JPS63218298A - Process for preventing activated sludge from occurrence of abnormal phenomenon - Google Patents

Process for preventing activated sludge from occurrence of abnormal phenomenon

Info

Publication number
JPS63218298A
JPS63218298A JP62049398A JP4939887A JPS63218298A JP S63218298 A JPS63218298 A JP S63218298A JP 62049398 A JP62049398 A JP 62049398A JP 4939887 A JP4939887 A JP 4939887A JP S63218298 A JPS63218298 A JP S63218298A
Authority
JP
Japan
Prior art keywords
sludge
activated sludge
water
dialkylamine
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62049398A
Other languages
Japanese (ja)
Inventor
Seiji Fujino
清治 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP62049398A priority Critical patent/JPS63218298A/en
Publication of JPS63218298A publication Critical patent/JPS63218298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To prevent activated sludge from generation of tacky materials therein, by adding a water-soluble cationic polymer prepd. by the reaction of dialkylamine and occasionally ammonia with epihalohydrin to waste water contg. activated sludge. CONSTITUTION:0.05-25pts.wt. (basing on 100pts.wt. dry solid in activated sludge) of a water-soluble cationic polymer prepd. by the reaction of dialkylamine and occasionally ammonia (<= equimolar amt. to the dialkylamine) with epihalohydrin is added to activated sludge or waste water contg. activated sludge. By this method, generation of tacky materials in the activated sludge is prevented. The above described water-soluble cationic polymer is added to the activated sludge or waste water at the time when a symptom of increase of SVI (sludge volume index) is observed. Thus, the SVI is held immediately at an original level or below without causing further increase of the SVI. Moreover, the above described water-soluble cationic polymer influences the effect durable for a long time by once addition.

Description

【発明の詳細な説明】 〔発明の背景〕 技術分野 本発明は、活性汚泥の異常現象、すなわち活性汚泥が高
粘性多糖類と粗タンパクとからなる粘着性物質を発生し
て滞積すること、を防止する方法に関する。さらに具体
的には、本発明は、薬剤添加による活性汚泥の異常現象
防止法に関する。
[Detailed Description of the Invention] [Background of the Invention] Technical Field The present invention relates to an abnormal phenomenon of activated sludge, that is, activated sludge generates and accumulates sticky substances consisting of highly viscous polysaccharides and crude proteins; Regarding how to prevent this. More specifically, the present invention relates to a method for preventing abnormal phenomena in activated sludge by adding chemicals.

廃水処理に用いられる生物学的方法の一つとして活性汚
泥法がある。この方法は、有機物を含む廃水に空気を吹
込んで、微生物を繁殖させることによって生じる泥状物
、すなわち活性汚泥、の性質を利用したものであって、
活性汚泥が吸着性に富むフロックを生じて、その比重が
水のそれより大きい(たとえば1.003前後といわれ
ている)ところから、それが静置によって沈降してあと
に透明な処理水が残る、という現象を利用したものであ
る。沈降した活性汚泥は、返送汚泥として再使用される
Activated sludge method is one of the biological methods used for wastewater treatment. This method utilizes the properties of activated sludge, a sludge produced by blowing air into wastewater containing organic matter and propagating microorganisms.
Activated sludge produces highly adsorbent flocs whose specific gravity is higher than that of water (for example, it is said to be around 1.003), which settles when left to stand, leaving behind clear treated water. This method takes advantage of the phenomenon of . The settled activated sludge is reused as return sludge.

下水、凍原および各種有機性産業廃水は、普通活性汚泥
法によって処理される。この方法によって処理している
間に、流入廃水の流量の変動、流入廃水中のa機物の変
動がおこって、これらの変動に応じて活性汚泥中の微生
物相も変化することが知られている。この微生物相の変
化が急激なときは、汚泥が膨化し、沈降が悪くなり、汚
泥が水面近くまで上昇し、汚泥の溢流量がふえ、処理能
力低下して場合によっては処理不能となるいわゆるバル
キング現象が発生する。この現象が生ずると、汚泥は白
っぽく、非常に軽く、沈降しにくいものとなり、BOD
除去率も極端に低下する。
Sewage, frozen ground and various organic industrial wastewaters are usually treated by activated sludge methods. It is known that during treatment using this method, fluctuations in the flow rate of inflowing wastewater and fluctuations in the a-organisms in the inflowing wastewater occur, and the microbial flora in activated sludge changes in response to these fluctuations. There is. When this change in the microbial flora is rapid, the sludge swells, sedimentation becomes poor, the sludge rises to near the water surface, the amount of sludge overflow increases, and the treatment capacity decreases and in some cases, it becomes impossible to treat, so-called bulking. A phenomenon occurs. When this phenomenon occurs, the sludge becomes whitish, very light, and difficult to settle, resulting in BOD
The removal rate is also extremely reduced.

活性汚泥が正常に機能しているか否かの一つの目安とし
て、S V I  (Sludge VOIL)110
 Index s汚泥指標)がある。このSVIは、1
gの活性汚泥が30分間の沈降により占める容積で表わ
される。
As an indicator of whether activated sludge is functioning normally, SVI (Sludge VOIL) 110
There is a sludge index). This SVI is 1
It is expressed as the volume occupied by g of activated sludge in 30 minutes of settling.

正常な機能を発揮する活性汚泥のSVIは50〜150
、特に100以下であるが、バルキングを起した活性汚
泥のそれは、300〜800にもなることがある。
The SVI of activated sludge that functions normally is 50 to 150.
, especially less than 100, but that of activated sludge that has undergone bulking can be as high as 300 to 800.

このようなバルキングを起した活性汚泥は、その機能を
回復するのは容易でなく、最悪の場合には汚泥の入れ替
えの必要が生じ、工場などでは入れ替えの場合は汚泥の
馴養がすむまで使用を中止しなければならず、工場の生
産計画に重大な影響を与えることとなる。また、公共下
水道の場合も、同様に、社会問題になりかねない。
It is not easy to restore the function of activated sludge that has undergone such bulking, and in the worst case, it may be necessary to replace the sludge.In factories, when replacing the sludge, it is recommended that the sludge is not used until the sludge has become acclimatized. This would have to be canceled, which would have a significant impact on the factory's production plans. In the case of public sewage systems, this could similarly become a social problem.

先行技術 活性汚泥のバルキング発生を防止する方法としては、特
公昭58−14274号公報、特公昭58−14275
号公報等に記載の方法が提案されている。
Prior art methods for preventing bulking of activated sludge are disclosed in Japanese Patent Publications No. 58-14274 and Japanese Patent Publication No. 58-14275.
The method described in the above publication has been proposed.

特公昭58−14274号公報に記載の方法は、特定の
構造を有するジチオカルバミン酸塩の1種または2種以
上を、水に溶解して活性汚泥に添加する方法である。し
かしこの方法は、バルキングの原因が糸状菌類の異常繁
殖にある場合のみを対象としており、そのほかに原因が
ある場合には有効ではない。また、この方法によるとき
は、効果が発現されるまでには、活性汚泥の障害の程度
が比較的軽微であっても、4日以上、場合によっては1
0日以上必要であり、しかも毎日多量に添加し続けなけ
ればならないという欠点がある。
The method described in Japanese Patent Publication No. 58-14274 is a method in which one or more dithiocarbamates having a specific structure are dissolved in water and added to activated sludge. However, this method is only applicable when the cause of bulking is abnormal growth of filamentous fungi, and is not effective when there are other causes. In addition, when using this method, it takes more than 4 days, or even 1 day in some cases, even if the degree of damage to the activated sludge is relatively minor, before the effect appears.
It has the disadvantage that it is necessary for more than 0 days and must continue to be added in large amounts every day.

特公昭58−14275号公報に記載の方法は、廃水中
に、バリン、ロイシン、イソロイシン、グルタミン酸、
フェニルアラニン、チロシン等のアミノ酸の1種または
2種以上をを効成分として含んでいる組成物を、活性汚
泥に添加するものである。この方法によるときは、これ
らの有効成分を含んでいる組成物を、流入廃水に対して
0. 5〜3kgZTIiもの多量のレベルで、3時間
以上継続的に添加する必要があり、効果を発揮するまで
には24時間以上の時間が必要であるとの欠点がある。
The method described in Japanese Patent Publication No. 58-14275 contains valine, leucine, isoleucine, glutamic acid,
A composition containing one or more amino acids such as phenylalanine and tyrosine as an active ingredient is added to activated sludge. When using this method, a composition containing these active ingredients is added to the influent wastewater at a rate of 0. It has the disadvantage that it needs to be added continuously for 3 hours or more at a large amount of 5 to 3 kg ZTIi, and that it takes 24 hours or more to take effect.

