JPS6321870A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPS6321870A
JPS6321870A JP61166896A JP16689686A JPS6321870A JP S6321870 A JPS6321870 A JP S6321870A JP 61166896 A JP61166896 A JP 61166896A JP 16689686 A JP16689686 A JP 16689686A JP S6321870 A JPS6321870 A JP S6321870A
Authority
JP
Japan
Prior art keywords
light
photoelectric conversion
conversion element
semiconductor device
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61166896A
Other languages
Japanese (ja)
Other versions
JPH07112050B2 (en
Inventor
Tetsuo Yoshizawa
吉沢 徹夫
Toshiaki Sato
俊明 佐藤
Hiromichi Yamashita
山下 博通
Ichiro Onuki
一朗 大貫
Yasuo Suda
康夫 須田
Keiji Otaka
圭史 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61166896A priority Critical patent/JPH07112050B2/en
Priority to EP87306304A priority patent/EP0253664B1/en
Priority to DE8787306304T priority patent/DE3782201T2/en
Publication of JPS6321870A publication Critical patent/JPS6321870A/en
Priority to US08/472,110 priority patent/US5583076A/en
Publication of JPH07112050B2 publication Critical patent/JPH07112050B2/en
Priority to US09/013,031 priority patent/US5912504A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To uniformize electric signals obtained from a plurality of optical receptors by forming the thickness and the shape for reducing the influence of an incident light incident on a photodetector by reflecting the light to the thickness between the light transmission surface of a sealer profile and the light transmission surface. CONSTITUTION:A photoelectric converter 1 is fixedly held to a photoelectric converter supporting member 2, wire bonded by extrafine metal wirings 3 to a lead terminal 2', then integrally molded by molding means, such as transfer molding with light transmission resin 4, and a profile is formed. A mold uses a mold having a large distance D between the light transmission surface of a sealer profile and the converter 1. When a light beam 6 is emitted perpendicu larly to the profile of the resin 4 and the converter 1, the larger the distance D is, the narrower the region where the reflected light is incident to a photode tector 5 to reduce the influence by the reflection. Since the optical path is lengthened, the absolute value of the intensity of the incident light is reduced to reduce the influence thereto.

Description

【発明の詳細な説明】 (発明の属する技術分野〕 本発明は入射先を電気信号に変換する光型変換素子を光
透過性樹脂を用いて封止した光半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to an optical semiconductor device in which an optical conversion element that converts an incident light source into an electrical signal is sealed using a light-transmitting resin.

〔従来技術の説明〕[Description of prior art]

従来、入射先を電気信号に変換する光電変換装置は第2
図に示すように構成されている。
Conventionally, the photoelectric conversion device that converts the incident source into an electrical signal has a second
It is configured as shown in the figure.

すなわち、光電変換素子1を光電変換素子支持部材2上
に固定保持し、光電変換素子1とリード端子2′の所定
の箇所に、極細金属線3を用いてワイヤボンディングし
、次に、光iff iM 1’l樹脂4を用いて成形し
、外形を形成する。その後、リード端子2′の外部導出
部7を必要長さに切断し、所望状態に曲げるなどして光
半導体装置を構成していた。
That is, the photoelectric conversion element 1 is fixedly held on the photoelectric conversion element support member 2, and wire bonding is performed using the ultrafine metal wire 3 at predetermined locations of the photoelectric conversion element 1 and the lead terminals 2'. It is molded using iM 1'l resin 4 to form an external shape. Thereafter, the external lead-out portion 7 of the lead terminal 2' was cut to a required length and bent into a desired shape, thereby constructing an optical semiconductor device.

ところで、上記構成の従来の光半導体装置には、下達の
ごとき諸問題が存在する。
By the way, the conventional optical semiconductor device having the above structure has various problems such as poor performance.

