸光度の測定により行い、その信号が記
録計に出力される。
A carrier liquid is flowed inside the microporous Teflon tube 3 by a pump 9. Add hypochlorite ions or chlorine to the carrier liquid. The inner microporous Teflon tube 3 is connected to an ultraviolet spectrophotometer 10. The ultraviolet spectrophotometer 10 measures the absorbance of hypochlorite ions or chlorine on the ammonia that has passed through the carrier liquid, and outputs the signal to a recorder.

反応溶液A及びBの混合順序が逆であつてもよ
い。
The mixing order of reaction solutions A and B may be reversed.

また、あらかじめ反応溶液A及びBが混合され
た溶液を試料溶液と混合してもよい。
Alternatively, a solution in which reaction solutions A and B are mixed in advance may be mixed with the sample solution.

さらに、キヤリヤー液が微孔性テフロン管3の
外側を、一方、試料溶液と反応溶液(A及びB)
の混合溶液がその内側を流れるようにしてもよ
い。この場合、検出器10は排液11側に接続す
る必要がある。検出器10は電気化学的検出器で
あつてもよい。
Furthermore, the carrier liquid coats the outside of the microporous Teflon tube 3, while the sample solution and reaction solution (A and B)
A mixed solution of may be allowed to flow inside it. In this case, the detector 10 needs to be connected to the drain 11 side. Detector 10 may be an electrochemical detector.

キヤリヤー液に次亜ハロゲノ酸イオンやハロゲ
ンなどの反応物質によつて酸化されて発色する発
色剤を添加し、キヤリヤー液中へ透過したアンモ
ニアの定量測定をその発色剤の光吸収の測定によ
り行なうこともできる。例えば、第2図に示され
るように、微孔性テフロン管3を出たキヤリヤー
液に、次亜塩素酸イオンや塩素によつて酸化され
て発色する発色剤を含む反応溶液Cがポンプ12
により送られて3方ジヨイント13で混合される
ようにし、その混合液を検出器10に導いてその
発色剤の吸収の変化を測定する。この場合、発色
剤による光吸収量はキヤリヤー液中の次亜塩素酸
イオンや塩素の残存量に比例し、次亜塩素酸イオ
ンや塩素の残存量はキヤリヤー液中へ透過したア
ンモニア量に対応して減少する。したがつて、試
料溶液を流す前の発色剤による光吸収量を基準と
して試料溶液を流した状態での発色剤による光吸
収量の減少量を求めることにより、アンモニア量
を測定することができる。発色剤としてはN、N
−ジエチル−p−フエニレンジアミンやo−トル
イジンを使用することができる。この場合、検出
器10として可視分光光度計を使用することがで
きる。
A coloring agent that develops color when oxidized by a reactive substance such as hypohalite ion or halogen is added to the carrier liquid, and the amount of ammonia that has permeated into the carrier liquid is measured quantitatively by measuring the light absorption of the coloring agent. You can also do it. For example, as shown in FIG. 2, a reaction solution C containing a color forming agent that is oxidized by hypochlorite ions and chlorine is added to the carrier liquid exiting the microporous Teflon tube 3 at the pump 12.
The liquid mixture is sent to the detector 10 to be mixed at the three-way joint 13, and the change in the absorption of the coloring agent is measured. In this case, the amount of light absorbed by the coloring agent is proportional to the remaining amount of hypochlorite ions and chlorine in the carrier liquid, and the remaining amount of hypochlorite ions and chlorine corresponds to the amount of ammonia that has permeated into the carrier liquid. decreases. Therefore, the amount of ammonia can be measured by determining the amount of decrease in the amount of light absorption by the color former while the sample solution is flowing, based on the amount of light absorption by the color former before the sample solution is flowed. As a coloring agent, N, N
-diethyl-p-phenylenediamine and o-toluidine can be used. In this case, a visible spectrophotometer can be used as the detector 10.