 活性汚泥のバルキング現象は、5phaOrOtll
us (スフエロチルス属) 、Th1othrix 
 (チオトリックス属) 、Asperglllus 
 (アスペルギルス属)、Pen1c4111u厘 (
ペニシリウム属)等の糸状菌の異常繁殖にもとづくほか
、季節または栄養状態によっては活性汚泥中に粘性に富
むゼリー状の物質が発生し、これが原因で汚泥が沈降し
にくくなり、バルキング現象を示すこともある。後者の
場合には、廃水に対して、Z n C12や、陽イオン
性ポリアクリルアミド系高分子凝集剤を添加するのが効
果的であるといわれている。しかし本発明者の実験によ
れば、この方法は、曝気槽等において、活性汚泥は気泡
を包含しやすく、気泡を包含した活性汚泥は、廃水を処
理する能力が極端に低下し、バルキング発生防止に顕著
な効果はないことが分った。
The bulking phenomenon of activated sludge is 5phaOrOtll
us (Sphaerochilus spp.), Th1othrix
(Thiotrix sp.), Aspergllus
(Aspergillus sp.), Pen1c4111u (
In addition to abnormal growth of filamentous fungi such as Penicillium (genus Penicillium), a highly viscous jelly-like substance is generated in activated sludge depending on the season or nutritional status, which makes it difficult for the sludge to settle, resulting in a bulking phenomenon. There is also. In the latter case, it is said to be effective to add Z n C12 or a cationic polyacrylamide-based polymer flocculant to the wastewater. However, according to experiments conducted by the present inventors, this method has shown that activated sludge tends to contain air bubbles in an aeration tank, etc., and that activated sludge that contains air bubbles has an extremely reduced ability to treat wastewater, preventing bulking from occurring. It was found that there was no significant effect.

考えられる解決策 このような薬剤添加による従来のバルキング防止法に認
められた問題点を解決するものとして、本発明者らは既
に一つの提案をなした(特開昭61−204092号公
報および特願昭60=295890号明細書)。これら
の提案は、バルキング防止用薬剤としてジアルキルアミ
ンとエビロクロルヒドリンとの反応によって得られる水
溶性陽イオン性重合体、あるいはジアルキルアミンとア
ンモニアとエピクロルヒドリンとの反応によって得られ
る水溶性陽イオン性重合体、を使用することを主要な特
徴とするものである。
Possible Solution The present inventors have already made a proposal to solve the problems observed in the conventional bulking prevention method by adding drugs (Japanese Patent Application Laid-Open No. 61-204092 and (Specification No. 295890). These proposals are based on the use of water-soluble cationic polymers obtained by the reaction of dialkylamines and epichlorohydrin, or water-soluble cationic polymers obtained by the reaction of dialkylamines, ammonia, and epichlorohydrin as anti-bulking agents. The main feature is the use of merging.

問題の所在 都市下水を対象とする一般の終末処理場では、糸状性細
菌に起因して発生するバルキングが最も多く、従来から
スフエロチルス(natans)やベギアトア(Beg
giatoa )がその原因微生物の代表であるとされ
ている(下水通温会誌、第22巻、第252号、第2〜
12頁(1985))。
Where the problem lies At general final treatment plants for urban sewage, bulking is most commonly caused by filamentous bacteria, and conventionally bulking has been caused by filamentous bacteria, such as Sphaerochilus (natans) and Begiatoa (Beg.
giatoa) are said to be representative of the causative microorganisms (Journal of Sewage Heat Treatment Society, Vol. 22, No. 252, No. 2-
12 pages (1985)).

ところで、最近の下水道の整備に伴なって雨水と生活廃
水とを分離して処理するようになってきた。その結果、
生活廃水である都市下水の活性汚泥法による処理の場合
にバルキングを起す糸状性細菌に変化が生じていると推
定される。
By the way, with the recent development of sewerage systems, rainwater and domestic wastewater have come to be separated and treated. the result,
It is assumed that changes have occurred in the filamentous bacteria that cause bulking when municipal sewage, which is domestic wastewater, is treated using the activated sludge method.

〔発明の概要〕[Summary of the invention]

要旨 本発明は最近の都市下水の変化に対応して特定の活性汚
泥の異常現象を特定的に防止することを目的とし、前記
の本発明者らの水溶性陽イオン性重合体をこの異常防止
用薬剤として使用することによってこの目的を達成しよ
うとするものである。
Summary The present invention aims to specifically prevent specific abnormal phenomena of activated sludge in response to recent changes in urban sewage, and the present invention uses the water-soluble cationic polymer of the present inventors to prevent this abnormal phenomenon. The aim is to achieve this goal by using it as a drug.

すなわち、本発明による活性汚泥の異常現象防止法は、
活性汚泥法による廃水の処理において、活性汚泥または
それを含有する廃水に、活性汚泥の乾燥固形分100重
量部に対して0.05〜25重量部の、ジアルキルアミ
ンと場合によりアンモニア(ジアルキルアミンと等モル
以下)とエピハロヒドリンとの反応によって得られる水
溶性陽イオン性重合体を添加することによって、活性汚
泥中に粘着性物質が発生することを防止すること、を特
徴とするものである。
That is, the method for preventing abnormal phenomena in activated sludge according to the present invention is as follows:
In the treatment of wastewater by the activated sludge method, activated sludge or wastewater containing the same is added with 0.05 to 25 parts by weight of dialkylamine and optionally ammonia (dialkylamine and This method is characterized in that it prevents the generation of sticky substances in activated sludge by adding a water-soluble cationic polymer obtained by the reaction of (equimolar or less) and epihalohydrin.

効果 本発明によれば、前記の目的が達成されて、活性汚泥の
粘着化が特定的に防止される。
Effects According to the present invention, the above-mentioned objects are achieved, and stickiness of activated sludge is specifically prevented.

すなわち、本発明による低分子量の重合体によれば、S
VIが上昇する徴候が認められた時点でこの重合体を添
加すると、速かにSVIのさらなる上昇が実質的に生じ
ることなくSVI値をもとのレベルまたはそれ以下に保
持することができる。
That is, according to the low molecular weight polymer according to the present invention, S
Adding this polymer at the point when there are signs of an increase in VI can quickly maintain the SVI value at or below the original level without substantial further increase in SVI.

そのうえ、本発明薬剤は、1回の添加による効果の持続
時間が長い。
Moreover, the drug of the present invention has a long duration of effect after one addition.

従って、本発明を実施すれば、活性汚泥性工程管理上極
めて有益である。
Therefore, implementing the present invention will be extremely beneficial in terms of activated sludge process management.

なお、本発明は、このような固有の効果に加えて、本発
明者らの前記先行発明由来の下記の効果をも有する。
In addition to these unique effects, the present invention also has the following effects derived from the prior invention of the present inventors.

(1)本発明方法によるときは、活性汚泥処理系に、単
に水溶性陽イオン性重合体を添加するだけで、短時間の
うちに、活性汚泥のSv■の上昇を抑制することができ
る。
(1) When using the method of the present invention, simply adding a water-soluble cationic polymer to the activated sludge treatment system can suppress the increase in Sv■ of activated sludge in a short time.

(2)本発明方法によるときは、曝気槽内の活性汚泥の
膨化はおこらず、沈降体積を小さくし、活性汚泥濃度を
高く保ち、BODの除去効果を著しく高くすることがで
きる。
(2) When using the method of the present invention, the activated sludge in the aeration tank does not expand, the settling volume can be reduced, the activated sludge concentration can be kept high, and the BOD removal effect can be significantly increased.

(3)本発明方法によるときは、沈降槽においても活性
汚泥の沈降分離が極めて容易になる。しかも、沈降した
ものの体積(沈降体積)を著しく小さくできるため、余
剰活性汚泥が生成しにくく、余剰活性汚泥の除去、焼却
処理を頻繁に行なう必要がない。
(3) When the method of the present invention is used, the sedimentation and separation of activated sludge becomes extremely easy even in a sedimentation tank. Moreover, since the volume of sedimented material (sedimentation volume) can be significantly reduced, excess activated sludge is less likely to be produced, and there is no need to frequently remove or incinerate excess activated sludge.