すなわち、光電変換素子1の光受容部が複数個(n個)
の光受容部から構成されている場合、光電変換素子1の
n個の光受容部に均一な光束を有する光6が入射すると
、該n個の光受容部から得られる電気信号は、すべて同
一なレベルにならなければならないところ、実V、空上
は同一なレベルにならないという問題がある。また、n
個の光受容部のうちのある1つの光受容部に光を入射さ
せ、その他の光受容部には光を入射させない場合におい
て:よ、光を入射させない光受容部にも暗7流よりも大
なる電気信号出力が得られてしまうという問題もある。
That is, the photoelectric conversion element 1 has a plurality of light receiving parts (n pieces).
When light 6 having a uniform luminous flux is incident on the n photoreceptors of the photoelectric conversion element 1, the electric signals obtained from the n photoreceptors are all the same. The problem is that the actual level and the aerial level are not the same. Also, n
When light is made to enter one of the photoreceptors and not to the other photoreceptors: 7. There is also the problem that a large electrical signal output is obtained.

(発明の目的) 本発明は、前述した従来の光半導体装置における上述の
諸問題を克服して、優れた特性を有する光半導体装置を
提供することを目的とする。
(Objective of the Invention) An object of the present invention is to overcome the above-mentioned problems in the conventional optical semiconductor device and provide an optical semiconductor device having excellent characteristics.

即ち、本発明の主たる目的は、光透過性樹脂を用いて封
止した光半導体装置において、光電変換素子を構成する
複数個の光受容部から得られる電気信号が均一である光
半導体装置を提供することにある。
That is, the main object of the present invention is to provide an optical semiconductor device sealed using a light-transmitting resin, in which electrical signals obtained from a plurality of light receiving parts constituting a photoelectric conversion element are uniform. It's about doing.

(発明の構成) 本発明は、前述の従来装置における諸問題を解決して上
記本発明の目的を達成すべく鋭意研究を重ねたところ、
前述の従来装】の諸問題は以下のごとき原因によるもの
であることが判明した。
(Structure of the Invention) The present invention has been made through intensive research to solve the problems in the conventional device described above and achieve the object of the present invention.
It has been found that the problems with the conventional system described above are due to the following causes.

前述の間−の4発生原因について、第2図を用いて説明
する。
The causes of the above-mentioned four occurrences will be explained using FIG. 2.

即ち、空気N8から光透過性樹脂4および光電変換素子
4に直角に光線6つ(入射l、た時光電変喚素子1の表
面9で、光が反射散乱される。反射散乱された光強度は
表面9の材料、面積度にも依るが角度依存性を持つ。反
射された散乱光は樹脂4がら空気層8へ抜けるものもあ
れば空気層8と樹脂4の界面10で反射されるものもあ
る。
That is, when six light rays (incidence l) are perpendicular to the light-transmitting resin 4 and the photoelectric conversion element 4 from the air N8, the light is reflected and scattered on the surface 9 of the photoelectric conversion element 1.The intensity of the reflected and scattered light is has angular dependence depending on the material and area of the surface 9.Some of the reflected scattered light passes through the resin 4 to the air layer 8, while others are reflected at the interface 10 between the air layer 8 and the resin 4. There is also.

スネルの法則によればある角度θ1で全反射する。θ1
は光透過性樹脂4と空気層8の屈折率により決定される
。例えば光透過性樹脂4、空気層8の屈折率をそれぞれ
1.5.1とした時、θ1は略40度となり略40度以
上になった場合全反射する。従って光電変換素子1の受
光部5の入射先量Aは、次式!で表わされる。
According to Snell's law, total reflection occurs at a certain angle θ1. θ1
is determined by the refractive index of the light-transmitting resin 4 and the air layer 8. For example, when the refractive indexes of the light-transmitting resin 4 and the air layer 8 are each 1.5.1, θ1 is approximately 40 degrees, and when it exceeds approximately 40 degrees, total reflection occurs. Therefore, the incident amount A of the light receiving section 5 of the photoelectric conversion element 1 is calculated by the following formula! It is expressed as

A=(光線6の光量)+(θr (θ「≧θ1)をなす
光線の全反射光量の積分値)+ (θr (θr〈θ1)をなす光線の反射光量の積分値
)・・・・・I 式1の第3項においてθ「の値がθユより小さい時反射
光量は非常に小さく無視できる値であるが、θrが01
にほぼ近い値になった時に反射光量は犬になる。
A = (light amount of light ray 6) + (integral value of total reflected light amount of light rays forming θr (θ "≧θ1)) + (integral value of reflected light amount of light rays forming θr (θr<θ1))...・I In the third term of Equation 1, when the value of θ is smaller than θ, the amount of reflected light is very small and can be ignored, but when θr is 01
When the value is almost close to , the amount of reflected light becomes a dog.