検出器としては、以上に例示の他に、例えば蛍
光検出器や化学発光検出器などを用いることがで
きる。蛍光検出器を用いるときはキヤリヤー液に
ニコチンアミド、もしくはo−フタルアルデヒド
溶液を添加し、化学発光検出器を用いるときには
キヤリヤー液にルミノール溶液を添加すればよ
い。
As the detector, in addition to those exemplified above, for example, a fluorescence detector, a chemiluminescence detector, etc. can be used. When using a fluorescence detector, a nicotinamide or o-phthalaldehyde solution may be added to the carrier liquid, and when using a chemiluminescence detector, a luminol solution may be added to the carrier liquid.

第3図はさらに他の実施例における透過部14
を示す。複数の微孔性ホロフアイバ15が束ねら
れ、それらのホロフアイバ15の内側を試料溶液
と反応溶液(AおよびB)の混合溶液が流れ、外
側をキヤリヤー液が流れる。この場合ホロフアイ
バ15の内側にキヤリヤー液を流し、外側に混合
溶液を流してもよい。微孔性ホロフアイバ15の
材質としては、テフロンや酢酸セルロースが好ま
しい。
FIG. 3 shows a transmission section 14 in still another embodiment.
shows. A plurality of microporous hollow fibers 15 are bundled, a mixed solution of a sample solution and a reaction solution (A and B) flows inside the hollow fibers 15, and a carrier liquid flows outside the hollow fibers 15. In this case, the carrier liquid may be flowed inside the holographic fiber 15, and the mixed solution may be flowed outside. The material for the microporous hollow fiber 15 is preferably Teflon or cellulose acetate.

第4図はさらに他の実施例における透過部16
を表す。上室と下室の境に微孔性高分子膜17が
板状にはさまつている。試料溶液と反応溶液(A
およびB)の混合溶液を上室に導き、下室にキヤ
リヤー液を流す。この場合、上、下室が逆であつ
てもよい。
FIG. 4 shows a transparent part 16 in still another embodiment.
represents. A plate-shaped microporous polymer membrane 17 is sandwiched between the upper chamber and the lower chamber. Sample solution and reaction solution (A
The mixed solution of and B) is introduced into the upper chamber, and the carrier liquid is flowed into the lower chamber. In this case, the upper and lower chambers may be reversed.

第5図は検出器として紫外分光光度計を用いた
場合に得られた試料溶液中のアンモニア濃度と信
号との間の検量関係を示している。測定波長とし
ては290nmに設定した。キヤリヤー液には次亜
塩素酸イオンを含む溶液、反応溶液Aに100ppm
の第二鉄溶液、反応溶液Bに2M水酸化ナトリウ
ム溶液をそれぞれ用いた。アンモニア濃度0.5−
10Nppmと信号との間に良好な直線関係が認めら
れた。
FIG. 5 shows the calibration relationship between the ammonia concentration in the sample solution and the signal obtained when an ultraviolet spectrophotometer is used as a detector. The measurement wavelength was set to 290 nm. The carrier liquid contains a solution containing hypochlorite ions, and the reaction solution A contains 100 ppm.
A 2M sodium hydroxide solution was used as the ferric iron solution and reaction solution B, respectively. Ammonia concentration 0.5−
A good linear relationship was observed between 10Nppm and the signal.

検出器として電気分析検出器の一種であるアン
ペロメトリー検出器を用いた場合の例を第6図に
示す。設定電位としては金電極に−0.05V(対
AgCl/Ag極)の電位を負荷している。この場合
もアンモニア濃度0.2−7Nppmと信号との間に良
好な直線関係が認められた。
FIG. 6 shows an example in which an amperometric detector, which is a type of electroanalytical detector, is used as a detector. The set potential is −0.05V (vs.
AgCl/Ag electrode) potential is applied. In this case as well, a good linear relationship was observed between the ammonia concentration of 0.2-7 Nppm and the signal.

第7図は反応溶液A(ここでは100ppm第二鉄溶
液を用いた)を加えた場合と、加えない場合の試
料溶液として1.0Nppmアンモニアを流した場合、
1日間の得られた信号の経時変化を示した。反応
溶液Aを加えないと信号は低く、かつ徐々に減少
しており安定しなかつた。一方、反応溶液Aを加
えた場合、信号は高く、かつ安定していた。
Figure 7 shows the cases in which reaction solution A (here, 100 ppm ferric iron solution was used) was added, and when 1.0 Nppm ammonia was flowed as the sample solution without addition.
The time course of the signals obtained over one day is shown. Without the addition of reaction solution A, the signal was low and gradually decreased and was not stable. On the other hand, when reaction solution A was added, the signal was high and stable.