〔発明の詳細な説明〕[Detailed description of the invention]

前記のように、本発明は活性汚泥の特定の異常現象を特
定的に防止する方法に関するものである。
As mentioned above, the present invention relates to a method for specifically preventing certain abnormal phenomena of activated sludge.

対象活性汚泥 本発明が対象とする活性汚泥は、異常性分泌物である粘
着性物質を生じるものである。
Target activated sludge The activated sludge that is the target of the present invention produces sticky substances that are abnormal secretions.

このような粘着性物質は、有用な活性汚泥菌たとえばズ
ージロア(Zoogloea)等もその環境の変化によ
って分泌するものである。ズージロアによってつくられ
た粘性物質によるバルキング現象を、ズージロアバルキ
ングという。
Such sticky substances are also secreted by useful activated sludge bacteria, such as Zoogloea, when the environment changes. The bulking phenomenon caused by the viscous material created by Zoojiroa is called Zoojiroa bulking.

このような微生物を単離する必要があるならば、下水の
活性汚泥から容易にこれを得ることができる。
If it is necessary to isolate such microorganisms, they can easily be obtained from activated sludge of sewage.

水溶性陽イオン重合体 本発明で使用する薬剤は、その化学的本体がジアルキル
アミンとエピハロヒドリンとあるいはジアルキルアミン
とその等モル以下のアンモニアとエピハロヒドリンとの
反応によって得られたものである水溶性陽イオン性重合
体である。
Water-soluble cationic polymer The drug used in the present invention is a water-soluble cation whose chemical substance is obtained by the reaction of a dialkylamine and epihalohydrin, or a dialkylamine and an equimolar amount or less of ammonia and epihalohydrin. Polymer.

この重合体の化学構造は必ずしも明らかではないが、ジ
アルキルアミンの窒素原子が四級化されていて、エピハ
ロヒドリン由来のハロゲンイオンがその対イオンをなし
ている構造が推定される(ただし、本発明はそのような
推定によって何らの制約をも受けるものではない)。
Although the chemical structure of this polymer is not necessarily clear, it is assumed that the nitrogen atom of the dialkylamine is quaternized and the halogen ion derived from epihalohydrin serves as its counter ion (however, the present invention (We are not in any way limited by such estimates.)

また、本発明でいう「ジアルキルアミンと場合によりア
ンモニア(ジアルキルアミンと等モル以下)とエビハロ
ヒドリンとの反応によって得られる水溶性陽イオン性重
合体」は、上記の対イオン(ハロゲン)を他の陰イオン
に置きかえたものおよび対応水酸化物を包含するものと
する。
In addition, the "water-soluble cationic polymer obtained by the reaction of a dialkylamine, optionally ammonia (equal mole or less as the dialkylamine), and shrimp halohydrin" as used in the present invention refers to It is intended to include substitutes for ions and the corresponding hydroxides.

従って、アンモニアを含まない場合のこの水溶性陽イオ
ン重合体について考えられる推定構造は、下記の通りで
ある。
Therefore, the possible predicted structure of this water-soluble cationic polymer when it does not contain ammonia is as follows.

20H ここで、R1−R2はジアルキルアミン由来のアルキル
基、X−はエビハロヒドリン由来のハロゲンその他の陰
イオンまたは0H−1nは重合体であって、2以上、好
ましくは3以上) このような重合体を製造すべきジアルキルアミンとして
は、アルキル基の炭素数が1〜8程度、特に1〜2程度
のもの、が好ましい。2個のアルキル基は、−分子中で
同一でなくてもよい。このようなジアルキルアミンの具
体例としては、ジメチルアミン、ジエチルアミン、ジプ
ロピルアミン、メチルエチルアミン、メチルプロピルア
ミン、エチルプロピルアミン、メチルブチルアミン、エ
チルブチルアミン、ジブチルアミン、2−エチルヘキシ
ルアミン等があげられる。
20H Here, R1-R2 is an alkyl group derived from a dialkylamine, X- is a halogen or other anion derived from shrimp halohydrin, or 0H-1n is a polymer (2 or more, preferably 3 or more) such a polymer The dialkylamine to be produced is preferably one in which the alkyl group has about 1 to 8 carbon atoms, particularly about 1 to 2 carbon atoms. The two alkyl groups do not have to be the same in the molecule. Specific examples of such dialkylamine include dimethylamine, diethylamine, dipropylamine, methylethylamine, methylpropylamine, ethylpropylamine, methylbutylamine, ethylbutylamine, dibutylamine, 2-ethylhexylamine, and the like.

アンモニアを併用するときは、ジアルキルアミンに対し
てごくわずか添加すればよい。その量は、モル比で、ア
ンモニア/ジアルキルアミン−0,0001〜1.0の
範囲で選ぶことができ、特に好ましいのはモル比で0.
001〜0. 1の範囲である。
When ammonia is used in combination, it is only necessary to add a very small amount to the dialkylamine. The amount can be selected in the molar ratio of ammonia/dialkylamine in the range of 0.0001 to 1.0, with a particularly preferred molar ratio of 0.0001 to 1.0.
001~0. The range is 1.

エビハロヒドリンとしては、ハロゲンがフッ素、塩素、
臭素、またはヨウ素のものが一般に対象となるが、エピ
クロルヒドリンが少なくとも経済上の理由から好ましい
といえる。
As shrimp halohydrin, the halogens are fluorine, chlorine,
Bromine or iodine compounds are generally targeted, but epichlorohydrin is preferred at least for economic reasons.

ジアルキルアミン、アンモニア(使用したとき)および
エビハロヒドリンを反応させるには、ジアルキルアミン
とアンモニアとのモル数と、エビハロヒドリンのモル数
とをほぼ等モルとし、撹拌機付き密閉型反応容器を用い
、不活性ガスの雰囲気下で、反応容器内温を30〜10
0℃の温度範囲とするのがよい。
To react dialkylamine, ammonia (when used), and shrimp halohydrin, the number of moles of dialkylamine and ammonia and the number of moles of shrimp halohydrin are approximately equal, and a closed reaction vessel equipped with a stirrer is used to react with an inert Under a gas atmosphere, the internal temperature of the reaction vessel is set to 30-10
The temperature range is preferably 0°C.

より具体的には、ジアルキルアミンまたはこれと場合に
よりアンモニアとの20〜70重量%濃度の水溶液を、
撹拌機、還流冷却器、温度計等を備えた密閉型反応容器
に仕込み、容器内雰囲気を窒素ガスで置換し、撹拌下、
反応容器内温が上昇しすぎないように調節しながら、エ
ビハロヒドリンを連続的または回分式に添加するのがよ
い。アンモニアを加える場合には、まずジメチルアミン
水溶液にエビハロヒドリンを加え、ついでアンモニアを
添加するのがよい。反応容器にエビハロヒドリンとジア
ルキルアミン(およびアンモニア)とを添加し終えてか
ら、反応容器に、アルカリ金属、アルカリ土類金属の酸
化物や水酸化物を、エピクロルヒドリン1モルに対して
0.00001〜0.01モル添加し、30〜60℃の
温度範囲で数時間保持すると、生成した重合体の分子量
が上昇することがある。なお、この反応生成物を、水溶
液のまま、窒素ガス雰囲気下で、約30℃の温度に保持
すると、約2ケ月間程度は、緩慢に、分子量が上昇する
反応が進行する。この間、容器に空気または酸素を入れ
ると、分子量が上昇する反応は進行しなくなる。
More specifically, a 20-70% strength by weight aqueous solution of dialkylamine or dialkylamine and optionally ammonia,
Pour into a closed reaction container equipped with a stirrer, reflux condenser, thermometer, etc., replace the atmosphere inside the container with nitrogen gas, and while stirring,
It is preferable to add shrimp halohydrin continuously or in batches while controlling the temperature inside the reaction vessel so that it does not rise too much. When adding ammonia, it is preferable to first add shrimp halohydrin to the dimethylamine aqueous solution and then add ammonia. After adding epihalohydrin and dialkylamine (and ammonia) to the reaction vessel, add oxides or hydroxides of alkali metals and alkaline earth metals to the reaction vessel at a rate of 0.00001 to 0.0 per mole of epichlorohydrin. If .01 mol is added and maintained at a temperature range of 30-60°C for several hours, the molecular weight of the resulting polymer may increase. Note that when this reaction product is maintained as an aqueous solution at a temperature of about 30° C. under a nitrogen gas atmosphere, a reaction in which the molecular weight increases slowly proceeds for about two months. During this time, if air or oxygen is introduced into the container, the reaction that increases the molecular weight will not proceed.