つまり受光部5の入射先量は光線6の光量と光電変換素
子1面上で受光部5を中心に11を半径にして描いた円
の円周近傍および円外から反射した光の入射先量の和と
なり、後者の不要反射光が入射するために光学特性異常
が生じ、前述のごとき問題が生じることとなる。
In other words, the amount of light incident on the light receiving section 5 is the amount of light ray 6 and the amount of light reflected from near the circumference and outside the circle of a circle drawn on the surface of the photoelectric conversion element with the light receiving section 5 as the center and radius 11. Since the latter unnecessary reflected light enters, an optical characteristic abnormality occurs, resulting in the above-mentioned problem.

本発明は、上述の知見に基づいて更に研究を続けた結果
完成するに至ったものである。
The present invention was completed as a result of further research based on the above-mentioned findings.

即ち、本発明の光半導体装置は、光電変換素子を光電変
換素子支持部材上に固定保持し、該素子とリード端子を
極細金属線を介して電気的に接続したのち、光透過性樹
脂を用いて封止した光半導体装置であって、封止体外形
の少なくとも光透過面と光電変換素子との間の厚さおよ
び前記光透過面の形成が、光電変換素子の受光部からの
反射光がさらに封止体外形面で反射されて別の受光部へ
入射する入射先および光電変換素子の受光部周辺からの
反射光がさらに封止体外形面で反射されて受光部へ入射
する入射先の影響を減少させうる厚味および形状である
ことを特徴とするものである。
That is, in the optical semiconductor device of the present invention, a photoelectric conversion element is fixedly held on a photoelectric conversion element support member, and the element and lead terminals are electrically connected via ultrafine metal wires, and then a light-transmitting resin is used to connect the element and lead terminals. An optical semiconductor device sealed with an optical semiconductor device, wherein the thickness of the outer shape of the sealed body at least between the light transmitting surface and the photoelectric conversion element and the formation of the light transmitting surface are such that reflected light from the light receiving part of the photoelectric conversion element is Furthermore, the incident light is reflected from the outer surface of the sealing body and enters another light receiving part, and the reflected light from around the light receiving part of the photoelectric conversion element is further reflected by the outer face of the sealing body and enters the light receiving part. It is characterized by a thickness and shape that can reduce the influence.

以下、図示の実施例により本発明の詳細な説明するが、
本発明はこれにより何ら限定されるものではない。
Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.
The present invention is not limited to this in any way.