(発明の効果) 本発明では試料溶液を反応溶液A、Bと反応さ
せ、反応後のアンモニアを微孔性高分子膜を透過
させることにより、試料溶液中のアンモニアを連
続して安定に定量することができた。
(Effects of the Invention) In the present invention, ammonia in the sample solution is continuously and stably quantified by reacting the sample solution with reaction solutions A and B and allowing the ammonia after the reaction to permeate through a microporous polymer membrane. I was able to do that.

第6図にもとづいてS/N=3を定量下限とす
れば、本発明の方法によつて溶液中のアンモニア
を0.02ppm以上を選択的に定量できる。
Based on FIG. 6, if S/N=3 is set as the lower limit of quantification, ammonia in a solution of 0.02 ppm or more can be selectively quantified by the method of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第2図はそれぞれ本発明の実施例
を示す概略断面図、第3図はさらに他の実施例に
おける透過部を示す概略断面図、第4図はさらに
他の実施例における透過部を示す概略斜視図、第
5図は紫外分光光度計を用いた場合、第6図はア
ンペロメトリー検出器を用いた場合の、それぞれ
の検量関係を示す図、第7図は反応溶液Aを加え
た場合と加えない場合に得られた信号の経時変化
を示す図である。 1,14,16……透過部、3,15,10…
…微孔性テフロン管、17……微孔性テフロン
膜、2……テフロン管、10……紫外分光光度
計。
1 and 2 are schematic cross-sectional views showing embodiments of the present invention, FIG. 3 is a schematic cross-sectional view showing a transmitting part in yet another embodiment, and FIG. 4 is a schematic cross-sectional view showing a transmitting part in yet another embodiment. Figure 5 is a schematic perspective view showing the calibration relationship when using an ultraviolet spectrophotometer, Figure 6 is a diagram showing the calibration relationship when using an amperometry detector, and Figure 7 is a diagram showing the calibration relationship when using reaction solution A. FIG. 3 is a diagram showing changes over time in signals obtained with and without addition. 1, 14, 16... Transmissive part, 3, 15, 10...
... Microporous Teflon tube, 17... Microporous Teflon membrane, 2... Teflon tube, 10... Ultraviolet spectrophotometer.

Claims (1)

【特許請求の範囲】 1 アンモニアと反応しない微孔性の有機、又は
無機の高分子膜を介して2つの流路が接触する膜
分離器の一方の流路に第二鉄イオンを含む反応溶
液A及びアルカリ金属もしくはアルカリ土類金属
の水酸化物の少なくとも1つを含む反応溶液Bと
試料溶液との混合溶液を流し、他方の流路にアン
モニアと反応する物質を添加したキヤリヤー液を
流し、キヤリヤー液中へ透過したアンモニアから
の反応生成物量又はアンモニアと反応する前記物
質量を測定して試料溶液中のアンモニア量を求め
る定量方法。 2 アンモニアと反応する前記物質が次亜ハロゲ
ノ酸イオン、ハロゲン又はo−フタルアルデヒド
である特許請求の範囲第1項に記載の定量方法。 3 前記膜分離器より下流のキヤリヤー液にアン
モニアと反応する前記物質によつて酸化されて発
色する発色剤を添加し、キヤリヤー液中へ透過し
たアンモニアの定量測定をその発色剤の光吸収の
測定により行なう特許請求の範囲第1項に記載の
定量方法。
[Claims] 1. A reaction solution containing ferric ions in one flow path of a membrane separator in which two flow paths are in contact with each other through a microporous organic or inorganic polymer membrane that does not react with ammonia. A mixed solution of reaction solution B containing at least one hydroxide of an alkali metal or alkaline earth metal and a sample solution is flowed, and a carrier liquid to which a substance that reacts with ammonia is added is flowed into the other channel, A quantitative method in which the amount of ammonia in a sample solution is determined by measuring the amount of reaction products from ammonia that have permeated into a carrier liquid or the amount of the substance that reacts with ammonia. 2. The quantitative method according to claim 1, wherein the substance that reacts with ammonia is a hypohalite ion, a halogen, or o-phthalaldehyde. 3. A coloring agent that is oxidized and colored by the substance that reacts with ammonia is added to the carrier liquid downstream of the membrane separator, and the quantitative measurement of ammonia that has permeated into the carrier liquid is measured by the light absorption of the coloring agent. The quantitative method according to claim 1, which is carried out by.
JP5239187A 1987-03-07 1987-03-07 Method for quantifying ammonia in solution Granted JPS63218860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5239187A JPS63218860A (en) 1987-03-07 1987-03-07 Method for quantifying ammonia in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5239187A JPS63218860A (en) 1987-03-07 1987-03-07 Method for quantifying ammonia in solution