このようにして得られる重合体を更に処理して、対イオ
ンとしてのハロゲン(エビハロヒドリン由来のもの)を
他の陰イオンに代えることも、対イオンを除去してこの
陽イオン重合体を水酸化物にすることも、可能であるこ
とは前記したところから明らかである。
The polymer thus obtained can be further processed to replace the halogen (derived from shrimp halohydrin) as a counterion with another anion or to remove the counterion and convert this cationic polymer into a hydroxide. It is clear from the above that it is also possible to do this.

前記の本発明者らの先行発明に対する本発明の主要な特
徴が分子量が低いという点にあることは前記したところ
である。上記のようにして得られる重合体は、2モル/
リットルのKBr水溶液に溶解して測定、算出する極限
粘度[η〕によって、分子量の大小を判断することがで
きて、本発明方法では、[η]が0.001dl/g以
上、より好ましくは0.01dl/g以上、のちのを使
用する。
As mentioned above, the main feature of the present invention compared to the prior invention of the present inventors is that the molecular weight is low. The polymer obtained as above is 2 mol/
The size of the molecular weight can be determined by the intrinsic viscosity [η] measured and calculated by dissolving it in a liter of KBr aqueous solution, and in the method of the present invention, [η] is 0.001 dl/g or more, more preferably 0. .01 dl/g or more, use later.

[η]が過度に小さいと、活性汚泥への吸着性が低下し
て、バルキング防止効果の持続性が低下するので好まし
くない。
If [η] is too small, the adsorption to activated sludge will decrease and the sustainability of the bulking prevention effect will decrease, which is not preferable.

このようにして得られた水溶性陽イオン性重合体は溶媒
(水がふつうである)を除去して固体とすることもでき
る。しかし、水溶液として製造されたものはそのままあ
るいは必要に応じて希釈または濃縮して、水溶液として
活性汚泥のバルキング防止に使用することが好ましく、
またそれがふつうである。
The water-soluble cationic polymer thus obtained can also be converted into a solid by removing the solvent (usually water). However, it is preferable to use the solution produced as an aqueous solution as it is or after diluting or concentrating as necessary to prevent bulking of activated sludge.
It is also normal.

活性汚泥の異常現象防止 異常現象を防止すべき対象活性汚泥が上記のようなもの
であること、ならびにそれによって生じることあるべき
処理条件の変更を除けば、本発明による薬剤添加による
活性汚泥のバルキング防止法は従来のそれと本質的には
変らない。
Prevention of abnormal phenomena in activated sludge Except for the target activated sludge to be prevented from abnormal phenomena as described above and the changes in treatment conditions that should occur as a result, bulking of activated sludge by the addition of chemicals according to the present invention The prevention method is essentially the same as the conventional one.

具体的には、水溶性陽イオン性重合体を適当濃度、たと
えば0. 1〜10重量%程度の濃度の水溶液としてお
き、この水溶液を下記のいずれかの方法またはこれらを
2種以上組合せた方法に従って添加すればよい。
Specifically, the water-soluble cationic polymer is added to an appropriate concentration, for example 0. An aqueous solution having a concentration of about 1 to 10% by weight may be prepared, and this aqueous solution may be added according to any of the following methods or a combination of two or more of these methods.

(1)流入廃水に混和、混合し、これを曝気槽に送る方
法。
(1) Method of mixing with inflowing wastewater and sending it to an aeration tank.

(2)曝気槽や沈降槽の活性汚泥のバルキングが起って
いる槽に、直接添加する方法。
(2) Method of adding directly to an aeration tank or settling tank where bulking of activated sludge is occurring.

(3)返送汚泥に添加する方法。(3) Method of adding to returned sludge.

この水溶性陽イオン性重合体の使用量は、使用量が少な
すぎると、発明の目的が達成されないので好ましくなく
、逆に多すぎると廃水とともに系外に流去されるので好
ましくない。使用量は、活性汚泥の乾燥固形分100重
量部に対して、0.05〜25重量部の範囲で選ぶのが
よい。より好ましくは、0.1〜10重量部の範囲であ
る。
If the amount of the water-soluble cationic polymer used is too small, the object of the invention will not be achieved, which is not preferable, and if it is too large, it will be washed out of the system together with wastewater, which is not preferable. The amount used is preferably selected within the range of 0.05 to 25 parts by weight based on 100 parts by weight of dry solid content of the activated sludge. More preferably, it is in the range of 0.1 to 10 parts by weight.

活性汚泥に対して、水溶性陽イオン性重合体を、前記範
囲で添加すると、6ケ月以上はSVIの上昇は認められ
ない。SVIが上昇する徴候が認められたら、その時点
で、水溶性陽イオン性重合体を、前記範囲で添加するの
がよい。
When a water-soluble cationic polymer is added to activated sludge in the above range, no increase in SVI is observed for 6 months or more. When signs of an increase in SVI are observed, it is advisable to add the water-soluble cationic polymer within the above range at that point.

実験例 実施例1 月平均500 m/日、BODが1500ppmの乳糖
の排水が流入する、浮遊固形分(S S)が260pp
mあり、しかもその88分の成分が有機質分90%以上
である工場廃水を、1000rd曝気槽と500Hの最
終沈降槽を用いて、活性汚泥による廃水処理している食
品会社の排水処理場で、曝気槽の沈降汚泥体積指数(S
VI値)が250を超え、返送汚泥の乾燥汚泥濃度(M
LSS)が4500ppm以下になり、曝気槽内のML
SSも2200ppm以下になり、最終沈澱槽で処理水
と汚泥の分離性が著しく悪化し、処理水が白濁し、最終
沈降槽からの処理水のBOD値が20ppmを超えた。
Experimental Example Example 1 Monthly average of 500 m/day, lactose wastewater with BOD of 1500 ppm flows in, suspended solids (S S) is 260 ppm
At a wastewater treatment plant of a food company, factory wastewater containing 88% of organic matter is treated with activated sludge using a 1000rd aeration tank and a 500H final settling tank. Aeration tank sedimentation sludge volume index (S
VI value) exceeds 250, and the dry sludge concentration (M
LSS) becomes 4500 ppm or less, and the ML in the aeration tank
SS also fell below 2200 ppm, the separation of treated water and sludge in the final settling tank deteriorated significantly, the treated water became cloudy, and the BOD value of the treated water from the final settling tank exceeded 20 ppm.

運転条件は、返送汚泥の処理原水に対する返送率は70
%、原水に対する空気倍率は15倍、空気の導入は散気
管を使用している。この処理場の曝気槽並びに沈降槽の
汚泥をダラム染色して位相差顕微鏡で観察したところ、
汚泥の内部と周辺部には少量のカビ類を除けば、殆ど糸
状性細菌が見られなかった。しかし、汚泥には、かなり
の粘性があり、曝気槽の出口から汚泥をサンプリングし
て、100Gで10分間遠心分離して濃縮して回収した
汚泥を水で3回洗浄した後、lN−NaOHで抽出して
から、硫酸で中和したところ、活性汚泥から約26%の
糖類と約25%の粗蛋白質類からなる粘性物質が抽出さ
れた。
The operating conditions are that the return ratio of returned sludge to treated raw water is 70.
%, the air magnification is 15 times the raw water, and a diffuser pipe is used to introduce air. When the sludge in the aeration tank and settling tank at this treatment plant was stained with Durham staining and observed using a phase contrast microscope, it was found that:
Except for a small amount of mold, almost no filamentous bacteria was observed inside and around the sludge. However, sludge has considerable viscosity, and the sludge was sampled from the outlet of the aeration tank, concentrated by centrifugation at 100G for 10 minutes, and the collected sludge was washed three times with water, and then washed with lN-NaOH. After extraction and neutralization with sulfuric acid, a viscous substance consisting of about 26% sugars and about 25% crude proteins was extracted from the activated sludge.