第1図は、本発明の光半導体装置の1実施例を模式的に
示す断面略図である。なお、第1図において、前述の第
2図と同一符号を付したものは、第2図と同一のものを
示している。すなわち光電変換素子1を光電変換素子支
持部材2に固定保持し、光電変換素子1とリード端子2
′の所定箇所に極細金属線3を用いてワイヤボンディン
グし、次に光透過性樹脂4を用いて、トランスファーモ
−ルド法等の成形手段により1体的に成形し、外形を形
成する。成形型は、打止体外形の少なくとも光透過面と
光電変換素子との間の距離が従来のものに比べて犬であ
る型を用いる。即ち、第1図において、dlを従来の光
半導体装置の封止体外形表面と光電変換素子1との間の
距離、 d、 +  d2を本発明の打止体外形の少な
くとも光透過面と光;変))素子;との間の距離とする
と、従来のもつの場合 D=d+であるのに対し2本発
明の場合D =  d、 + d2(a2> O)であ
るようにする。その後、リード端子2′の外部導出部7
を必要長さに切断し、所望形状に曲げるなどして、光半
導体装置を形成する。
FIG. 1 is a schematic cross-sectional view schematically showing one embodiment of the optical semiconductor device of the present invention. In FIG. 1, the same reference numerals as in FIG. 2 described above indicate the same components as in FIG. 2. That is, the photoelectric conversion element 1 is fixedly held on the photoelectric conversion element support member 2, and the photoelectric conversion element 1 and the lead terminal 2 are connected to each other.
Wire bonding is performed using a very fine metal wire 3 at a predetermined location of 1, and then the light transmitting resin 4 is integrally molded by a molding method such as a transfer molding method to form an outer shape. The mold used is one in which the distance between at least the light transmitting surface of the outside of the stopper and the photoelectric conversion element is longer than that of conventional molds. That is, in FIG. 1, dl is the distance between the outer surface of the sealed body of the conventional optical semiconductor device and the photoelectric conversion element 1, and d, + d2 is the distance between at least the light-transmitting surface of the outer shape of the molded body of the present invention and the light. In the case of the conventional case, D = d+, whereas in the case of the present invention, D = d, + d2 (a2> O). After that, the external lead-out portion 7 of the lead terminal 2'
An optical semiconductor device is formed by cutting the material to a required length and bending it into a desired shape.

光線6が光i!を過性樹脂4の外形および光電変換素子
1に直角に入射した時、θをスネルの法則に従う全反射
角度とすると、光電変換素子1の受光部5に入射する光
量は、従来の光半導体装置(d2=0)の場合、次式I
+で表わされるものとなる。
Ray 6 is light i! When is incident on the outer shape of the transient resin 4 and the photoelectric conversion element 1 at right angles, and θ is the total reflection angle according to Snell's law, the amount of light incident on the light receiving part 5 of the photoelectric conversion element 1 is equal to that of the conventional optical semiconductor device. (d2=0), the following formula I
It will be represented by +.

A=(光線6の光量)+(光電変換素子1面上でp、を
半径にして描いた円の円周近傍と円外から反射した光の
入射先量の和)・・・・・11これに対し、本発明の光
墨導体装FF (d2≠0)の場合、次式il+で表わ
されるものとなる。
A = (amount of light ray 6) + (sum of the amount of incident light reflected from the vicinity of the circumference of a circle drawn on one surface of the photoelectric conversion element with p as the radius and the amount of light reflected from outside the circle)...11 On the other hand, in the case of the optical ink conductor device FF (d2≠0) of the present invention, it is expressed by the following formula il+.

A=(光線6の光量)+(光電変換素子1面上で、Q2
を半径にして描いた円の円周近傍と円外から反射した光
の入射先量の和)・・・・・III式II+において、
JIH=2dl tanθ1x2=2ぐd、=−づ2)
jane1 112B、 + = 2d2janθ1(θ1.11は
一定) となる。従ってa2(−嵩上げ高さ)を犬きくすればす
る程u2−4.の値が犬になることにより反射光の入射
する領域が狭くなり反射による影響が少なくなる。また
光の強度は光路長の二乗に反比例することから、本発明
の場合、光路長が長くなるゆえに、反射光の入射する強
度の絶対値も減少し影響が少なくなる。つまり反射光の
影響を少なくするためには、光電変換素子1の受光部以
外からの反射光の影響を少なくするため受光部以外は光
到達できないようにマスキングすることと、光電変換素
子1の任意の受光部が略1□を半径にして描いた円内に
入るようにd2(=嵩上げ高さ)の7厚さおよび打止体
外形の少なくとも光透過面形状を設計すれば良い。また
マスキングしても光電変換素子1面の受光部部具外にも
光到達する場合、また任意の受光部が略λ2を半径にし
て描いた円外に存在せざるを得ない場合は予め影■の程
度を把握しd2(−嵩上げ高さ)および打止体外形の少
なくとも光透過面形状を設計すれば良い。
A=(light intensity of light ray 6)+(on photoelectric conversion element 1 surface, Q2
Sum of the amount of incident light reflected from the vicinity of the circumference of a circle drawn with radius and outside the circle)...III In formula II+,
JIH=2dl tanθ1x2=2gud,=-zu2)
jane1 112B, + = 2d2janθ1 (θ1.11 is constant). Therefore, the more a2 (-raised height) is set, the more u2-4. When the value of is set to dog, the area into which the reflected light enters becomes narrower, and the influence of reflection is reduced. Furthermore, since the intensity of light is inversely proportional to the square of the optical path length, in the case of the present invention, since the optical path length becomes long, the absolute value of the incident intensity of the reflected light also decreases, and the influence is reduced. In other words, in order to reduce the influence of reflected light, in order to reduce the influence of reflected light from areas other than the light receiving part of the photoelectric conversion element 1, it is necessary to mask the parts other than the light receiving part so that the light cannot reach the parts other than the light receiving part. The thickness of d2 (=raised height) and at least the shape of the light-transmitting surface of the stopper body may be designed so that the light-receiving portion falls within a circle drawn with a radius of approximately 1□. In addition, even if masking is performed, if light reaches outside the light-receiving part on one side of the photoelectric conversion element, or if any light-receiving part must exist outside the circle drawn with approximately λ2 as the radius, there will be a shadow in advance. It is sufficient to grasp the extent of (2) and design d2 (-height of raised height) and at least the shape of the light transmitting surface of the outer shape of the stopper.