Publications (2)

Publication Number Publication Date
JPS63218860A JPS63218860A (en) 1988-09-12
JPH0562949B2 true JPH0562949B2 (en) 1993-09-09

Family

ID=12913503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5239187A Granted JPS63218860A (en) 1987-03-07 1987-03-07 Method for quantifying ammonia in solution

Country Status (1)

Country Link
JP (1) JPS63218860A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541141B2 (en) * 1993-08-31 1996-10-09 日本電気株式会社 Analytical method of silica in water and pretreatment equipment used for analysis
BR112016004320B1 (en) * 2013-08-30 2022-03-03 University Of Maryland, College Park Biosensor, system, kit, methods of determining or identifying and quantifying an ammonia or ammonium ion concentration, of diagnosing a metabolic disease in a subject, of determining a patient's response to a therapy, of manufacturing a biosensor, of a system or any test strip and detecting the presence, absence, or amount of amino acids in a sample, and, test strip
JP7420333B2 (en) * 2020-08-19 2024-01-23 株式会社日吉 Sensitizer for ammonium ion chemiluminescence measurement, ammonium ion analysis method, and ammonium ion analysis device

Also Published As

Publication number Publication date
JPS63218860A (en) 1988-09-12

Similar Documents

Publication Publication Date Title
Zhujun et al. A carbon dioxide sensor based on fluorescence
Sanchez-Pedreno et al. Development of a new bulk optode membrane for the determination of mercury (II)
EP0909946B1 (en) Chemical sensing method and apparatus employing liquid-core optical fibers
JPH02145961A (en) Determination and analyzer of trihalomethane
Oehme et al. Optical sensors for determination of heavy metal ions
Gimbert et al. Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection
US6011882A (en) Chemical sensing techniques employing liquid-core optical fibers
Alizadeh et al. Poly (vinyl chloride)-membrane ion-selective bulk optode based on 1, 10-dibenzyl-1, 10-diaza-18-crown-6 and 1-(2-pyridylazo)-2-naphthol for Cu2+ and Pb2+ ions
Durst Continuous determination of free cyanide by means of membrane diffusion of gaseous HCN and an electrode indicator technique
Růžička et al. Flow injection analyzer for students, teaching and research: Spectrophotometric methods
Zhou et al. Membrane-based colorimetric flow-injection system for online free chlorine monitoring in drinking water
Mahendra et al. Investigation of a Cu (II) fibre optic chemical sensor using fast sulphon black F (FSBF) immobilised onto XAD-7
Frenzel et al. Characterisation of a gas-diffusion membrane-based optical flow-through sensor exemplified by the determination of nitrite
JPH0562949B2 (en)
CN116429696A (en) Method and system for detecting ammonia nitrogen in water during sailing
JPH01223345A (en) Determination of free chlorine in solution
JPH0765990B2 (en) Method for determination of chloramine and free chlorine in solution
Korenaga The continuous determination of filtered chemical-oxygen demand with potassium dichromate by means of flow-injection analysis.
US3864087A (en) Titrating system
Choi et al. A novel oxygen and/or carbon dioxide-sensitive optical transducer
Kuswandi et al. A simple optical flow injection ammonia sensor
JP2764986B2 (en) Nitrite determination device
Berman et al. Flow optrodes for chemical analysis
US20220362766A1 (en) Microfluidic Sensor for Continuous or Semi-Continuous Monitoring of Quality of an Aqueous Solution
JP6954387B2 (en) Continuous measurement method and equipment for starch concentration in water