この処理場で、エピクロルヒドリンと50%ジメチルア
ミン水溶液のモル比が1;1.05の割合になる迄、5
0%ジメチルアミン水溶液の中に、エピクロルヒドリン
を反応温度を90℃に保ちながら添加、攪はん混合して
得られた混合反応組成物(2モル/リットルのKBr水
溶液で測定した極限粘度〔η〕が0.02dl/gの組
成物)を70g/分の割合でこれを100倍に水道水で
希釈しながら返送汚泥ラインに50時間連続添加したと
ころ、活性汚泥は、添加前に比べて、しっがりしたフロ
ックを形成して来た。その結果、SVI値が150にな
り、100時間後には、沈降柱が著しく改善されてSV
I値が85になり、それに伴い、返送汚泥濃度がMLS
S値8500ppmに上昇し、曝気槽の汚泥濃度もML
SS値4800ppmに上昇してきた。原水の処理が平
常の運転で良好な処理水が得られるように成り、原水の
流入量が夕方に大きく増加しても、返送汚泥の濃度が高
く成った為、返送率を一時的に調節するだけで、曝気槽
の汚泥濃度を変えられ、しかも、沈降槽の汚泥界面が上
昇して流出する事が無くなり、BODの値も20ppm
以下になった。
At this treatment plant, the molar ratio of epichlorohydrin and 50% dimethylamine aqueous solution becomes 1:1.05.
A mixed reaction composition obtained by adding epichlorohydrin to a 0% dimethylamine aqueous solution while maintaining the reaction temperature at 90°C and stirring and mixing (intrinsic viscosity [η] measured with a 2 mol/liter KBr aqueous solution) When a composition of 0.02 dl/g) was continuously added to the return sludge line at a rate of 70 g/min while diluting it 100 times with tap water for 50 hours, the activated sludge became thinner than before addition. It has formed a stiff flock. As a result, the SVI value reached 150, and after 100 hours, the sedimentation column was significantly improved and the SV
The I value becomes 85, and the returned sludge concentration increases to MLS.
The S value rose to 8,500 ppm, and the sludge concentration in the aeration tank also decreased to ML.
The SS value has increased to 4800 ppm. Even though raw water treatment is able to obtain good quality treated water under normal operation, and the amount of raw water flowing in increases significantly in the evening, the concentration of returned sludge has increased, so the return rate must be temporarily adjusted. By simply changing the sludge concentration in the aeration tank, the sludge interface in the settling tank will no longer rise and flow out, and the BOD value will also be 20 ppm.
It became below.

実施例2 実施例1の食品会社の排水処理場で、2月に曝気槽の温
度が14℃に低下して来たのにも拘らず、月平均400
 yd/日、BODが1500ppmの乳糖を主体に種
々の糖類のの排水が流入し、かつ、浮遊固形分(SS)
が260ppmあり、しかもその88分の成分が有機質
分90%以上である工場廃水を、10001!の曝気槽
と500Wtの最終沈降槽を用いて、活性汚泥による廃
水処理している食品会社の排水処理場で、曝気槽の沈降
汚泥体積指数(SVI値)が250を超え、返送汚泥の
乾燥汚泥濃度(MLSS)が4500ppm以下になり
、曝気槽内のMLSSも2200ppm以下になり、最
終沈澱槽で処理水と汚泥の分離性が著しく悪化し、処理
水が白濁し、最終沈降槽からの処理水のBOD値が20
ppmを超えた。運転条件は、返送汚泥の処理原水に対
する返送率は70%、原水に対する空気倍率は15倍、
空気の導入は散気管を使用している。この処理場の曝気
槽並びにに沈降槽の汚泥をダラム染色して位相差顕微鏡
で観察したところ、汚泥の内部と周辺部には、小量のカ
ビ類を除けば、殆ど糸状性細菌が見られなかった。しか
し、汚泥には、かなりの粘性があり、曝気槽の出口から
汚泥をサンプリングして、100Gで10分間遠心分離
して濃縮して回収した汚泥を水で3回洗浄した後、lN
−NaOHで抽出してから、硫酸で中和したところ、活
性汚泥から約25%の糖類と約25%の粗蛋白質類から
なる粘性物質が抽出された。
Example 2 At the wastewater treatment plant of the food company in Example 1, the monthly average of 400
yd/day, wastewater containing various sugars, mainly lactose, with a BOD of 1500 ppm flows in, and suspended solids (SS)
10,001! At a wastewater treatment plant of a food company that processes wastewater with activated sludge using an aeration tank and a 500 Wt final settling tank, the settled sludge volume index (SVI value) of the aeration tank exceeded 250, and the dried sludge of the returned sludge The concentration (MLSS) becomes 4500 ppm or less, and the MLSS in the aeration tank also becomes 2200 ppm or less, and the separation of treated water and sludge in the final settling tank deteriorates significantly, the treated water becomes cloudy, and the treated water from the final settling tank becomes cloudy. BOD value of 20
Exceeded ppm. The operating conditions are that the return ratio of returned sludge to treated raw water is 70%, the air ratio to raw water is 15 times,
A diffuser pipe is used to introduce air. When the sludge in the aeration tank and settling tank at this treatment plant was stained with Durham and observed using a phase contrast microscope, it was found that almost all filamentous bacteria were found inside and around the sludge, with the exception of a small amount of mold. There wasn't. However, sludge has a considerable viscosity, and the sludge was sampled from the outlet of the aeration tank, centrifuged at 100G for 10 minutes, concentrated, and the collected sludge was washed three times with water.
After extraction with -NaOH and neutralization with sulfuric acid, a viscous substance consisting of about 25% sugars and about 25% crude proteins was extracted from the activated sludge.

この処理場で、エピクロルヒドリンと50%ジメチルア
ミン水溶液のモル比が1:1の割合になる迄、50%ジ
メチルアミン水溶液の中に、エピクロルヒドリンを反応
温度を85℃に保ちながら添加、攪はん混合して得られ
た混合反応組成物(2モル/リットルのKBr水溶液で
測定した極限粘度〔η〕が0.12dl/gの組成物)
を70g/分の割合でこれを100倍に水道水で希釈し
ながら返送汚泥ラインに60時間連続添加したところ、
活性汚泥は、添加前に比べて、しっかりしたフロックを
形成して来た。その結果、SVI値が130になり、1
50時間後には、沈降性が著しく改善されてSVI値が
90になった。
At this treatment plant, epichlorohydrin was added to a 50% dimethylamine aqueous solution while maintaining the reaction temperature at 85°C until the molar ratio of epichlorohydrin and 50% dimethylamine aqueous solution was 1:1, and the mixture was stirred. The mixed reaction composition obtained by
was continuously added to the return sludge line for 60 hours at a rate of 70 g/min while diluting it 100 times with tap water.
The activated sludge formed a firmer floc than before addition. As a result, the SVI value becomes 130, which is 1
After 50 hours, the sedimentation properties were significantly improved and the SVI value was 90.

また、返送汚泥濃度がMLSS値8000ppmに上昇
し、曝気槽の汚泥濃度もMLSS値4000ppmに上
昇してきた。原水の処理が平常の運転で良好な処理水が
得られるように成り、原水の流入量が夕方に大きく増加
しても、返送汚泥の濃度が高く成った為、返送率を一時
的に調節するだけで、曝気槽の汚泥濃度を変えられ、し
かも、沈降槽の汚泥界面が上昇して流出する事が無くな
り、BODの値も20ppm以下になった。
Furthermore, the concentration of returned sludge has increased to an MLSS value of 8000 ppm, and the sludge concentration in the aeration tank has also increased to an MLSS value of 4000 ppm. Even though raw water treatment is able to obtain good quality treated water under normal operation, and the amount of raw water flowing in increases significantly in the evening, the concentration of returned sludge has increased, so the return rate must be temporarily adjusted. The sludge concentration in the aeration tank could be changed by simply using this method, and the sludge interface in the settling tank no longer rose and flowed out, and the BOD value was reduced to 20 ppm or less.

また、余剰生汚泥の脱水時にカチオン系ポリアクリルア
ミドを凝集剤として、汚泥の乾燥重量に対して1.2重
量%使用して遠心式デカンタ−で脱水していたが、凝集
剤の使用量が0.6重量%で脱水出来るようになった。
In addition, when dewatering excess raw sludge, cationic polyacrylamide was used as a flocculant at 1.2% by weight based on the dry weight of the sludge and dewatered using a centrifugal decanter, but the amount of flocculant used was 0. Dehydration became possible at .6% by weight.

実施例3 実施例1の食品会社の排水処理場で、1月に曝気槽の温
度が13℃に低下して来たのにも拘らず、月平均400
 rIt/日、BODが1600ppmの乳糖を主体に
種々の糖類の排水が流入し、かつ、浮遊固形分(S S
)が260ppmあり、しかもその88分の成分が有機
質分90%以上である工場廃水を、1000mの曝気槽
と500771!の最終沈降槽を用いて、活性汚泥によ
る廃水処理している食品会社の排水処理場で、曝気槽の
沈降汚泥体積指数(SVI値)が250を超え、返送汚
泥の乾燥汚泥濃度(MLSS)が4500ppm以下に
なり、曝気槽内のMLSSも2200ppm以下になり
、最終沈澱槽で処理水と汚泥の分離性が著しく悪化し、
処理水が白濁し、最終沈降槽からの処理水のBOD値が
20ppmを超えた。運転条件は、返送汚泥の処理原水
に対する返送率は70%、原水に対する空気倍率は15
倍、空気の導入は散気管を使用している。この処理場の
曝気槽並びにに沈降槽の汚泥をダラム染色して位相差顕
微鏡で観察したところ、汚泥の内部と周辺部には、小量
のカビ類を除けば、殆ど糸状性細菌が見られなかった。
Example 3 At the wastewater treatment plant of the food company in Example 1, the monthly average of 400
rIt/day, wastewater containing various sugars, mainly lactose with a BOD of 1600 ppm, flows in, and suspended solids (S S
) is 260 ppm, and the 88th component is 90% or more organic matter. At a food company's wastewater treatment plant where wastewater is treated with activated sludge using a final settling tank, the settled sludge volume index (SVI value) of the aeration tank exceeds 250, and the dry sludge concentration (MLSS) of the returned sludge is The MLSS in the aeration tank also fell below 2200 ppm, and the separability of treated water and sludge in the final settling tank deteriorated significantly.
The treated water became cloudy and the BOD value of the treated water from the final settling tank exceeded 20 ppm. The operating conditions are that the return ratio of return sludge to treated raw water is 70%, and the air ratio to raw water is 15.
A diffuser tube is used to introduce air. When the sludge in the aeration tank and settling tank at this treatment plant was stained with Durham and observed using a phase contrast microscope, it was found that almost all filamentous bacteria were found inside and around the sludge, with the exception of a small amount of mold. There wasn't.

しかし、汚泥には、かなりの粘性があり、曝気槽の出口
から汚泥をサンプリングして、100Gで10分間遠心
分離して濃縮して回収した汚泥を水で3回洗浄した後、
lN−NaOHで抽出してから、硫酸で中和したところ
、活性汚泥から約26%の糖類と約25%の粗蛋白質類
からなる粘性物質が抽出された。
However, sludge has considerable viscosity, and after sampling the sludge from the outlet of the aeration tank, centrifuging it at 100G for 10 minutes, concentrating it, and washing the collected sludge three times with water,
After extraction with 1N-NaOH and neutralization with sulfuric acid, a viscous substance consisting of about 26% sugars and about 25% crude proteins was extracted from the activated sludge.

この処理場で、エピクロルヒドリンと50%ジメチルア
ミン水溶液と12%アンモニア水溶液のモル比が1:1
.05:0.1の割合になる迄、50%ジメチルアミン
水溶液と12%アンモニア水の混合アミン中に、エピク
ロルヒドリンを反応温度を90℃に保ちながら添加、攪
はん混合して得られた混合反応組成物を、更に10時間
攪はん混合して得られた反応組成物(2モル/リットル
のKBr水溶液で測定した極限粘度〔η〕が0.02d
l/gの組成物)を80g/分の割合でこれを100倍
に水道水で希釈しながら返送汚泥ラインに60時間連続
添加したところ、活性汚泥は、添加前に比べて、しっか
りしたフロックを形成して来た。その結果、SVI値が
130になり、100時間後には、沈降性が著しく改善
されてSVI値が90になった。また、返送汚泥濃度が
MLSS値80’OOppmに上昇し、曝気槽の汚泥濃
度もMLSS値4000ppmに上昇してきた。原水の
処理が平常の運転で良好な処理水が得られるように成り
、原水の流入量が夕方に大きく増加しても、返送汚泥の
濃度が高く成った為、返送率を一時的に調節するだけで
、曝気槽の汚泥濃度が変えられ、沈降槽の汚泥界面が上
昇して流出する事が無くなり、BODの値も20ppm
以下の良好な処理水を排出できるようになった。
At this treatment plant, the molar ratio of epichlorohydrin, 50% dimethylamine aqueous solution, and 12% ammonia aqueous solution is 1:1.
.. A mixed reaction obtained by adding epichlorohydrin to a mixed amine of 50% dimethylamine aqueous solution and 12% ammonia water while maintaining the reaction temperature at 90°C and stirring and mixing until the ratio becomes 05:0.1. The reaction composition obtained by stirring and mixing the composition for an additional 10 hours (intrinsic viscosity [η] measured with a 2 mol/liter KBr aqueous solution was 0.02 d)
1/g composition) was continuously added to the return sludge line for 60 hours while diluting it 100 times with tap water at a rate of 80 g/min. As a result, the activated sludge formed firmer flocs than before addition. It has been formed. As a result, the SVI value was 130, and after 100 hours, the sedimentation property was significantly improved and the SVI value was 90. Furthermore, the concentration of returned sludge has increased to an MLSS value of 80'OOppm, and the sludge concentration in the aeration tank has also increased to an MLSS value of 4000 ppm. Even though raw water treatment is able to obtain good quality treated water under normal operation, and the amount of raw water flowing in increases significantly in the evening, the concentration of returned sludge has increased, so the return rate must be temporarily adjusted. By just doing this, the sludge concentration in the aeration tank was changed, the sludge interface in the settling tank rose and no longer flowed out, and the BOD value was also reduced to 20 ppm.
It is now possible to discharge the following good quality treated water.

実施例4 実施例1の食品会社の排水処理場で、12月に曝気槽の
温度が15℃に低下して来たのにも拘らず、月平均60
0扉/日、BODが1600ppmの乳糖を主体に種々
の糖類の排水が流入し、かつ、浮遊固形分(S S)が
260ppmあり、しかもその88分の成分が有機質分
90%以上である工場廃水を、1000Trtの曝気槽
と500尻の最終沈降槽を用いて、活性汚泥による廃水
処理している食品会社の排水処理場で、曝気槽の沈降汚
泥体積指数(SVI値)が250を超え、返送汚泥の乾
燥汚泥濃度(MLSS)が4500ppm以下になり、
曝気槽内のMLSSも2200ppm以下になり、最終
沈澱槽で処理水と汚泥の分離性が著しく悪化し、処理水
が白濁し、最終沈降槽からの処理水のBOD値が20p
pmを超えた。運転条件は、返送汚泥の処理原水に対す
る返送率は70%、原水に対する空気倍率は15倍、空
気の導入は散気管を使用している。この処理場の曝気槽
並びにに沈降槽の汚泥をダラム染色して位相差顕微鏡で
観察したところ、汚泥の内部と周辺部には、小量のカビ
類を除けば、殆ど糸状性細菌が見られなかった。しかし
、汚泥には、かなりの粘性があり、曝気槽の出口から汚
泥をサンプリングして、100Gで10分間遠心分離し
て濃縮して回収した汚泥を水で3回洗浄した後、lN−
NaOHで抽出してから、硫酸で中和したところ、活性
汚泥から約25%の糖類と約25%の粗蛋白質類からな
る粘性物質が抽出された。
Example 4 At the wastewater treatment plant of the food company in Example 1, despite the temperature of the aeration tank dropping to 15°C in December, the monthly average
0 doors/day, a factory where wastewater containing various sugars, mainly lactose, with a BOD of 1600 ppm flows in, and the suspended solid content (SS) is 260 ppm, and 88 of the components are 90% or more organic. At a wastewater treatment plant of a food company where wastewater is treated with activated sludge using a 1000 Trt aeration tank and a 500 Trt final settling tank, the settled sludge volume index (SVI value) of the aeration tank exceeds 250. The dry sludge concentration (MLSS) of returned sludge is 4500 ppm or less,
The MLSS in the aeration tank also fell below 2200 ppm, the separation of treated water and sludge in the final settling tank deteriorated significantly, the treated water became cloudy, and the BOD value of the treated water from the final settling tank was 20p.
exceeded pm. The operating conditions are that the return ratio of returned sludge to treated raw water is 70%, the air ratio to raw water is 15 times, and air is introduced using a diffuser pipe. When the sludge in the aeration tank and settling tank at this treatment plant was stained with Durham and observed using a phase contrast microscope, it was found that almost all filamentous bacteria were found inside and around the sludge, with the exception of a small amount of mold. There wasn't. However, sludge has considerable viscosity, and after sampling the sludge from the outlet of the aeration tank, centrifuging it at 100G for 10 minutes, concentrating it, and washing the collected sludge three times with water, the sludge was washed with water three times.
After extraction with NaOH and neutralization with sulfuric acid, a viscous substance consisting of about 25% sugars and about 25% crude proteins was extracted from the activated sludge.

この処理場で、エピクロルヒドリンと50%ジメチルア
ミン水溶液と12%アンモニア水溶液のモル比が1;1
:0.1の割合になる迄、50%ジメチルアミン水溶液
の中に、エピクロルヒドリンを反応温度を90℃に保ち
ながら添加、攪はん混合して得られた混合反応組成物に
、更に攪はんしながら12%アンモニア水を添加して、
10時間攪はん混合して得られた反応組成物(2モル/
リットルのKBr水溶液で測定した極限粘度〔η〕が0
.12dl/gの組成物)を75g/分の割合でこれを
100倍に水道水で希釈しながら返送汚泥ラインに60
時間連続添加したところ、活性汚泥は、添加前に比べて
、しっかりしたフロックを形成して来た。その結果、S
VI値が140になり、100時間後には、沈降性が著
しく改善されてSVI値が90になった。また、返送汚
泥濃度がMLSS値7500ppmに上昇し、曝気槽の
汚泥濃度もMLSS値4000ppmに上昇してきた。
At this treatment plant, the molar ratio of epichlorohydrin, 50% dimethylamine aqueous solution, and 12% ammonia aqueous solution was 1:1.
: Add epichlorohydrin to a 50% dimethylamine aqueous solution while maintaining the reaction temperature at 90°C until the ratio becomes 0.1, and stir and mix to the resulting mixed reaction composition. While adding 12% ammonia water,
The reaction composition obtained by stirring and mixing for 10 hours (2 mol/
The intrinsic viscosity [η] measured with liter of KBr aqueous solution is 0.
.. 12 dl/g of composition) was diluted 100 times with tap water at a rate of 75 g/min to the return sludge line at a rate of 60 dl/g.
When the activated sludge was added continuously over a period of time, the activated sludge formed a firmer floc than before addition. As a result, S
The VI value became 140, and after 100 hours, the sedimentation property was significantly improved and the SVI value became 90. Furthermore, the concentration of returned sludge has increased to an MLSS value of 7500 ppm, and the sludge concentration in the aeration tank has also increased to an MLSS value of 4000 ppm.

原水の処理が平常の運転で良好な処理水が得られるよう
に成り、原水の流入量が夕方に大きく増加しても、返送
汚泥の濃度が高く成った為、返送率を一時的に調節する
だけで、曝気槽の汚泥濃度を変えられ、しかも、沈降槽
の汚泥界面が上昇して流出する事が無くなり、BODの
値も20ppm以下になった。
Even though raw water treatment is able to obtain good quality treated water under normal operation, and the amount of raw water flowing in increases significantly in the evening, the concentration of returned sludge has increased, so the return rate must be temporarily adjusted. The sludge concentration in the aeration tank could be changed by simply using this method, and the sludge interface in the settling tank no longer rose and flowed out, and the BOD value was reduced to 20 ppm or less.

また、余剰生汚泥の脱水時にカチオン系ポリアクリルア
ミドを凝剤として、汚泥あ乾燥重量に対して162重量
%使用して遠心式デカンタ−で脱水していたが、凝集剤
の使用量が0.6重−%で脱水出来るようになった。
In addition, when dewatering excess raw sludge, cationic polyacrylamide was used as a coagulant at 162% by weight based on the dry weight of the sludge and dewatered using a centrifugal decanter, but the amount of coagulant used was 0.6%. It became possible to dehydrate by weight%.

比較例1 実施例1の食品会社の排水処理場で、12月に曝気槽の
温度が15℃に低下して来たのにも拘らず、月平均60
0況/日、BODが1600ppmの乳糖を主体に種々
の糖類の排水が流入し、かつ、浮遊固形分(S S)が
260ppmあり、しかもその88分の成分が有機質分
90%以上である工場廃水を、1000重mの曝気槽と
500ボの最終沈降槽を用いて、活性汚泥による廃水処
理している食品会社の排水処理場で、曝気槽の沈降汚泥
体積指数(SVI値)が250を超え、返送汚泥の乾燥
汚泥濃度(MLSS)が4500ppm以下になり、曝
気槽内のMLSSも2200ppm以下になり、最終沈
澱槽で処理水と汚泥の分離性が著しく悪化し、処理水が
白濁し、最終沈降槽からの処理水のBOD値が20pp
mを超えた。運転条件は、返送汚泥の処理原水に対する
返送率は70%、原水に対する空気倍率は15倍、空気
の導入は散気管を使用している。この処理場の曝気槽並
びにに沈降槽の汚泥をダラム染色して位相差顕微鏡で観
察したところ、汚泥の内部と周辺部には、小量のカビ類
を除けば、殆ど糸状性細菌が見られなかった。しかし、
汚泥には、かなりの粘性があり、曝気槽の出口から汚泥
をサンプリングして、100Gで10分間遠心分離して
濃縮して回収した汚泥を水で3回洗浄した後、lN−N
aOHで抽出してから、硫酸で中和したところ、活性汚
泥から約25%の糖類と約25%の粗蛋白質類からなる
粘性物質が抽出された。
Comparative Example 1 At the wastewater treatment plant of the food company in Example 1, despite the temperature of the aeration tank dropping to 15°C in December, the monthly average
0 situation/day, a factory where wastewater containing various sugars, mainly lactose, with a BOD of 1600 ppm flows in, and the suspended solid content (SS) is 260 ppm, and the 88th component of the wastewater is 90% or more of organic matter. At a wastewater treatment plant of a food company where wastewater is treated with activated sludge using a 1000 m aeration tank and a 500 m final settling tank, the settled sludge volume index (SVI value) of the aeration tank was 250. exceeded, the dry sludge concentration (MLSS) of the returned sludge becomes 4500 ppm or less, the MLSS in the aeration tank also becomes 2200 ppm or less, the separability of treated water and sludge in the final settling tank deteriorates significantly, and the treated water becomes cloudy. BOD value of treated water from final settling tank is 20pp
exceeded m. The operating conditions are that the return ratio of returned sludge to treated raw water is 70%, the air ratio to raw water is 15 times, and air is introduced using a diffuser pipe. When the sludge in the aeration tank and settling tank at this treatment plant was stained with Durham and observed using a phase contrast microscope, it was found that almost all filamentous bacteria were found inside and around the sludge, with the exception of a small amount of mold. There wasn't. but,
Sludge has a considerable viscosity, so the sludge was sampled from the outlet of the aeration tank, centrifuged at 100G for 10 minutes to concentrate, and the collected sludge was washed three times with water, then 1N-N.
After extraction with aOH and neutralization with sulfuric acid, a viscous substance consisting of about 25% sugars and about 25% crude proteins was extracted from the activated sludge.

この処理場で、塩化亜鉛を排水に1100ppになるよ
うに溶解して、連続的に添加とたところ、4日日から、
SVI値は180と高く、徐々に低下の傾向が見られた
が、急激な減少は起こらなかった。7日後には、SVI
は150に低下したが、しかし、白濁した処理水が、排
出されるようになったので、顕微鏡で観察したところ、
破壊された活性汚泥が多数流出しているのが見られた。
At this treatment plant, zinc chloride was dissolved in wastewater to a concentration of 1100 pp and continuously added, and from the 4th day onwards,
The SVI value was high at 180 and showed a gradual decreasing trend, but no sudden decrease occurred. After 7 days, SVI
The value decreased to 150, but cloudy treated water started to be discharged, and when it was observed under a microscope, it was found that:
A large amount of destroyed activated sludge was seen flowing out.

活性汚泥は、添加前に比べて、フロックの外側が透明に
成っているのが増加してきた。従って、沈降性の改良に
は良い傾向を示していたが、汚泥の損傷が激しくて、1
0日で中断した。
With activated sludge, the outside of the flocs became more transparent compared to before addition. Therefore, although it showed a good trend in improving sedimentation, the sludge was severely damaged and
It was discontinued on day 0.

比較例2 実施例1の食品会社の排水処理場で、12月に曝気槽の
温度が15℃に低下して来たのにも拘らず、月平均60
0rrl/日、BODが1600ppmの乳糖を主体に
種々の糖類の排水が流入し、かつ、浮遊固形分(S S
)が260ppmあり、しかもその88分の成分が有機
質分90%以上である工場廃水を、1000mの曝気槽
と500Iの最終沈降槽を用いて、活性汚泥による廃水
処理している食品会社の排水処理場で、曝気槽の沈降汚
泥体積指数(SVI値)が250を超え、返送汚泥の乾
燥汚泥濃度(MLSS)が4500ppm以下になり、
曝気槽内のMLSSも2200ppm以下になり、最終
沈澱槽で処理水と汚泥の分離性が著しく悪化し、処理水
が白濁し、最終沈降槽からの処理水のBOD値が20p
pmを超えた。運転条件は、返送汚泥の処理原水に対す
る返送率は70%、原水に対する空気倍率は15倍、空
気の導入は散気管を使用している。この処理場の曝気槽
並びにに沈降槽の汚泥をダラム染色して位相差顕微鏡で
観察したところ、汚泥の内部と周辺部には、小量のカビ
類を除けば、殆ど糸状性細菌が見られなかった。しかし
、汚泥には、かなりの粘性があり、曝気槽の出口から汚
泥をサンプリングして、100Gで10分間遠心分離し
て濃縮して回収した汚泥を水で3回洗浄した後、lN−
NaOHで抽出してから、硫酸で中和したところ、活性
汚泥から約25%の糖類と約25%の粗蛋白質類からな
る粘性物質が抽出された。
Comparative Example 2 At the wastewater treatment plant of the food company in Example 1, despite the temperature of the aeration tank dropping to 15°C in December, the monthly average
0rrl/day, wastewater containing various sugars mainly lactose with a BOD of 1600 ppm flows in, and suspended solids (S S
) is 260ppm, and the 88th component of the wastewater is 90% or more organic matter.This wastewater treatment is carried out by a food company using activated sludge using a 1000m aeration tank and a 500I final settling tank. At the site, the settled sludge volume index (SVI value) of the aeration tank exceeded 250, and the dry sludge concentration (MLSS) of the returned sludge fell below 4500 ppm.
The MLSS in the aeration tank also fell below 2200 ppm, the separation of treated water and sludge in the final settling tank deteriorated significantly, the treated water became cloudy, and the BOD value of the treated water from the final settling tank was 20p.
exceeded pm. The operating conditions are that the return ratio of returned sludge to treated raw water is 70%, the air ratio to raw water is 15 times, and air is introduced using a diffuser pipe. When the sludge in the aeration tank and settling tank at this treatment plant was stained with Durham and observed using a phase contrast microscope, it was found that almost all filamentous bacteria were found inside and around the sludge, with the exception of a small amount of mold. There wasn't. However, sludge has considerable viscosity, and after sampling the sludge from the outlet of the aeration tank, centrifuging it at 100G for 10 minutes, concentrating it, and washing the collected sludge three times with water, the sludge was washed with water three times.
After extraction with NaOH and neutralization with sulfuric acid, a viscous substance consisting of about 25% sugars and about 25% crude proteins was extracted from the activated sludge.

この処理場で、カチオン系の高分子凝集剤(三共化成高
分子「サンポリに一601J)を排水に1100ppに
なるように溶解して、連続的に添加したところ、4日日
から、SVI値は150と徐々に低下の傾向が見られた
が、急激な減少は起こらなかった。7日後には、沈降槽
の上部に活性汚泥が気泡を包含して、多数浮上している
のが観察された。つまり、活性汚泥が凝集して大きなフ
ロックを形成し、フロックの大きさは良好になるが、汚
泥の浮上が起こったので、添加を中断した。
At this treatment plant, when a cationic polymer flocculant (Sankyo Kasei Kobunshi "Sanpoli Ni-ichi 601J") was dissolved in the wastewater to a concentration of 1100 pp and continuously added, the SVI value decreased from the 4th day onward. 150, but a sudden decrease did not occur.After 7 days, a large number of activated sludge containing air bubbles was observed floating at the top of the settling tank. In other words, the activated sludge coagulated to form large flocs, and the size of the flocs became good, but since the sludge floated up, the addition was discontinued.

その後5日程して、凝集性が悪化したので、再度、この
凝集剤を添加して、沈降性を促進した。
After 5 days, the flocculation deteriorated, so this flocculant was added again to promote sedimentation.

そして、この添加を繰り返していたら、曝気槽と沈降槽
において、19泥が気泡を抱き込んで浮上し、最終沈降
槽から汚泥が処理水と共に流出して、排水処理に支障が
現れた。
When this addition was repeated, 19 sludge entrained air bubbles and floated to the surface in the aeration tank and settling tank, and the sludge flowed out together with the treated water from the final settling tank, causing problems in wastewater treatment.

Claims (1)

【特許請求の範囲】[Claims] 活性汚泥法による廃水の処理において、活性汚泥または
それを含有する廃水に、活性汚泥の乾燥固形分100重
量部に対して0.05〜25重量部の、ジアルキルアミ
ンと場合によりアンモニア(ジアルキルアミンと等モル
以下)とエピハロヒドリンとの反応によって得られる水
溶性陽イオン性重合体を添加することによって、活性汚
泥中に粘着性物質が発生することを防止することを特徴
とする、活性汚泥の異常現象防止法。
In the treatment of wastewater by the activated sludge method, activated sludge or wastewater containing the same is added with 0.05 to 25 parts by weight of dialkylamine and optionally ammonia (dialkylamine and An abnormal phenomenon in activated sludge characterized by preventing the generation of sticky substances in activated sludge by adding a water-soluble cationic polymer obtained by the reaction of epihalohydrin and epihalohydrin. Prevention method.
JP62049398A 1987-03-04 1987-03-04 Process for preventing activated sludge from occurrence of abnormal phenomenon Pending JPS63218298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62049398A JPS63218298A (en) 1987-03-04 1987-03-04 Process for preventing activated sludge from occurrence of abnormal phenomenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62049398A JPS63218298A (en) 1987-03-04 1987-03-04 Process for preventing activated sludge from occurrence of abnormal phenomenon

Publications (1)

Publication Number Publication Date
JPS63218298A true JPS63218298A (en) 1988-09-12

Family

ID=12829931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62049398A Pending JPS63218298A (en) 1987-03-04 1987-03-04 Process for preventing activated sludge from occurrence of abnormal phenomenon

Country Status (1)

Country Link
JP (1) JPS63218298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536410A (en) * 1993-10-22 1996-07-16 Kurita Water Industries Ltd. Method for preventing activated sludge from losing its settling ability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112976U (en) * 1984-06-28 1986-01-25 三菱電機株式会社 engine starting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112976U (en) * 1984-06-28 1986-01-25 三菱電機株式会社 engine starting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536410A (en) * 1993-10-22 1996-07-16 Kurita Water Industries Ltd. Method for preventing activated sludge from losing its settling ability

Similar Documents

Publication Publication Date Title
EP3305732A1 (en) Wastewater treatment method
US4761239A (en) Waste water clarification
KR940006408B1 (en) Method of preventing the bulking of activated sludge
JPS61204092A (en) Preventing method bulking of activated sludge
US6344142B1 (en) Waste water treatment method and apparatus
CN115536213A (en) Oily wastewater treatment method
JPS63218298A (en) Process for preventing activated sludge from occurrence of abnormal phenomenon
JPS63218294A (en) Process for preventing activated sludge from bulking
US4882070A (en) Waste water clarification
JPS63218296A (en) Process for preventing activated sludge from bulking
JPS63218295A (en) Process for preventing activated sludge from bulking
JPS63218297A (en) Process for preventing activated sludge from occurrence of abnormal phenomenon
EP0316348A1 (en) Method for the treatment of sewage and other impure water
US3414513A (en) Process of treating a digested diluted sewage slurry
US4247432A (en) Water purification employing poly(beta-alanine)
JP4221422B2 (en) Bulking inhibitor and wastewater treatment method
JPS63218299A (en) Process for preventing activated sludge from bulking
JP3901292B2 (en) Activated sludge bulking inhibitor and wastewater treatment method
US3537990A (en) Method for the removal of suspended matter in waste water treatment
US3480541A (en) Sewage flocculation
JPH0312293A (en) Abnormal phenomenon preventing agent and method of activated sludge
JPH04161295A (en) Abnormal phenomenon-preventing agent of activated sludge and method for preventing abnormal phenomenon of activated sludge
USRE34127E (en) Method for preventing the bulking of activated sludge
JPH02169096A (en) Activated-sludge abnormality preventive agent and method for preventing abnormality and bulking of activated sludge
WO1990009966A1 (en) Treatment of activated sludge