次に本発明の効果について第1図を用いて説明する。本
発明の光半導体装置において、d2が大になればなる程
反尉の影響が少なくなるとともに、光路長が長くなるこ
とによる反射光量の絶対値が小さくなりざらに影響が少
なくなる。
Next, the effects of the present invention will be explained using FIG. 1. In the optical semiconductor device of the present invention, the larger d2 is, the less the influence of reflection becomes, and the longer the optical path length becomes, the smaller the absolute value of the amount of reflected light, and the less the influence becomes.

本発明の光半導体装置は、光電変換素子がCCD等受光
面か多分割化されているラインセンサー、エリアセンサ
ー等反射の影響がシビアに問われるセンサーに有効であ
る。
The optical semiconductor device of the present invention is effective for sensors such as line sensors and area sensors in which the photoelectric conversion element has a multi-divided light receiving surface such as a CCD, and sensors where the influence of reflection is seriously considered.

第3〜4図を用いて、本発明の光半導体装置をカメラの
オートフォーカスセンサーとして用いた時の光学特性向
上効果について説明する。
The effect of improving optical characteristics when the optical semiconductor device of the present invention is used as an autofocus sensor of a camera will be explained using FIGS. 3 and 4.

第3図は本発明の光半導体装置をカメラのAFセンサー
として用いた場合の光学系展開区を示す。図中、13〜
18は焦点検出装置(AFu )を構成する部品を夫々
示している。即ち、13はピント面近傍に置かれた視野
マスク、14はフィールドレンズ、15は開口15a 
、15bを持つ測距光束分割用マスク、16は二次結像
レンズで、16a 、 16bがレンズ部である。17
は測距用センサー(本発明の光半導体装置)で、多数の
画素が一直線上に並んだ一対のラインセンサー17a 
、 17bを有している。
FIG. 3 shows the development of an optical system when the optical semiconductor device of the present invention is used as an AF sensor of a camera. In the figure, 13~
Reference numeral 18 indicates the parts constituting the focus detection device (AFu). That is, 13 is a field mask placed near the focal plane, 14 is a field lens, and 15 is an aperture 15a.
, 15b, a distance measuring beam splitting mask, 16 a secondary imaging lens, and 16a and 16b lens parts. 17
is a distance measuring sensor (optical semiconductor device of the present invention), which is a pair of line sensors 17a in which a large number of pixels are arranged in a straight line.
, 17b.

18a 、L8bは各々二次結像レンズ16のレンズ部
16a 、15bによって投影された13aの像で、該
18a 、 18bは境界部がぴったり請接する様に1
5aの大きさが決められている。14は通過した光束を
有効に測距光束分割用マスク15および二次結像レンズ
16に導くためのレンズである。
18a and L8b are the images of 13a projected by the lens parts 16a and 15b of the secondary imaging lens 16, respectively, and these 18a and 18b are 18a and 18b so that their boundaries are exactly connected to each other.
The size of 5a is determined. Reference numeral 14 denotes a lens for effectively guiding the passed light flux to a distance measuring light flux dividing mask 15 and a secondary imaging lens 16.

従って当光学系において撮影レンズを通った光束は13
の上で結像し、更に開口15a 、 15bを通過して
、レンズ部1tia 、16bによりラインセンサー1
7a 、 17b上の18a 、 18b内に再結像さ
れる。そしてラインセンサー17a 、 17b上の2
像の相対位置を検出して合焦状、預を判別する様になっ
ている。
Therefore, in this optical system, the light flux passing through the photographing lens is 13
The image is formed on the line sensor 1 by the lens portions 1tia and 16b, and then passes through the apertures 15a and 15b.
It is re-imaged into 18a, 18b on 7a, 17b. and 2 on line sensors 17a and 17b.
It detects the relative position of the image and determines whether it is in focus or not.

第4図にその原理を示す。ラインセンサー17a17b
上に投影された像の各々の出力をEa、 Ebとすると
、合焦状態では2像の距BSがある値Soとなるように
設定されているものとする、そして撮影レンズが非合焦
の状態ではS≠ Soとなるが、これを検出するために
はEaとEbを相対的にbitシフトさせて2像の相関
をとるという手法が用いられる。
Figure 4 shows the principle. Line sensor 17a17b
Let Ea and Eb be the outputs of the images projected above, and assume that in the in-focus state, the distance BS between the two images is set to a certain value So, and when the photographic lens is out of focus, In this state, S≠So, but in order to detect this, a method is used in which Ea and Eb are relatively bit-shifted and the two images are correlated.

ここでもし18a上の像が前述した反射により18a上
自体の像に反射の影響を及ぼすとか、tab上の像が前
述した反射により18b上自体の像に反射の影響を及ぼ
すとか、また18a上の像が前述した反射により18b
上の像に反射の影響を及ぼすとか、18b上の像が前述
した反射により18a上の像に反射の影響を及ぼすとE
aとEbは本来の被写体輝度分布とは異なった形状とな
る。ので真の被写体情報とは異なった情報で相関演算を
していることになり、その結果として検出されたピント
情報に誤差を生ずることとなる。
Here, if the image on 18a has a reflection effect on the image on 18a itself due to the above-mentioned reflection, or the image on tab has a reflection effect on the image on 18b itself due to the above-mentioned reflection, or Due to the above-mentioned reflection, the image of 18b
If the image on 18b has a reflection effect on the image on 18a, or the image on 18b has a reflection effect on the image on 18a due to the aforementioned reflection, then E
a and Eb have shapes different from the original subject brightness distribution. Therefore, the correlation calculation is performed using information different from the true subject information, and as a result, an error occurs in the detected focus information.

本発明の光半導体装置を用いると反射の影響が減少し正
確なピント情報を与えることになり、特にAFとして有
利なものである。
Use of the optical semiconductor device of the present invention reduces the influence of reflection and provides accurate focus information, which is particularly advantageous for AF.

【図面の簡単な説明】[Brief explanation of drawings]

東1図は本発明の光半導体装!の一実施例を模式的に示
す断面略図であり、第2図は従来の光半導体装置を模式
的に示す断面略図である。第3図は、本発明の光半導体
装置をカメラのAFセンサーとして用いた場合の光学系
展開図であり、第4図は、その原理を説明するための図
である。 1・・・・・光電変換素子、2・・・・・光電変換素子
支持部材、2′・・・・・リード端子、3・・・・・極
細金属線、4・・・・・光透過性樹脂、5・・・・・光
電変換素子の受光部、6・・・・・光線、7・・・・・
リード端子の外部導出部、8・・・・・空気層、9・・
・・・光電変換素子の表面、lO・・・・・ 光透過性
樹脂と空気層との界面、13・・・・・ 視舒マスク、
14・・・・・フィールドレンズ、15・・・・・ 測
距光束分割用マスク、15a 、 15b・・・・・開
口、16・・・・・ 二次結像レンズ、16a % 1
8b・・・・・レンズ部、17・・・・・測距用センサ
ー、 17a 、17b・・・・・ラインセンサー、1
8a 、 18b・・・・・投影された13aの像図面
の浄書(内容に変更なし) 第1図 第2図 !(!( 第3図 jρa 第4図 手  続  補  正  書 (方式)%式% 1、事件の表示 昭和61年特許願166896号 2、発明の名称 光  半  導  体  装  蓋 3、補正をする者 事件との関係  特許出願人 住所  東京都大田区下丸子3丁目30番2号名称  
(100)キャノン株式会社 4、代理人 住所  東京都千代田区麹町3丁目12番地6麹町グリ
ーンビル 6、補正の対象   明細書及び図面 7、補正の内容 願書に最初に添付した明細書及び図面の浄書・別紙のと
おり(内容に変更なし) 以  上
East figure 1 is the optical semiconductor device of the present invention! FIG. 2 is a schematic cross-sectional view schematically showing one embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view schematically showing a conventional optical semiconductor device. FIG. 3 is a developed view of the optical system when the optical semiconductor device of the present invention is used as an AF sensor of a camera, and FIG. 4 is a diagram for explaining the principle thereof. 1...Photoelectric conversion element, 2...Photoelectric conversion element support member, 2'...Lead terminal, 3...Superfine metal wire, 4...Light transmission 5... Light receiving part of photoelectric conversion element, 6... Light ray, 7...
External lead-out portion of lead terminal, 8...Air layer, 9...
...Surface of photoelectric conversion element, lO... Interface between light-transmitting resin and air layer, 13... Visual mask,
14...Field lens, 15...Distance measurement light flux division mask, 15a, 15b...Aperture, 16...Secondary imaging lens, 16a % 1
8b...Lens section, 17...Distance measurement sensor, 17a, 17b...Line sensor, 1
8a, 18b...Engraving of the projected image drawing of 13a (no change in content) Figure 1 Figure 2! (!( Figure 3 jρa Figure 4 Procedures Amendment (method) % formula % 1, Indication of the case 1985 Patent Application No. 166896 2, Title of the invention Optical semiconductor packaging 3, Person making the amendment Relationship to the incident Patent applicant address 3-30-2 Shimomaruko, Ota-ku, Tokyo Name
(100) Canon Co., Ltd. 4, Agent Address: 6 Kojimachi Green Building, 3-12-6 Kojimachi, Chiyoda-ku, Tokyo, Subject of amendment: Description and drawings 7, Contents of amendment: An engraving of the specification and drawings originally attached to the application.・As shown in the attached sheet (no change in content)

Claims (2)

【特許請求の範囲】[Claims] (1)光電変換素子を光電変換素子支持部材上に固定保
持し、該素子とリード端子を極細金属線を介して電気的
に接続したのち、光透過性樹脂を用いて封止してなる光
半導体装置であって、封止体外形の少なくとも光透過面
と光電変換素子との間の厚さおよび前記光透過面の形成
が、光電変換素子の受光部からの反射光がさらに封止体
外形面で反射されて別の受光部へ入射する入射先および
光電変換素子の受光部周辺からの反射光がさらに封止体
外形面で反射されて受光部へ入射する入射先の影響を減
少させうる厚味および形状であることを特徴とする光半
導体装置。
(1) A photoelectric conversion element is fixedly held on a photoelectric conversion element support member, the element and lead terminals are electrically connected via ultra-thin metal wires, and then sealed using a light-transmitting resin. In the semiconductor device, at least the thickness between the light transmitting surface and the photoelectric conversion element of the outer shape of the encapsulant and the formation of the light transmitting surface are such that the reflected light from the light receiving part of the photoelectric conversion element is further adjusted to the outer shape of the encapsulant. The influence of the incident destination that is reflected by a surface and enters another light receiving section and the reflected light from around the light receiving section of the photoelectric conversion element is further reflected by the outer surface of the sealing body and enters the light receiving section can be reduced. An optical semiconductor device characterized by its thickness and shape.
(2)光半導体装置の封止体外形の少なくとも光透過面
が凸状形状であり、その他の部分の封止体外形よりも厚
味が厚い特許請求の範囲第(1)項に記載された光半導
体装置。
(2) At least the light-transmitting surface of the optical semiconductor device has a convex outer shape, and is thicker than the other parts of the sealed body as described in claim (1). Optical semiconductor device.
JP61166896A 1986-07-16 1986-07-16 Optical semiconductor device Expired - Fee Related JPH07112050B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61166896A JPH07112050B2 (en) 1986-07-16 1986-07-16 Optical semiconductor device
EP87306304A EP0253664B1 (en) 1986-07-16 1987-07-16 Semiconductor photo-sensor and method for manufacturing the same
DE8787306304T DE3782201T2 (en) 1986-07-16 1987-07-16 SEMICONDUCTOR PHOTOSENSOR AND METHOD FOR THE PRODUCTION THEREOF.
US08/472,110 US5583076A (en) 1986-07-16 1995-06-07 Method for manufacturing a semiconductor photo-sensor
US09/013,031 US5912504A (en) 1986-07-16 1998-01-26 Semiconductor photo-sensor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166896A JPH07112050B2 (en) 1986-07-16 1986-07-16 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPS6321870A true JPS6321870A (en) 1988-01-29
JPH07112050B2 JPH07112050B2 (en) 1995-11-29

Family

ID=15839635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166896A Expired - Fee Related JPH07112050B2 (en) 1986-07-16 1986-07-16 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH07112050B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350914A (en) * 1991-08-09 1994-09-27 Fuji Xerox Co., Ltd. Image reading apparatus
JP2004179495A (en) * 2002-11-28 2004-06-24 Oki Electric Ind Co Ltd Semiconductor device
US8630867B2 (en) 2007-04-23 2014-01-14 Samsung Electronics Co., Ltd. Remote-medical-diagnosis system method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350914A (en) * 1991-08-09 1994-09-27 Fuji Xerox Co., Ltd. Image reading apparatus
JP2004179495A (en) * 2002-11-28 2004-06-24 Oki Electric Ind Co Ltd Semiconductor device
US7009295B2 (en) 2002-11-28 2006-03-07 Oki Electric Industry Co., Ltd. Semiconductor device
US8630867B2 (en) 2007-04-23 2014-01-14 Samsung Electronics Co., Ltd. Remote-medical-diagnosis system method

Also Published As

Publication number Publication date
JPH07112050B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US5583076A (en) Method for manufacturing a semiconductor photo-sensor
US5245175A (en) Focus detecting optical system including a plurality of focus blocks composed of an integrally molded prism member
CN108520886B (en) Packaging structure and packaging method of image sensing chip
CN108364970A (en) A kind of encapsulating structure and its packaging method of image sensing chip
JPH0927606A (en) Solid-state image pick-up element of cog structure
CN208127212U (en) A kind of encapsulating structure of image sensing chip
US7020391B2 (en) Sensor device
JPS6321870A (en) Optical semiconductor device
US5134526A (en) Focus detecting optical system including eccentrically disposed aperture stops
JP2000082829A (en) Method and device for receiving light and device for receiving and radiating light
US10451483B2 (en) Short wave infrared polarimeter
JPS6321878A (en) Optical semiconductor device
KR100649011B1 (en) Image sensor using the optic fiber
JP3953614B2 (en) Solid-state imaging device
CN208127211U (en) A kind of encapsulating structure of image sensing chip
JPS5943869B2 (en) Mechanism for document illumination and imaging for sensor device
JPH05218491A (en) Optical coupling device
CN215220729U (en) Image sensing chip packaging structure
JPS6047472A (en) Solid-state image-pickup element
JPH01305789A (en) White balance device
JPS61280676A (en) Manufacture of photosensor ic
JPH0423223Y2 (en)
JPH07167710A (en) Solar radiation sensor
TWM637704U (en) Optical sensing module
JPH05308151A (en) Optical coupler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees