JPS63218297A - Process for preventing activated sludge from occurrence of abnormal phenomenon - Google Patents

Process for preventing activated sludge from occurrence of abnormal phenomenon

Info

Publication number
JPS63218297A
JPS63218297A JP62049397A JP4939787A JPS63218297A JP S63218297 A JPS63218297 A JP S63218297A JP 62049397 A JP62049397 A JP 62049397A JP 4939787 A JP4939787 A JP 4939787A JP S63218297 A JPS63218297 A JP S63218297A
Authority
JP
Japan
Prior art keywords
sludge
activated sludge
water
aeration tank
actinomycetes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62049397A
Other languages
Japanese (ja)
Other versions
JPH0741263B2 (en
Inventor
Seiji Fujino
清治 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP62049397A priority Critical patent/JPH0741263B2/en
Publication of JPS63218297A publication Critical patent/JPS63218297A/en
Publication of JPH0741263B2 publication Critical patent/JPH0741263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To liberate actinomyces, which is a cause of bulking from activated sludge, by adding a water-soluble cationic polymer prepd. by the reaction of dialkylamine and occasionally ammonia with epihalohydrin to waste water contg. activated sludge. CONSTITUTION:0.05-25pts.wt. (basing on 100pts.wt. dry solid in activate sludge) of a water-soluble cationic polymer prepd. by the reaction of dialkylamine and occasionally ammonia (<= equimolar amt. to dialkylamine) with epihalohydrin is added to activated sludge or waste water contg. said sludge. By this method, actinomyces causing foam generation, scum generation and bulking in the waste water after precipitating activated sludge is liberated from the activated sludge. As the result, generation of foam and scum and occurrence of bulking in the activated sludge in an aeration tank or in the treated water after precipitating the activated sludge, caused by the actinomyces, is prevented specifically. Moreover, the increase of SVI (sludge volume index) of activated sludge is retarded in a short time.

Description

【発明の詳細な説明】 〔発明の背景〕 技術分野 本発明は、活性汚泥の異常現象、すなわち活性汚泥の曝
気処理時に曝気槽や沈降槽上部に発泡層を形成したり、
スカム化したり、バルキングを起したり、また活性汚泥
沈降後の処理水が発泡したり、スカムを生成したり、す
ることを防止する方法に関する。さらに具体的には、本
発明は、薬剤添加による活性汚泥の異常現象防止法にお
いて、特定の放射菌によって発生する活性汚泥の異常現
象を効果的に防止する方法に関する。
[Detailed Description of the Invention] [Background of the Invention] Technical Field The present invention relates to abnormal phenomena in activated sludge, such as the formation of a foam layer on the top of an aeration tank or settling tank during aeration treatment of activated sludge,
The present invention relates to a method for preventing scum formation, bulking, foaming of treated water after activated sludge sedimentation, and scum formation. More specifically, the present invention relates to a method for effectively preventing abnormal phenomena in activated sludge caused by specific actinobacteria, in a method for preventing abnormal phenomena in activated sludge by adding chemicals.

廃水処理に用いられる生物学的方法の一つとして活性汚
泥法がある。この方法は、有機物を含む廃水に空気を吹
込んで、微生物を繁殖させることによって生じる泥状物
、すなわち活性汚泥、の性質を利用したものであって、
活性汚泥が吸着性に富むフロックを生じて、その比重が
水のそれより大きい(たとえば1.003前後といわれ
ている)ところから、それが静置によって沈降してあと
に透明な処理水が残る、という現象を利用したものであ
る。沈降した活性汚泥は、返送汚泥として再使用される
Activated sludge method is one of the biological methods used for wastewater treatment. This method utilizes the properties of activated sludge, a sludge produced by blowing air into wastewater containing organic matter and propagating microorganisms.
Activated sludge produces highly adsorbent flocs whose specific gravity is higher than that of water (for example, it is said to be around 1.003), which settles when left to stand, leaving behind clear treated water. This method takes advantage of the phenomenon of . The settled activated sludge is reused as return sludge.

下水、厩尿および各種有機性産業廃水は、普通活性汚泥
法によって処理される。この方法によって処理している
間に、流入廃水の流量の変動、流入廃水中の有機物の変
動がおこって、これらの変動に応じて活性汚泥中の微生
物相も変化することが知られている。例えば、流入原水
中に遊離固形分が少なく、汚泥滞留時間(SRT)が大
きべなると、ノカルディア・アマラエ(Nocardl
aaa+arae)が活性汚泥中に多量繁殖して界面活
性なミコール酸を生成し、気泡の安定化を促進し、曝気
槽や最終沈降槽の上部に汚泥を包含した気泡を滞積し、
放流される。放流水自体も発泡して外観を損ねることが
ある。この微生物相の変化が急激なときは、汚泥が膨化
し、沈降が悪くなり、汚泥が水面近くまで上昇し、汚泥
の溢流量がふえ、処理能力低下して場合によっては処理
不能となるいわゆるバルキング現象が発生する。この現
象が生ずると、汚泥は白っぽく、気泡を付着し、曝気槽
の上部に時には汚泥を付着した発泡層が数十センチメー
トル以上にも達して滞積する。曝気槽上部に滞積した気
泡には付着した汚泥や曝気槽から溢れた気泡中の汚泥が
腐敗して悪臭を発したり、曝気槽に滞積した気泡中の汚
泥が最終沈降槽から処理水とともに放流されると、処理
水の発泡による外観不良や、BOD、CODが上昇して
環境汚染を引きおこす場合があある。
Sewage, manure and various organic industrial wastewaters are commonly treated by activated sludge methods. It is known that during treatment by this method, fluctuations in the flow rate of inflowing wastewater and fluctuations in organic matter in the inflowing wastewater occur, and the microbial flora in activated sludge changes in response to these fluctuations. For example, if the free solid content in the influent raw water is low and the sludge retention time (SRT) is high, Nocardia amarae (Nocardia
aaa + arae) proliferate in large quantities in activated sludge to produce surface-active mycolic acids, promote the stabilization of air bubbles, and accumulate air bubbles containing sludge in the upper part of the aeration tank and final settling tank.
It is released into the river. The effluent itself may also foam and spoil its appearance. When this change in the microbial flora is rapid, the sludge swells, sedimentation becomes poor, the sludge rises to near the water surface, the amount of sludge overflow increases, and the treatment capacity decreases and in some cases, it becomes impossible to treat, so-called bulking. A phenomenon occurs. When this phenomenon occurs, the sludge becomes whitish and has air bubbles attached to it, and a foam layer with sludge attached to it sometimes accumulates at the top of the aeration tank, reaching a length of several tens of centimeters or more. Sludge attached to the air bubbles accumulated in the upper part of the aeration tank and sludge in the air bubbles that overflowed from the aeration tank rot and emit a bad odor, and sludge in the air bubbles accumulated in the aeration tank is mixed with treated water from the final settling tank. If the treated water is discharged, it may cause a poor appearance due to foaming of the treated water, and an increase in BOD and COD, causing environmental pollution.

活性汚泥が正常に機能しているか否かの一つの目安とし
て、S V I  (Sludge Volume I
ndex 、汚泥指標)値がある。このSVI値は、1
gの活性汚泥が30分間の沈降により占める容積で表わ
される。正常な機能を発揮する活性汚泥のSVI値は5
0〜150、特に100以下であるが、バルキングを起
した活性lり泥のそれは、300〜800にもなること
がある。しかし、放線菌が引きおこすSVI値の増大は
200〜300程度であり、これにより汚泥の界面上昇
による汚物流出の発生が冬季には見らられることかある
As an indicator of whether activated sludge is functioning normally, SVI (Sludge Volume I)
ndex, sludge index) value. This SVI value is 1
It is expressed as the volume occupied by g of activated sludge in 30 minutes of settling. The SVI value of activated sludge that functions normally is 5.
It is 0 to 150, especially 100 or less, but that of activated sludge that has caused bulking can be as high as 300 to 800. However, the increase in SVI value caused by actinomycetes is about 200 to 300, and as a result, sewage outflow due to the rise of the sludge interface may be observed in winter.

このような発泡やスカムを発生したり、バルキングを起
した活性汚泥は、その機能を回復するのは容易でなく、
最悪の場合には汚泥の入れ替えの必要が生じ、工場など
では入れ替えの場合は汚泥の馴養がすむまで使用を中止
しなければならず、工場の生産計画に重大な影響を与え
ることとなる。
It is difficult to restore the functions of activated sludge that has generated foaming, scum, or bulking.
In the worst case scenario, the sludge will need to be replaced, and in the case of replacement, factories will have to stop using it until the sludge has acclimated, which will have a serious impact on the factory's production plan.

また、公共下水道の場合にも、同様に、社会的問題にな
りかねない。
In the case of public sewage systems, this can similarly become a social problem.

先行技術 活性汚泥のバルキング発生を防止する方法としては、特
公昭58−14274号公報、特公昭58−14275
号公報等に記載の方法が提案されている。
Prior art methods for preventing bulking of activated sludge are disclosed in Japanese Patent Publications No. 58-14274 and Japanese Patent Publication No. 58-14275.
The method described in the above publication has been proposed.

特公昭58−14274号公報に記載の方法は、特定の
構造を有するジチオカルバミン酸塩の1種または2種以
上を、水に溶解して活性汚泥に添加するh°法である。
The method described in Japanese Patent Publication No. 58-14274 is an h° method in which one or more dithiocarbamates having a specific structure are dissolved in water and added to activated sludge.

しかしこの方法は、バルキングの原因が糸状書類の異常
繁殖にある場合のみを対象としており、そのほかに原因
がある場合にはa効ではない。また、この方法によると
きは、効果が発現されるまでには、活性汚泥の障害の程
度が比較的軽微であっても、4日以上、場合によっては
10口以上必要であり、しかも毎日多量に添加し続けな
ければならないという欠点がある。
However, this method is only applicable when the cause of bulking is abnormal proliferation of filamentous documents, and is not effective when there are other causes. In addition, when using this method, even if the degree of activated sludge damage is relatively minor, it takes more than 4 days, and in some cases more than 10 sludges, before the effect is realized, and a large amount is required every day. The disadvantage is that it must be added continuously.

特公昭58−14275号公報に記載の方法は、廃水中
に、バリン、ロイシン、イソロイシン、グルタミン酸、
フェニルアラニン、チロシン等のアミノ酸の1種または
2種以上を有効成分として含んでいる組成物を、活性汚
泥に添加するものである。この方法によるときは、これ
らの有効成分を含んでいる組成物を、流入廃水に対して
0.5〜3kg/yrt程度で、3時間以上継続的に添
加する必要があり、効果を発揮するまでには24時間以
上の時間が必要であるとの欠点がある。
The method described in Japanese Patent Publication No. 58-14275 contains valine, leucine, isoleucine, glutamic acid,
A composition containing one or more amino acids such as phenylalanine and tyrosine as an active ingredient is added to activated sludge. When using this method, it is necessary to continuously add the composition containing these active ingredients to the inflowing wastewater at a rate of about 0.5 to 3 kg/yr for 3 hours or more, until the effect is exerted. has the disadvantage that it requires more than 24 hours.

活性汚泥のバルキング現象は、5phaerot i 
I us(スフエロチルス属) 、Th1oLhrlx
  (チオトリックス属) 、Aspergillus
  (アスペルギルス属)、Pen1cllliui 
 (ペニシリウム属)等の糸状菌の異常繁殖にもとづく
ほか、季節または栄養状態によっては活性lri泥中に
粘性に富むゼリー状の物質が発生し、これが原因で汚泥
が沈降しにくくなり、バルキング現象を示すこともある
。後者の場合には、廃水に対して、Z n C12や、
陽イオン性ポリアクリルアミド系高分子凝集剤を添加す
るのが効果的であるといわれている。しかし本発明者の
実験によれば、この方法は、曝気槽等において、活性汚
泥は気泡を包含しやすく、気泡を包含した活性汚泥は、
廃水を処理する能力が極端に低下し、バルキング発生時
+Lに顕著な効果はないことが分った。また、放射菌に
よる発泡やスカムの発生およびバルキング現象に対して
は、曝気槽ならびに終沈槽に、例えばカルボン酸エステ
ル系化合物のような消泡剤をシャワー水に混入して散布
する方法が知られている。発明者の実験によれば、この
消泡剤混入散布の方法は、発泡を抑制するのではなく、
生成した気泡層を破壊するにとどまり、効果がほとんど
ないことが分った。
The bulking phenomenon of activated sludge is caused by 5phaerot i
I us (Sphaerochilus sp.), Th1oLhrlx
(Thiotrix sp.), Aspergillus
(Aspergillus spp.), Pen1cllliui
In addition to abnormal growth of filamentous fungi such as (Penicillium spp.), a highly viscous jelly-like substance is generated in activated LRI mud depending on the season or nutritional status, which makes it difficult for the sludge to settle and causes the bulking phenomenon. It may also be shown. In the latter case, Z n C12 or
It is said that it is effective to add a cationic polyacrylamide polymer flocculant. However, according to the inventor's experiments, this method shows that activated sludge tends to contain air bubbles in an aeration tank, etc.;
It was found that the ability to treat wastewater was extremely reduced and there was no significant effect on +L when bulking occurred. In addition, to prevent foaming, scum, and bulking caused by actiobacteria, a method is known in which an antifoaming agent, such as a carboxylic acid ester compound, is mixed with shower water and sprayed in the aeration tank and final settling tank. It is being According to the inventor's experiments, this method of mixing and spraying antifoaming agent does not suppress foaming;
It was found that this method only destroyed the bubble layer that had formed, and had little effect.

考えられる解決策 このような薬剤添加による従来のバルキング防止法に認
められた問題点を解決するものとして、本発明者らは既
に一つの提案をなした(特開昭61−204092号公
報および特願昭60−295890号明細書)。これら
の提案は、バルキング防11.用薬剤としてジアルキル
アミンとエピハロヒドリンとの反応によって得られる水
溶性陽イオン性重合体、あるいはジアルキルアミンとア
ンモニアとエピクロルヒドリンとの反応によって得られ
る水溶性陽イオン性重合体、を使用することを主要な特
徴とするものである。
Possible Solution The present inventors have already made a proposal to solve the problems observed in the conventional bulking prevention method by adding drugs (Japanese Patent Application Laid-Open No. 61-204092 and Application No. 60-295890). These proposals are based on bulking prevention 11. The main feature is that a water-soluble cationic polymer obtained by the reaction of dialkylamine and epihalohydrin, or a water-soluble cationic polymer obtained by the reaction of dialkylamine, ammonia and epichlorohydrin, is used as the drug for use. That is.

問題の所在 都市下水を対象とする一般の終末処理場では、糸状性細
菌に起因して発生するバルキングが最も多く、従来から
スフエロチルス(natans)やベギアトア(Bcg
giatoa )がその原因微生物の代表であるとされ
ている(下水通温会誌、第22巻、第252号、第2〜
12頁(1978))。
Where the problem lies At general final treatment plants for urban sewage, bulking is most commonly caused by filamentous bacteria, and conventionally bulking has been caused by filamentous bacteria, such as Sphaerochilus (natans) and Beggiatoa (Bcg).
giatoa) are said to be representative of the causative microorganisms (Journal of Sewage Heat Treatment Society, Vol. 22, No. 252, No. 2-
12 pages (1978)).

ところで、最近の下水道の整備に伴なって雨水と生活廃
水とを分離して処理するようになってきた。その結果、
生活廃水である都市下水の活性汚泥法による処理の場合
にバルキングを起す糸状性細菌に変化が生じていると推
定される。
By the way, with the recent development of sewerage systems, rainwater and domestic wastewater have come to be separated and treated. the result,
It is assumed that changes have occurred in the filamentous bacteria that cause bulking when municipal sewage, which is domestic wastewater, is treated using the activated sludge method.

〔発明の概要〕[Summary of the invention]

要旨 本発明は最近の都市下水の変化に対応して特定の活性汚
泥の異常を特定的に防止することを目的とし、前記の本
発明者らの水溶性陽イオン性重合体をこの異常防止用薬
剤として使用することによってこの目的を達成しようと
するものである。
Summary The present invention aims to specifically prevent specific abnormalities in activated sludge in response to recent changes in urban sewage. The aim is to achieve this goal by using it as a drug.

すなわち、本発明による活性汚泥の異常の防止法は、活
性汚泥法による廃水の処理において、活性汚泥またはそ
れを含有する廃水に、活性汚泥の乾燥固形分100重量
部に対して0,05〜25重量部の、ジアルキルアミン
と場合によりアンモニア(ジアルキルアミンと等モル以
下)とエピハロヒドリンとの反応によって得られる水溶
性陽イオン性重合体を添加することによって、活性汚泥
沈降後の処理水に発泡、スカムないしバルキングを生じ
させるべき放線菌を活性汚泥から遊離させすること、を
特徴とするものである。
That is, the method for preventing abnormalities in activated sludge according to the present invention is to add 0.05 to 25 parts by weight per 100 parts by weight of dry solids of activated sludge to activated sludge or waste water containing it in the treatment of waste water by the activated sludge method. By adding parts by weight of a water-soluble cationic polymer obtained by the reaction of a dialkylamine, optionally ammonia (equal mole or less to the dialkylamine), and epihalohydrin, foaming and scum can be added to the treated water after activated sludge sedimentation. The method is characterized by liberating actinomycetes that should cause bulking from activated sludge.

効果 本発明によれば、前記の目的が達成されて、放線菌によ
る活性汚泥の曝気槽の汚泥と沈降後の処理水の発泡ない
しスカム生成およびバルキング現象が特定的に防止され
る。
Effects According to the present invention, the above object is achieved, and the foaming or scum formation and bulking phenomenon of activated sludge in the aeration tank and treated water after settling due to actinomycetes is specifically prevented.

すなわち、本発明による重合体によれば、曝気槽で発泡
現象が現われ、それがスカムとなって滞積し始める徴候
が認められたり、バルキング現象が認められた時点でこ
の重合体を添加すると、速かに発泡層のさらなる増大が
実質的に生じることなく SVI値をもとのレベルまた
はそれ以下に保持することができる。そのうえ、本発明
薬剤は、11=Hの添加による効果の持続時間が長い。
That is, according to the polymer according to the present invention, when the foaming phenomenon appears in the aeration tank and signs of the foaming becoming scum and starting to accumulate, or when the bulking phenomenon is observed, when this polymer is added, The SVI value can be quickly maintained at or below the original level without substantial further expansion of the foam layer. Moreover, the drug of the present invention has a long duration of effect due to the addition of 11=H.

従って、本発明を実施すれば、活性汚泥性工程管理り極
めて有益である。
Therefore, if the present invention is implemented, activated sludge process control will be extremely beneficial.

なお、本発明は、このような固aの効果に加えて、本発
明者らの前記先行発明由来の下記の効果をもHする。
In addition to the above-described effects, the present invention also provides the following effects derived from the prior invention of the present inventors.

(1)本発明方法によるときは、活性汚泥処理系に、単
に水溶性陽イオン性重合体を添加するだけで、短時間の
うちに、活性汚泥のSVIの上昇を抑制することができ
る。
(1) When using the method of the present invention, an increase in the SVI of activated sludge can be suppressed in a short time by simply adding a water-soluble cationic polymer to the activated sludge treatment system.

(2〉本発明方法によるときは、曝気槽内の活性汚泥の
膨化はおこらず、沈降体積を小さくし、活性汚泥濃度を
高く保ち、BODの除去効果を著しく高くすることがで
きる。
(2> When using the method of the present invention, the activated sludge in the aeration tank does not expand, the settling volume can be reduced, the activated sludge concentration can be kept high, and the BOD removal effect can be significantly increased.

(3)本発明方法によるときは、沈降槽においても活性
汚泥の沈降分離が極めて容易になる。しかも、沈降した
ものの体積(沈降体積)を著しく小さくできるため、余
剰活性汚泥が生成しにくく、余剰活性汚泥の除去、焼却
処理を頬繁に行なう必要がない。
(3) When the method of the present invention is used, the sedimentation and separation of activated sludge becomes extremely easy even in a sedimentation tank. Moreover, since the volume of sedimented material (sedimentation volume) can be significantly reduced, surplus activated sludge is less likely to be produced, and there is no need to frequently remove and incinerate surplus activated sludge.

〔発明の詳細な説明〕[Detailed description of the invention]

前記のように、本発明は活性汚泥の特定の異常を指定的
に防止する方法に関するものである。
As mentioned above, the present invention relates to a method for specifically preventing certain abnormalities in activated sludge.

対象活性汚泥 本発明が対象とする活性汚泥は、放線菌によってその沈
降後に処理水に発泡ないしスカムの生成を生じるもので
ある。
Target Activated Sludge The activated sludge targeted by the present invention is one that causes foaming or scum formation in treated water after settling due to actinomycetes.

活性汚泥中に在ってこのような悪い作用をする放線菌と
しては、ノカルディア・アマラエ(Nocardia 
amarac )系、ロドコックス・ロドクロウス(R
hodococus rhodochrous)系、そ
の他がある。
Actinomycetes that exist in activated sludge and have such negative effects include Nocardia amarae (Nocardia amarae).
amarac) series, Rhodococcus rhodochrous (R
hodococcus rhodochrous) series, and others.

このような放線菌を+1を離する必要があるならば、下
水の活性汚泥の曝気槽の上層部に滞積している発泡槽や
スカムおよび汚泥から容易にこれを得ることができる。
If it is necessary to release such actinomycetes, they can be easily obtained from the foam tank, scum, and sludge accumulated in the upper part of the aeration tank of activated sludge of sewage.

水溶性陽イオン重合体 本発明で使用する薬剤は、その化学的本体がジアルキル
アミンとエピハロヒドリンとあるいはジアルキルアミン
とその等モル以下のアンモニアとエピハロヒドリンとの
反応によって得られたものである水溶性陽イオン性重合
体である。
Water-soluble cationic polymer The drug used in the present invention is a water-soluble cation whose chemical substance is obtained by the reaction of a dialkylamine and epihalohydrin, or a dialkylamine and an equimolar amount or less of ammonia and epihalohydrin. Polymer.

この重合体の化学構造は必ずしも明らかではないが、ジ
アルキルアミンの窒素原子が四級化されていて、エピハ
ロヒドリン由来のハロゲンイオンがその対イオンをなし
ている構造が推定される(ただし、本発明はそのような
推定によって何らの制約をも受けるものではない)。
Although the chemical structure of this polymer is not necessarily clear, it is assumed that the nitrogen atom of the dialkylamine is quaternized and the halogen ion derived from epihalohydrin serves as its counter ion (however, the present invention (We are not in any way limited by such estimates.)

また、本発明でいう「ジアルキルアミンと場合によりア
ンモニア(ジアルキルアミンと等モル以下)とエピハロ
ヒドリンとの反応によって得られる水溶性陽イオン性重
合体」は、」−2の対イオン(ハロゲン)を他の陰イオ
ンに置きかえたちのおよび対応水酸化物を包含するもの
とする。
In addition, in the present invention, the "water-soluble cationic polymer obtained by the reaction of a dialkylamine, optionally ammonia (equal mole or less as the dialkylamine), and epihalohydrin" refers to the "-2 counter ion (halogen)". shall include the corresponding hydroxides in place of the anions of .

従って、アンモニアを含まない場合のこの水溶性陽イオ
ン重合体について考えられる推定構造は、下記の通りで
ある。
Therefore, the possible predicted structure of this water-soluble cationic polymer when it does not contain ammonia is as follows.

■ R20H ここで、R1−R2はジアルキルアミン由来のアルキル
基、X″″はエピハロヒドリン由来のハロゲンその他の
陰イオンまたはOH”−、nは重合体であって、2以上
、好ましくは3以上) このような重合体を製造すべきジアルキルアミンとして
は、アルキル基の炭素数が1〜8程度、特に1〜2程度
のもの、が好ましい。2個のアルキル基は、−分子中で
同一でなくてもよい。このようなジアルキルアミンの具
体例としては、ジメチルアミン、ジエチルアミン、ジプ
ロピルアミン、メチルエチルアミン、メチルプロピルア
ミン、エチルプロピルアミン、メチルブチルアミン、エ
チルブチルアミン、ジブチルアミン、2−エチルヘキシ
ルアミン等があげられる。
■ R20H Here, R1-R2 is an alkyl group derived from a dialkylamine, X"" is a halogen or other anion derived from epihalohydrin or OH"-, and n is a polymer (2 or more, preferably 3 or more). The dialkylamine from which such a polymer is to be produced is preferably one in which the number of carbon atoms in the alkyl group is about 1 to 8, particularly about 1 to 2. Specific examples of such dialkylamines include dimethylamine, diethylamine, dipropylamine, methylethylamine, methylpropylamine, ethylpropylamine, methylbutylamine, ethylbutylamine, dibutylamine, 2-ethylhexylamine, etc. It will be done.

アンモニアを併用するときは、ジアルキルアミンに対し
てごくわずか添加すればよい。その量は、モル比で、ア
ンモニア/ジアルキルアミン■0.0001〜1.0の
範囲で選ぶことができ、特に好ましいのはモル比で0.
001〜0.1の範囲である。
When ammonia is used in combination, it is only necessary to add a very small amount to the dialkylamine. The amount can be selected in the molar ratio of ammonia/dialkylamine (1) in the range of 0.0001 to 1.0, with a particularly preferred molar ratio of 0.0001 to 1.0.
It is in the range of 001 to 0.1.

エピハロヒドリンとしては、ハロゲンがフッ素、塩素、
臭素、またはヨウ素のものが一般に対象となるが、エピ
クロルヒドリンが少なくとも経済上の理由から好ましい
といえる。
In epihalohydrin, the halogens are fluorine, chlorine,
Bromine or iodine compounds are generally targeted, but epichlorohydrin is preferred at least for economic reasons.

ジアルキルアミン、アンモニア(使用したとき)および
エピハロヒドリンを反応させるには、ジアルキルアミン
とアンモニアとのモル数と、エピハロヒドリンのモル数
とをほぼ等モルとし、撹拌機付き密閉型反応容器を用い
、不活性ガスの雰囲気下で、反応容器内温を30〜11
0℃の温度範囲とするのがよい。
To react dialkylamine, ammonia (when used), and epihalohydrin, the number of moles of dialkylamine and ammonia is approximately equal to the number of moles of epihalohydrin, a closed reaction vessel equipped with a stirrer is used, and an inert Under a gas atmosphere, the internal temperature of the reaction vessel is set to 30-11
The temperature range is preferably 0°C.

より具体的には、ジアルキルアミンまたはこれと場合に
よりアンモニアとの20〜70重量%濃度の水溶液を、
撹拌機、還流冷却器、温度計等を備えた密閉型反応容器
に仕込み、容器内雰囲気を窒素ガスで置換し、撹拌下、
反応容器内温が上昇しすぎないように調節しながら、エ
ピノ)ロヒドリンを連続的または回分式に添加するのが
よい。アンモニアを加える場合は、まずジメチルアミン
水溶液中にエピハロヒドリンを添加し、ついでアンモニ
アを添加するのがよい。反応容器にエピ710ヒドリン
とジアルキルアミン(およびアンモニア)とを添加し終
えてから、反応容器に、アルカリ金属、アルカリ土類金
属の酸化物や水酸化物を、エピクロルヒドリン1モルに
対して0.00001〜0.01モル添加し、30〜6
0℃の温度範囲で数時間保持すると、生成した重合体の
分子量が上昇することがある。なお、この反応生成物を
、水溶液のまま、窒素ガス雰囲気下で、約30℃の温度
に保持すると、約2ケ月間程度は、緩慢に、分子量が上
昇する反応が進行する。この間、容器に空気または酸素
を入れると、分子量が上昇する反応は進行しなくなる。
More specifically, a 20-70% strength by weight aqueous solution of dialkylamine or dialkylamine and optionally ammonia,
Pour into a closed reaction container equipped with a stirrer, reflux condenser, thermometer, etc., replace the atmosphere inside the container with nitrogen gas, and while stirring,
It is preferable to add epino)lohydrin continuously or batchwise while controlling the temperature inside the reaction vessel to prevent it from rising too much. When adding ammonia, it is preferable to first add epihalohydrin to the dimethylamine aqueous solution and then add ammonia. After adding Epi-710 hydrin and dialkylamine (and ammonia) to the reaction vessel, add an alkali metal or alkaline earth metal oxide or hydroxide to the reaction vessel at a rate of 0.00001 per mole of epichlorohydrin. ~0.01 mol added, 30~6
When kept in the temperature range of 0° C. for several hours, the molecular weight of the resulting polymer may increase. Note that when this reaction product is maintained as an aqueous solution at a temperature of about 30° C. under a nitrogen gas atmosphere, a reaction in which the molecular weight increases slowly proceeds for about two months. During this time, if air or oxygen is introduced into the container, the reaction that increases the molecular weight will not proceed.

このようにして得られる重合体を更に処理して、対イオ
ンとしてのハロゲン(エピハロヒドリン由来のもの)を
他の陰イオンに代えることも、対イオンを除去してこの
陽イオン重合体を水酸化物にすることも、可能であるこ
とは前記したところから明らかである。
The polymer thus obtained can be further processed to replace the halogen (derived from epihalohydrin) as a counterion with another anion or to remove the counterion and convert this cationic polymer into a hydroxide. It is clear from the above that it is also possible to do this.

−に記のようにして得られる重合体は、2モル/リット
ルのKBr水溶液に溶解して測定、算出する極限粘度[
η]によって、分子;の大小を判断することができて、
本発明方法では、[η]が0゜001dl/g以上、よ
り好ましくはO,01dl/g以上、のちのを使用する
。[ηコが過度に小さいと、活性汚泥への吸着性が低下
して、バルキング防止効果の持続性が低下するので好ま
しくない。
- The polymer obtained as described above has an intrinsic viscosity [
η], it is possible to judge the size of the molecule;
In the method of the present invention, [η] is 0°001 dl/g or more, more preferably 0.01 dl/g or more. [If η is too small, the adsorption to activated sludge will decrease and the sustainability of the bulking prevention effect will decrease, which is not preferable.

このようにして得られた水溶性陽イオン性重合体は溶媒
(水がふつうである)を除去して固体とすることもでき
る。しかし、水溶液として製造されたものはそのままあ
るいは必要に応じて希釈または濃縮して、水溶液として
活性汚泥のバルキング防止に使用することが好ましく、
またそれがふつうである。
The water-soluble cationic polymer thus obtained can also be converted into a solid by removing the solvent (usually water). However, it is preferable to use the solution produced as an aqueous solution as it is or after diluting or concentrating as necessary to prevent bulking of activated sludge.
It is also normal.

活性汚泥の異常現象防止 異常現象を防止すべき対象活性汚泥が上記のようなもの
であること、ならびにそれによって生じることあるべき
処理条件の変更を除けば、本発明による薬剤添加による
活性汚泥のバルキング防止法は従来のそれと本質的には
変らない。
Prevention of abnormal phenomena in activated sludge Except for the target activated sludge to be prevented from abnormal phenomena as described above and the changes in treatment conditions that should occur as a result, bulking of activated sludge by the addition of chemicals according to the present invention The prevention method is essentially the same as the conventional one.

具体的には、水溶性陽イオン性重合体を適当濃度、たと
えば0.1〜10ffl量%程度の濃度の水溶液として
おき、この水溶液を下記のいずれかの方法またはこれら
を2種以上組合せた方法に従って添加すればよい。
Specifically, a water-soluble cationic polymer is prepared as an aqueous solution at an appropriate concentration, for example, about 0.1 to 10 ffl%, and this aqueous solution is prepared by one of the following methods or a combination of two or more of these methods. It can be added according to the following.

(1)流入廃水に混和、混合し、これを曝気槽に送る方
法。
(1) Method of mixing with inflowing wastewater and sending it to an aeration tank.

(2)曝気槽や沈降槽の活性汚泥のバルキングが起って
いる槽に、直接添加する方法。
(2) Method of adding directly to an aeration tank or settling tank where bulking of activated sludge is occurring.

(3)返送汚泥に添加する方法。(3) Method of adding to returned sludge.

この水溶性陽イオン性重合体の使用量は、使用量が少な
すぎると、発明の目的が達成されないので好ましくなく
、逆に多すぎると廃水とともに系外に流去されるので好
ましくない。使用量は、活性汚泥の乾燥固形分100重
量部に対して、0.05〜25重量部の範囲で選ぶのが
よい。より好ましくは、0.1〜10重量部の範囲であ
る。
If the amount of the water-soluble cationic polymer used is too small, the object of the invention will not be achieved, which is not preferable, and if it is too large, it will be washed out of the system together with wastewater, which is not preferable. The amount used is preferably selected within the range of 0.05 to 25 parts by weight based on 100 parts by weight of dry solid content of the activated sludge. More preferably, it is in the range of 0.1 to 10 parts by weight.

活性汚泥に対して、水溶性陽イオン性重合体を、前記範
囲で添加すると、1ケ月以上はSVIの上昇ならびに発
泡現象やスカムの発生による汚泥の流出は認められない
。曝気槽の上層部に汚泥を巻き込んだ発泡層が滞積する
徴候が認められたら、その時点で、水溶性陽イオン性重
合体を、前記範囲で添加するのがよい。
When a water-soluble cationic polymer is added to activated sludge in the above range, no increase in SVI and no sludge outflow due to foaming or scum generation will be observed for one month or more. When signs of accumulation of a foamed layer containing sludge in the upper part of the aeration tank are observed, at that point it is preferable to add the water-soluble cationic polymer in the above range.

実験例 実施例1 月平均の排水処理量が3500 m/口であり、最初沈
降槽で沈降し易い浮遊固形分(S S)を除去した後の
曝気槽への流入原水のBODが220ppm、n−へキ
サン溶解分が30ppmであり、浮遊固形分が120p
pmであり、しかもその88分の成分が、有機質分60
%以上である原水を処理している公共下水処理場がある
。ここの1日の流入原水の時間変化は非常に大きくて、
午前9時と午後10時に処理量が最低時の約6倍になる
状態が周期的に毎日繰り返されている集合住宅団地から
の下水排水と、数ケ所の魚肉加工工場からの排水とが大
部分を占める分流式都市下水道排水を10001rtの
曝気槽と500mの最終沈降槽を用いて、活性汚泥によ
る廃水処理している公共下水処理場である。曝気槽の沈
降汚泥体積指数(SVI値)は200程度であるが、独
特の周期を発生しており、曝気槽の上部には約10cm
から20(7)程も汚泥を抱き込んで茶褐色に成った発
泡層がいつまでも消えずに残っていたが、この発泡層が
曝気槽の上部から溢れ出て付近を汚したり、溢れ出たも
のが腐敗して悪臭の発生源となり、更に悪い$には、汚
泥を含有した発泡層が最終沈降槽に流入して、処理水と
共に流出して放流水のBODおよびCODの値がそれぞ
れ20ppmを超えた。この処理場における運転条件は
、返送lq泥の処理原水に対する返送率は50%、原水
に対する空気倍率は10倍、空気の導入は散気板を使用
している。平均汚泥日齢は18日であり、返送汚泥の乾
燥汚泥濃度(MLSS)が4500pi)m%曝気槽内
のMLSSは2100ppmで運転していた。
Experimental Examples Example 1 The monthly average wastewater treatment amount is 3500 m/mouth, and the BOD of the raw water flowing into the aeration tank after removing the suspended solids (SS) that tend to settle in the settling tank is 220 ppm, n. - Hexane soluble content is 30 ppm and suspended solid content is 120 ppm.
pm, and its 88th component is organic matter 60%.
There are public sewage treatment plants that treat raw water that is more than %. The time-varying changes in inflow raw water over the course of a day are extremely large.
Most of the wastewater comes from sewage from an apartment complex, where the amount of water to be processed is about six times the lowest at 9 a.m. and 10 p.m., and from several fish processing plants. This is a public sewage treatment plant that uses activated sludge to treat the separated urban sewerage wastewater that occupies the majority of the area, using a 10,001rt aeration tank and a 500m final settling tank. The settled sludge volume index (SVI value) of the aeration tank is about 200, but a unique cycle occurs, and there is about 10 cm of sediment at the top of the aeration tank.
The foam layer, which had become brownish-brown by entrapping sludge for about 20 (7) hours, remained forever, but this foam layer overflowed from the top of the aeration tank and polluted the area, and the overflowing It rots and becomes a source of bad odor, and to make matters worse, the foam layer containing sludge flows into the final settling tank and flows out with the treated water, resulting in BOD and COD values of the effluent exceeding 20 ppm each. . The operating conditions at this treatment plant are that the return rate of 1q mud to be treated is 50%, the air ratio to the raw water is 10 times, and a diffuser plate is used to introduce air. The average age of the sludge was 18 days, and the dry sludge concentration (MLSS) of the returned sludge was 4500 pi) m%. The MLSS in the aeration tank was operating at 2100 ppm.

この処理場の曝気槽並びに沈降槽の汚泥をダラム染色し
て位相差顕微鏡で観察したところ、汚泥のなかと周辺部
には、フロック形成菌に付着した、典型的な放線菌の糸
状性細菌が多く観察された。
When the sludge in the aeration tank and settling tank at this treatment plant was stained with Durham and observed using a phase contrast microscope, it was found that filamentous bacteria of typical actinomycetes attached to floc-forming bacteria were found in and around the sludge. observed a lot.

汚泥の中に放線菌が含有されていて、それが分泌するミ
コール酸やそれ自体の糸状形態をしたもの等に汚泥が付
着して、汚泥の密度を小さくして沈降し難(していた。
The sludge contained actinomycetes, and the sludge adhered to mycolic acid secreted by actinomycetes and their filamentous forms, reducing the density of the sludge and making it difficult to settle.

更に、溶存酸素の消費が激しくて、曝気槽に空気倍率約
10倍の多量の空気を導入しなければならない。また、
空気を多量に導入するため、曝気槽が激しく攪はんされ
、その剪断力により汚泥が粉砕されて細かく成って、微
細な汚泥が小量ながら流出して、SS値が平均15pp
mと比較的高い値を示していた。
Furthermore, dissolved oxygen is consumed rapidly, and a large amount of air, about 10 times the air magnification, must be introduced into the aeration tank. Also,
Because a large amount of air is introduced, the aeration tank is vigorously agitated, and the shearing force causes the sludge to be crushed into fine particles, resulting in a small amount of fine sludge flowing out, resulting in an average SS value of 15 pp.
It showed a relatively high value of m.

この処理場で、エピクロル1ヒドリンと50%ジメチル
アミン水溶液のモル比が1:1.05の割合になる迄、
50%ジメチルアミン水溶液の中にエピクロルヒドリン
を反応温度を90℃に保ちながら添加、攪はん混合して
得られた混合反応組成物(2モル/リットルのKBr水
溶液で測定した極限粘度【η〕が0.02dl/gの組
成物)を80g/分の割合でこれを100倍に水道水で
希釈しながら返送汚泥ラインに50時間連続添加すると
同時に、曝気槽の上部に滞留している発泡槽にシャワー
水をかけ続けたところ、3時間目から曝気槽の上部に滞
留していた茶褐色の発泡層が徐々に減少してきた。9時
間後から、最終沈降槽からの処理水中に放線菌等の糸状
性細菌が多数観察されると共に、曝気槽中にある放線菌
が汚泥から剥離して、フロックの密度が増大してきた。
At this treatment plant, until the molar ratio of epichloro-1-hydrin and 50% dimethylamine aqueous solution becomes 1:1.05,
The mixed reaction composition obtained by adding epichlorohydrin to a 50% dimethylamine aqueous solution while maintaining the reaction temperature at 90°C and mixing with stirring (intrinsic viscosity [η] measured with a 2 mol/liter KBr aqueous solution) 0.02 dl/g composition) was continuously added at a rate of 80 g/min to the return sludge line while diluting it 100 times with tap water for 50 hours, and at the same time, it was added to the foaming tank retained in the upper part of the aeration tank. As shower water continued to be applied, the brown foam layer that had accumulated at the top of the aeration tank gradually decreased from the third hour onward. After 9 hours, many filamentous bacteria such as actinomycetes were observed in the treated water from the final settling tank, and the actinomycetes in the aeration tank were detached from the sludge, increasing the density of flocs.

SVI値が150に低下し、最終沈降槽の汚泥界面位置
も低ドしてきた。50時間後には、SVI値が100に
なった。この時の曝気槽中に存在する汚泥には放線菌等
の糸状性細菌が極端に減少したことが、確認できた。ま
た、活性汚泥は、添加前に比べて、しっかりしたフロッ
クを形成して来た。その結果、100時間後には、曝気
槽の上部に滞留してしていた茶褐色の発泡層が概ね解消
して、沈降性が著しく改善されてSVI値が90になり
、それに伴い、返送汚泥濃度がMLSS値5500pp
mに上昇し、曝気槽の汚泥濃度もMLSS値2300p
pmに上昇してきたので、原水の処理が平常の運転で良
好な処理水が得られるように成り、従って、原水の流入
量が朝と晩に大きく受動しても、返送汚泥の濃度が高く
成った為、返送率を一時的に調節するだけで、曝気槽の
汚泥濃度を変えられ、しかも、沈降槽の汚泥界面が上昇
して流出する事が無くなった。
The SVI value decreased to 150, and the position of the sludge interface in the final settling tank also decreased. After 50 hours, the SVI value reached 100. It was confirmed that filamentous bacteria such as actinomycetes were extremely reduced in the sludge present in the aeration tank at this time. Furthermore, the activated sludge formed firmer flocs than before addition. As a result, after 100 hours, the brown foam layer that had accumulated at the top of the aeration tank had largely disappeared, and the sedimentation properties had been significantly improved, with the SVI value reaching 90. MLSS value 5500pp
m, and the sludge concentration in the aeration tank also reached an MLSS value of 2300p.
As the pm has increased, good quality treated water can be obtained with normal operation of raw water, and therefore, even if the inflow of raw water is large in the morning and evening, the concentration of returned sludge will be high. Therefore, the sludge concentration in the aeration tank can be changed simply by temporarily adjusting the return rate, and the sludge interface in the settling tank does not rise and flow out.

放線菌等の糸状性細菌が破壊されて流出して来るが、こ
の時の浮遊固形分濃度は5ppm未満であり、塩素滅菌
後の放流水のBODおよびCODの値は、それぞれ20
ppm未満であって、放流水として良好な状態であった
Filamentous bacteria such as actinomycetes are destroyed and flow out, but the suspended solids concentration at this time is less than 5 ppm, and the BOD and COD values of the effluent after chlorine sterilization are 20% each.
It was less than ppm, and was in good condition as effluent water.

実施例2 実施例1の処理場で、放線菌等の糸状性細菌が多全に発
生して、独特の臭気を発生して、曝気槽の上部には約1
0c+nから20cm程も汚泥を抱き込んで茶褐色に成
った発泡層がいつまでも消えずに残っていたが、この発
泡層が曝気槽の上部から溢れ出て付近を汚したり、溢れ
でたものが腐敗して悪臭の発生源になり、更に悪い事に
は、汚泥を含何した発泡層が最終沈殿槽に流入して処理
水と共に流出して放流水のBODおよびCODの値がそ
れぞれ20ppmを超えた。また、SVI値が250を
超えた。運転条件は、実施例1と同様であった。この処
理場の曝気槽並びに沈降槽の汚泥をダラム染色して位相
差顕微鏡で観察したところ、〆9泥のなかと周辺部には
、フロック形成菌に付着した典型的な放線菌の糸状性細
菌が多く観察された。汚泥に放線菌が含有されていて、
それが分泌するミコール酸や放線菌自体がその糸状形態
を変化させたもの等に汚泥が付着して、汚泥の密度を小
さくして沈降し難くしていた。この処理場の曝気槽並び
に沈降槽の汚泥をダラム染色して位相差顕微鏡で観察し
たところ、汚泥のなかと周辺部には、フロック形成菌に
付着した、典型的放線菌の糸状性細菌が多く観察された
Example 2 In the treatment plant of Example 1, filamentous bacteria such as actinomycetes were generated in abundance, producing a unique odor, and approximately 1.
A foam layer that had become brownish-brown by trapping sludge for about 20 cm from 0c+n remained forever, but this foam layer overflowed from the top of the aeration tank, polluting the surrounding area, and the overflowing material rotted. To make matters worse, the foam layer containing sludge flowed into the final settling tank and flowed out together with the treated water, causing the BOD and COD values of the effluent to exceed 20 ppm each. In addition, the SVI value exceeded 250. The operating conditions were the same as in Example 1. When the sludge in the aeration tank and settling tank at this treatment plant was stained with Durham and observed using a phase contrast microscope, it was found that in and around the sludge, typical actinomycete filamentous bacteria attached to floc-forming bacteria were observed. were often observed. The sludge contains actinomycetes,
The sludge adhered to mycolic acids secreted by the sludge and actinomycetes that had changed their filamentous form, reducing the density of the sludge and making it difficult to settle. When the sludge in the aeration tank and settling tank at this treatment plant was Durham stained and observed using a phase contrast microscope, it was found that there were many filamentous bacteria of typical actinomycetes attached to floc-forming bacteria in and around the sludge. observed.

この処理場で、エピクロルヒドリンと50%ジメチルア
ミン水溶液のモル比が1:1の割合になる迄、50%ジ
メチルアミン水溶液の中に、エピクロルヒドリンを反応
温度を85℃に保ちながら添加、攪はん混合して得られ
た混合反応組成物(2モル/リットルのKBr水溶液で
測定した極限粘度〔η〕が0.12dl/gの組成物)
を75g/分の割合でこれを100倍に水道水で希釈し
ながら返送汚泥ラインに60時間連続添加すると同時に
、曝気槽の上部に滞留している発泡層にシャーワー水を
かけ続けたところ、6時間目から曝気槽の上部に滞留し
ていた茶褐色の発泡層が徐々に減少してきた。15時間
後は、曝気槽の上部に滞留していた茶褐色の発泡層が約
30%程度減少し、更に、最終沈降槽からの処理水中に
放線菌等の糸状性細菌が多数観察されると共に、曝気槽
中にある放線菌が汚泥から剥離して、フロックの密度が
増大してきた。SVI値が150に低下し、最終沈降槽
の汚泥界面位置も低下してきた。
At this treatment plant, epichlorohydrin was added to a 50% dimethylamine aqueous solution while maintaining the reaction temperature at 85°C until the molar ratio of epichlorohydrin and 50% dimethylamine aqueous solution was 1:1, and the mixture was stirred. The mixed reaction composition obtained by
was continuously added to the return sludge line for 60 hours at a rate of 75 g/min while diluting it 100 times with tap water, and at the same time continued to spray shower water on the foam layer staying at the top of the aeration tank. From the hour onwards, the brown foam layer that had accumulated at the top of the aeration tank gradually decreased. After 15 hours, the brown foam layer that had remained at the top of the aeration tank had decreased by about 30%, and in addition, many filamentous bacteria such as actinomycetes were observed in the treated water from the final settling tank. The actinomycetes in the aeration tank were detached from the sludge, and the density of the flocs increased. The SVI value decreased to 150, and the position of the sludge interface in the final settling tank also decreased.

50時間後には、SVI値が100になった。この時の
曝気槽中に存在する汚泥には放線菌等の糸状性細菌が極
端に減少したことが、確認できた。
After 50 hours, the SVI value reached 100. It was confirmed that filamentous bacteria such as actinomycetes were extremely reduced in the sludge present in the aeration tank at this time.

また、活性汚泥は、添加前に比べて、しっかりしたフロ
ックを形成して来た。200時間後には、曝気槽の上部
に滞留していた茶褐色の発泡層が概ね解消して、沈降槽
へこの発泡層が流入した後、放流水として流出する事が
無くなった。また、沈降性が著しく改善されてSVI値
が90になり、それに伴い、返送19泥濃度がMLSS
値6500ppmに上昇し、曝気槽の汚泥濃度もMLS
S値2400ppmに上昇してきたので、原水の処理が
平常の運転で良好な処理水が得られるように成った。ま
た、空気倍率が8倍で、曝気槽の出口における溶存酸素
濃度が1.5ppmを超えるように成った。更に、原水
の流入量が朝と晩に大きく変動しても、返送汚泥の濃度
が高く成った為、返送率を一時的に調節するだけで、曝
気槽の汚泥濃度を変えられ、しかも、沈降槽から汚泥の
分離が悪くて流出する事が無くなった。更に、返送汚泥
濃度が高く成ったため、重力式の濃縮槽で汚泥がla縮
され、消化槽に濃厚な汚泥が送れるようになり、消化ガ
スの発生速度が上昇して、消化層の効率が上昇した。ま
た、消化汚泥の脱水時にカチオン系ポリアクリルアミド
を凝集剤として、汚泥の乾燥、!lf′!量に対して0
.6重量%使用して遠心式デカンタ−で脱水していたが
、凝集剤の使用量が0.5iflr、量%で脱水出来る
ようになった。
Furthermore, the activated sludge formed firmer flocs than before addition. After 200 hours, the brown foam layer that had remained in the upper part of the aeration tank had mostly disappeared, and after flowing into the settling tank, it no longer flowed out as effluent water. In addition, the sedimentation property was significantly improved and the SVI value became 90, and the returned mud concentration increased to MLSS.
The value rose to 6,500 ppm, and the sludge concentration in the aeration tank also reached MLS.
Since the S value has increased to 2,400 ppm, it has become possible to obtain good quality treated water with normal operation. Furthermore, when the air magnification was 8 times, the dissolved oxygen concentration at the outlet of the aeration tank exceeded 1.5 ppm. Furthermore, even if the inflow of raw water varies greatly between morning and evening, the concentration of returned sludge is high, so simply by temporarily adjusting the return rate, the sludge concentration in the aeration tank can be changed, and the sedimentation Sludge no longer flows out of the tank due to poor separation. Furthermore, since the concentration of returned sludge has increased, the sludge is condensed in the gravity-type thickening tank, and thick sludge can be sent to the digestion tank, which increases the rate of generation of digestion gas and increases the efficiency of the digestion layer. did. In addition, when dewatering digested sludge, cationic polyacrylamide is used as a flocculant to dry the sludge! lf′! 0 for quantity
.. Previously, dehydration was performed using a centrifugal decanter using 6% by weight, but now dehydration can be performed using 0.5 iflr (volume%) of flocculant.

放線菌等の糸状性細菌が破壊されて流出して来るが、こ
の時の浮遊固形分濃度は5ppm未満であり、塩素滅菌
後の放流水のBODおよびCODの値は、それぞれ20
ppm未満であって、放流水として良好な状態であった
Filamentous bacteria such as actinomycetes are destroyed and flow out, but the suspended solids concentration at this time is less than 5 ppm, and the BOD and COD values of the effluent after chlorine sterilization are 20% each.
It was less than ppm, and was in good condition as effluent water.

水溶性陽イオン性重合体添加後、約1ケ月間は、下水道
の排水中には放線菌等の糸状性細菌が含有されていると
考えられるにも拘らず、急激な増加が抑制されていた。
After adding the water-soluble cationic polymer, a rapid increase was suppressed for approximately one month, despite the fact that sewage wastewater was thought to contain actinomycetes and other filamentous bacteria. .

実施例3 実施例1の処理場で、放線菌等の糸状性細菌が多量に発
生して、独特の臭気を発生して、曝気槽の上部には約1
0cmから20G程も汚泥を抱き込んで茶褐色に成った
発泡層がいつまでも消えずに残っていたが、この発泡層
が曝気槽の上部から溢れ出て付近を汚したり、溢れでた
ものが腐敗して悪臭の発生源になり、更に悪い事には、
汚泥を含有した発泡層が最終沈殿槽に流入して処理水と
共に流出して放流水のBODおよびCODの値がそれぞ
れ20ppmを超えた。また、SVI値が250を超え
た。運転条件は、実施例1と同様であった。この処理場
の曝気槽並びに沈降槽の汚泥をダラム染色して位相差顕
微鏡で観察したところ、lri泥のなかと周辺部には、
フロック形成菌に付着した典型的な放線菌の糸状性細菌
が多く観察された。汚泥の中に放線菌が含有されていて
、それが分泌するミコール酸や放線菌自体がその糸状形
態を変化させたもの等に汚泥が付着して、汚泥の密度を
小さくして沈降し難くしていた。この処理場の曝気槽並
びに沈降槽の汚泥をダラム染色して位相差顕微鏡で観察
したところ、汚泥のなかと周辺部には、フロック形成菌
に付着した、典型的放線菌の糸状性細菌が多く観察され
た。
Example 3 In the treatment plant of Example 1, a large amount of filamentous bacteria such as actinomycetes was generated, producing a unique odor, and the upper part of the aeration tank was filled with about 1
The foam layer, which had become brownish-brown by entrapping sludge from 0 cm to 20 G, remained forever, but this foam layer overflowed from the top of the aeration tank, polluting the surrounding area, and the overflowing material rotted. This can become a source of bad odors, and even worse,
The foamed layer containing sludge entered the final settling tank and flowed out together with the treated water, resulting in BOD and COD values of the effluent exceeding 20 ppm, respectively. In addition, the SVI value exceeded 250. The operating conditions were the same as in Example 1. When the sludge in the aeration tank and settling tank at this treatment plant was stained with Durham and observed using a phase contrast microscope, it was found that there were
Many typical filamentous actinomycete bacteria attached to floc-forming bacteria were observed. The sludge contains actinomycetes, and the sludge adheres to the mycolic acid secreted by the actinomycetes and to filamentous forms of the actinomycetes themselves, reducing the density of the sludge and making it difficult to settle. was. When the sludge in the aeration tank and settling tank at this treatment plant was Durham stained and observed using a phase contrast microscope, it was found that there were many filamentous bacteria of typical actinomycetes attached to floc-forming bacteria in and around the sludge. observed.

この処理場で、エピクロルヒドリンと50%ジメチルア
ミン水溶液と12%アンモンニア水溶液のモル比が1:
1.05:0.1の割合になる迄、50%ジメチルアミ
ン水溶液と12%アンモニア水の混合アミン中に、エピ
クロルヒドリンを反応温度を90℃に保ちながら添加、
攪はん混合して得られた混合反応組成物を、更に10時
間攪はん混合して得られた反応組成物(2モル/リット
ルのKBr水溶液でn1定した極限粘度〔η〕が0.0
2dl/gの組成物)を70g/分の割合でこれを10
0倍に水道水で希釈しながら返送汚泥ラインに65時間
連続添加すると同時に、曝気槽の上部に滞留している発
泡層にシャーワー水をかけ続けたところ、5時間口から
曝気槽の上部に滞留していた茶褐色の発泡層が徐々に減
少してきた。添加を始めてから9時間後は、曝気槽の上
部に滞留していた茶褐色の発泡層が約30%程度減少し
、史に、最終沈降槽からの処理水中に放線菌等の糸状性
細菌が多数観察されると共に、曝気槽中にある放線菌が
汚泥から剥離して、フロックの密度が増大してきた。5
VI(fiが160に低下し、最終沈降槽の汚泥界面位
置も低下してきた。50峙間後には、SvI値が110
になった。この時の曝気槽中に存在する汚泥には放線菌
(ノカルディア)等の糸状性細菌が極端に減少したこと
が、確認できた。また、活性汚泥は、添加前に比べて、
しっかりしたフロックを形成して来た。150時間後に
は、曝気槽の上部に滞留していた茶褐色の発泡層が概ね
解消して、沈降槽へこの発泡層が流入した後、放流水と
して流出する事が無くなった。
In this treatment plant, the molar ratio of epichlorohydrin, 50% dimethylamine aqueous solution, and 12% ammonia aqueous solution is 1:
Add epichlorohydrin to the mixed amine of 50% dimethylamine aqueous solution and 12% ammonia water while maintaining the reaction temperature at 90°C until the ratio is 1.05:0.1.
The mixed reaction composition obtained by stirring and mixing was further stirred and mixed for 10 hours.The reaction composition obtained by further stirring and mixing for 10 hours had an intrinsic viscosity [η] of 0. 0
2 dl/g composition) at a rate of 70 g/min.
When the sludge was continuously added to the return sludge line for 65 hours while being diluted with tap water to 0.0 times, and at the same time shower water was continued to be applied to the foam layer that had accumulated at the top of the aeration tank, the sludge remained at the top of the aeration tank from the mouth for 5 hours. The brown foam layer that had been present gradually decreased. Nine hours after the addition started, the brown foam layer that had accumulated at the top of the aeration tank had decreased by about 30%, and historically there were many filamentous bacteria such as actinomycetes in the treated water from the final settling tank. At the same time, the actinomycetes in the aeration tank were detached from the sludge, and the density of flocs increased. 5
The VI (fi) decreased to 160, and the position of the sludge interface in the final settling tank also decreased. After 50 minutes, the SvI value decreased to 110.
Became. It was confirmed that filamentous bacteria such as actinomycetes (Nocardia) were extremely reduced in the sludge present in the aeration tank at this time. In addition, compared to before addition, activated sludge
It has formed a solid flock. After 150 hours, the brown foam layer that had remained in the upper part of the aeration tank had mostly disappeared, and after flowing into the settling tank, it no longer flowed out as effluent water.

また、沈降性が著しく改善されてSVI値が95になり
、それに伴い、返送汚泥濃度がMLSS値6500pp
mに上昇し、曝気槽の汚泥濃度もMLSS値2400p
pmに上、Wlできたので、原水の処理が平常の運転で
良好な処理水が得られるように成った。また、空気倍率
が8倍で、曝気槽の出目における溶存酸素濃度が2.0
ppmを超えるように成った。更に、原水の流入量が朝
と晩に大きく変動しても、返送汚泥の濃度が高く成った
為、返送率を一時的に調節するだけで、曝気槽の汚泥濃
度を変えられ、しかも、沈降槽から汚泥の分離が悪くて
流出する事が無くなった。更に、返送汚泥濃度が高く成
ったため、重力式の濃縮槽で汚泥が濃縮され、消化槽に
濃厚な汚泥が送れるようになり、消化ガスの発生速度が
上昇して、消化層の効率が上昇した。
In addition, the sedimentation property has been significantly improved and the SVI value has become 95, and the returned sludge concentration has increased to an MLSS value of 6500pp.
m, and the sludge concentration in the aeration tank also reached an MLSS value of 2400p.
Since we were able to achieve Wl as well as pm, we were able to process raw water and obtain good quality treated water during normal operation. In addition, the air magnification is 8 times, and the dissolved oxygen concentration in the aeration tank is 2.0.
ppm. Furthermore, even if the inflow of raw water varies greatly between morning and evening, the concentration of returned sludge is high, so simply by temporarily adjusting the return rate, the sludge concentration in the aeration tank can be changed, and the sedimentation Sludge no longer flows out of the tank due to poor separation. Furthermore, because the concentration of returned sludge has increased, the sludge is thickened in a gravity-type thickening tank, making it possible to send thick sludge to the digestion tank, increasing the rate of generation of digestion gas and increasing the efficiency of the digestion layer. .

放線菌等の糸状性細菌が破壊されて流出して来るが、こ
の時の浮遊固形分濃度は5ppm未満であり、塩素滅菌
後の放流水のBODおよびCODの値は、それぞれ20
ppm未満であり、放流水として良好な状態であった。
Filamentous bacteria such as actinomycetes are destroyed and flow out, but the suspended solids concentration at this time is less than 5 ppm, and the BOD and COD values of the effluent after chlorine sterilization are 20% each.
It was less than ppm, and was in good condition as effluent water.

実施例4 実施例1の処理場で、放線菌等の糸状性細菌が多量に発
生して、独特の臭気を発生し、曝気槽の上部には約10
cmから20cm程も汚泥を抱き込んで茶褐色に成った
発泡層がいつまでも消えずに残っていたが、この発泡層
が曝気槽の上部から溢れ出て付近を汚したり、溢れでた
ものが腐敗して悪臭の発生源になり、更に悪い事には、
汚泥を含有した発泡層が最終沈殿槽に流入して処理水と
共に流出して放流水のBODおよびCODの値がそれぞ
れ20ppmを超えた。また、SVI値が220を超え
た。運転条件は、実施例1と同様であった。この処理場
の曝気槽並びに沈降槽の汚泥をダラム染色して位相差顕
微鏡で観察したところ、汚泥のなかと周辺部には、フロ
ック形成菌に付着した典型的な放線菌の糸状性細菌が多
く観察された。汚泥の中に放線菌が含有されていて、そ
れが分泌するミコール酸や放線菌(ノカルディア)自体
がその糸状形態を変化させたもの等に汚泥が付着して、
汚泥の密度を小さくして沈降し難くしていた。この処理
場の曝気槽並びに沈降槽の汚泥をダラム染色して位相差
顕微鏡で観察したところ、汚泥のなかと周辺部には、フ
ロック形成菌に付着した、典型的放線菌の糸状性細菌が
多く観察された。
Example 4 In the treatment plant of Example 1, a large amount of filamentous bacteria such as actinomycetes was generated, producing a unique odor, and about 10
The foam layer, which had become brownish-brown by trapping sludge for about 20 cm to 20 cm, remained forever, but this foam layer overflowed from the top of the aeration tank, polluting the surrounding area, and the overflowing material rotted. This can become a source of bad odors, and even worse,
The foamed layer containing sludge entered the final settling tank and flowed out together with the treated water, resulting in BOD and COD values of the effluent exceeding 20 ppm, respectively. In addition, the SVI value exceeded 220. The operating conditions were the same as in Example 1. When the sludge in the aeration tank and settling tank of this treatment plant was Durham stained and observed using a phase contrast microscope, it was found that there were many filamentous bacteria of typical actinomycetes attached to floc-forming bacteria in and around the sludge. observed. The sludge contains actinomycetes, and the sludge adheres to the mycolic acid secreted by them and to actinomycetes (Nocardia) that have changed their filamentous form.
The density of the sludge was reduced to make it difficult to settle. When the sludge in the aeration tank and settling tank at this treatment plant was Durham stained and observed using a phase contrast microscope, it was found that there were many filamentous bacteria of typical actinomycetes attached to floc-forming bacteria in and around the sludge. observed.

この処理場で、エピクロルヒドリンと50%ジメチルア
ミン水溶液と12%アンモンニア水溶液のモル比が1:
1:Ollの割合になる迄、50%ジメチルアミン水溶
液の中に、エピクロルヒドリンを反応温度を90℃に保
ちながら添加、攪はん混合して得られた混合反応組成物
に、更に、攪拌しながら12%アンモニア水を添加して
、10時間後はん混合して得られた反応組成物(2モル
/リットルのKBr水溶液で測定した極限粘度〔η〕が
0.12dl/gの組成物)を70g/分の割合でこれ
を100倍に水道水で希釈しながら返送汚泥ラインに7
0時間連続添加すると同時に、曝気槽の上部に滞留して
いる発泡層にシャーワー水をかけ続けたところ、5時間
目から曝気槽の上部に滞留していた茶褐色の発泡層が徐
々に減少してきた。9時間後は、曝気槽の−に部に滞留
していた茶褐色の発泡層が約30%程度減少し、更に、
最終沈降槽からの処理水中に放線菌等の糸状性細菌が多
数観察されると共に、曝気槽中にある放線菌(ノカルデ
ィア)が汚泥から剥離して、フロックの密度が増大して
きた。SVI値が160に低下し、最終沈降槽の汚泥界
面位置も低下してきた。50時間後には、SVI値か1
10になった。この時の曝気槽中に存在する汚泥には放
線菌等の糸状性細菌が極端に減少したことが、確認でき
た。また、活性汚泥は、添加前に比べて、しっかりした
フロックを形成して来た。150時間後には、曝気槽の
上部に滞留していた茶褐色の発泡層が概ね解消して、沈
降槽へこの発泡層が流入した後、放流水として流出する
事が無くなった。また、沈降性が著しく改善されてSV
I値が85になり、それに伴い、返送汚泥濃度がMLS
S値6500 p p mに1−昇し、曝気槽の汚泥濃
度もMLSS値2400ppmに」−昇してきたので、
原水の処理が平常の運転で良好な処理水が得られるよう
に成った。また、空気倍率が8倍で、曝気槽の出口にお
ける溶存酸素濃度が1.5ppmを超えるように成った
。更に、原水の流入量が朝と晩に大きく変動しても、返
送汚泥の濃度が高く成った為、返送率を一時的に調節す
るだけで、曝気槽の汚泥濃度を変えられ、しかも、沈降
槽から汚泥の分離が悪くて流出する事が無くなった。更
に、返送汚泥濃度が高く成ったため、重力式の濃縮槽で
t9泥が濃縮され、消化槽に濃厚な汚泥が送れるように
なり、消化ガスの発生速度が上昇して、消化層の効率が
上昇した。また、消化汚泥の脱水時にカチオン系ポリア
クリルアミドを凝集剤として、lり泥の乾燥重量に対し
て0. 6重量%使用して遠心式デカンタ−で脱水して
いたが、凝集剤の使用量が0.5ffi!9.6で脱水
出来るようになった。
In this treatment plant, the molar ratio of epichlorohydrin, 50% dimethylamine aqueous solution, and 12% ammonia aqueous solution is 1:
Add epichlorohydrin to a 50% dimethylamine aqueous solution while maintaining the reaction temperature at 90°C until the ratio of 1:Oll is reached, and add it to the mixed reaction composition obtained by stirring and mixing. A reaction composition obtained by adding 12% ammonia water and mixing with the mixture after 10 hours (a composition with an intrinsic viscosity [η] of 0.12 dl/g measured with a 2 mol/liter KBr aqueous solution) was prepared. This was diluted 100 times with tap water at a rate of 70g/min and sent to the return sludge line.
At the same time as continuous addition for 0 hours, shower water was continued to be applied to the foam layer staying at the top of the aeration tank, and from the 5th hour onwards, the brown foam layer staying at the top of the aeration tank gradually decreased. . After 9 hours, the brown foam layer that had accumulated in the negative part of the aeration tank had decreased by about 30%, and
Many filamentous bacteria such as actinomycetes were observed in the treated water from the final settling tank, and actinomycetes (Nocardia) in the aeration tank were detached from the sludge, increasing the density of flocs. The SVI value decreased to 160, and the position of the sludge interface in the final settling tank also decreased. After 50 hours, the SVI value will be 1.
It became 10. It was confirmed that filamentous bacteria such as actinomycetes were extremely reduced in the sludge present in the aeration tank at this time. Furthermore, the activated sludge formed firmer flocs than before addition. After 150 hours, the brown foam layer that had remained in the upper part of the aeration tank had mostly disappeared, and after flowing into the settling tank, it no longer flowed out as effluent water. In addition, the sedimentation properties were significantly improved and the SV
The I value becomes 85, and the returned sludge concentration increases to MLS.
The S value has increased to 6,500 ppm, and the sludge concentration in the aeration tank has also increased to the MLSS value of 2,400 ppm.
Raw water treatment has become possible to obtain good quality treated water with normal operation. Furthermore, when the air magnification was 8 times, the dissolved oxygen concentration at the outlet of the aeration tank exceeded 1.5 ppm. Furthermore, even if the inflow of raw water varies greatly between morning and evening, the concentration of returned sludge is high, so simply by temporarily adjusting the return rate, the sludge concentration in the aeration tank can be changed, and the sedimentation Sludge no longer flows out of the tank due to poor separation. Furthermore, since the concentration of returned sludge has increased, the T9 mud is concentrated in the gravity thickening tank, allowing thick sludge to be sent to the digestion tank, increasing the rate of generation of digestion gas and increasing the efficiency of the digestion layer. did. In addition, when dewatering digested sludge, cationic polyacrylamide is used as a flocculant, and 0.00% of the dry weight of the sludge is used. I used 6% by weight and dehydrated with a centrifugal decanter, but the amount of flocculant used was 0.5ffi! I was able to dehydrate with 9.6.

放線菌等の糸状性細菌が破壊されて流出して来るが、こ
の時の浮遊固形分濃度は5ppm未満であり、塩素滅菌
後の放流水のBODおよびCODの値は、それぞれ20
ppm未満であり、放流水として良好な状態であった。
Filamentous bacteria such as actinomycetes are destroyed and flow out, but the suspended solids concentration at this time is less than 5 ppm, and the BOD and COD values of the effluent after chlorine sterilization are 20% each.
It was less than ppm, and was in good condition as effluent water.

水溶性陽イオン性重合体添加後、約1ケ月間は、下水道
の排水中には放線菌等の糸状性細菌が含有されていると
考えられるにも拘らず、急激な増加が抑制された。
After the addition of the water-soluble cationic polymer, a rapid increase was suppressed for about one month, even though filamentous bacteria such as actinomycetes were thought to be contained in the sewage wastewater.

比較例1 実施例1の処理場で、放線菌等の糸状性細菌が多量に発
生して、独特の臭気を発生し、曝気槽のに部には約10
0111から20cm程も汚泥を抱き込んで茶褐色に成
った発泡層がいつまでも消えず(こ残っていたが、この
発泡層が曝気槽の−に部から溢れ出て付近を汚したり、
溢れでたものが腐敗して悪臭の発生源になり、更に悪い
事には、汚泥を含有した発泡層が最終沈殿槽に流入して
処理水と共に流出して放流水のBODおよびCODの値
がそれぞれ20ppmを超えた。また、SVI値が22
0を超えた。運転条件は、実施例1と同様であった。こ
の処理場の曝気槽並びに沈降槽の汚泥をダラム染色して
位相差顕微鏡で観察したところ、19泥のなかと周辺部
には、フロック形成菌に付着した典型的な放線菌の糸状
性細菌が多く観察された。汚泥に放線菌が含有されてい
て、それが分泌するミコール酸や放線菌自体がその糸状
形態を変化させたもの等に汚泥が付着して、汚泥の密度
を小さくして沈降し難くしていた。この処理場の曝気槽
=l!2びに沈降槽の汚泥をダラム染色して位相差顕微
鏡で観察したところ、汚泥のなかと周辺部には、フロッ
ク形成菌に付着した、典型的放線菌の糸状性細菌が多く
観察された。
Comparative Example 1 In the treatment plant of Example 1, a large amount of filamentous bacteria such as actinomycetes was generated, producing a unique odor, and about 10
The foam layer that had become brownish-brown by enveloping sludge for about 20 cm from 0111 did not disappear forever.
The overflow will rot and become a source of bad odors, and to make matters worse, the foam layer containing sludge will flow into the final settling tank and flow out with the treated water, reducing the BOD and COD values of the effluent. Each exceeded 20 ppm. Also, the SVI value is 22
Exceeded 0. The operating conditions were the same as in Example 1. When the sludge in the aeration tank and settling tank of this treatment plant was Durham stained and observed using a phase contrast microscope, it was found that in and around the sludge there were typical actinomycete filamentous bacteria attached to floc-forming bacteria. observed a lot. The sludge contained actinomycetes, and the sludge adhered to the mycolic acid secreted by the actinomycetes and to filamentous forms of the actinomycetes themselves, reducing the density of the sludge and making it difficult to settle. . Aeration tank of this treatment plant = l! Second, when the sludge in the settling tank was stained with Durham staining and observed under a phase contrast microscope, many filamentous bacteria of typical actinomycetes attached to floc-forming bacteria were observed in and around the sludge.

そこで、曝気槽の上部からシャワー水に消泡剤を溶解し
て添加した。消泡剤は、特殊パラフィンのエステル化合
物(大東薬品工業■の「ミネコン・Cl)を水で061
重量%に希釈して、曝気槽の上部のシャワー水のライン
から100リツトル/分の割合で、添加を30間継続的
におこなった。
Therefore, an antifoaming agent was dissolved and added to the shower water from the top of the aeration tank. The antifoaming agent is a special paraffin ester compound (Daito Pharmaceutical Co., Ltd.'s "Minecon Cl") mixed with water.
It was diluted to % by weight and added continuously for 30 days at a rate of 100 liters/minute from the shower water line at the top of the aeration tank.

シャワー水の掛かるところでは消泡効果が認められたが
、充分な効果を得る為には大量の消泡剤が必要であった
An antifoaming effect was observed in areas exposed to shower water, but a large amount of antifoaming agent was required to obtain a sufficient effect.

しかしながら、消泡剤の使用では、根本的に汚泥中の放
線菌を活性汚泥から開放する事は不可能であった。
However, with the use of antifoaming agents, it has been fundamentally impossible to release actinomycetes in sludge from activated sludge.

なお、放流水の発泡現象に関しては、放流水に消泡剤を
添加して抑制することができた。
Note that the foaming phenomenon of the effluent water could be suppressed by adding an antifoaming agent to the effluent water.

Claims (1)

【特許請求の範囲】[Claims] 活性汚泥法による廃水の処理において、活性汚泥または
それを含有する廃水に、活性汚泥の乾燥固形分100重
量部に対して0.05〜25重量部の、ジアルキルアミ
ンと場合によりアンモニア(ジアルキルアミンと等モル
以下)とエピハロヒドリンとの反応によって得られる水
溶性陽イオン性重合体を添加することによって、活性汚
泥沈降後の処理水に発泡、スカムないしバルキングを生
じさせるべき放線菌を活性汚泥から遊離させることを特
徴とする、活性汚泥の異常現象防止法。
In the treatment of wastewater by the activated sludge method, activated sludge or wastewater containing the same is added with 0.05 to 25 parts by weight of dialkylamine and optionally ammonia (dialkylamine and By adding a water-soluble cationic polymer obtained by reacting (equal mole or less) with epihalohydrin, actinomycetes that should cause foaming, scum, or bulking in treated water after activated sludge sedimentation are liberated from activated sludge. A method for preventing abnormal phenomena in activated sludge, which is characterized by:
JP62049397A 1987-03-04 1987-03-04 Abnormal phenomenon preventive agent and method for preventing abnormal phenomenon of activated sludge Expired - Lifetime JPH0741263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62049397A JPH0741263B2 (en) 1987-03-04 1987-03-04 Abnormal phenomenon preventive agent and method for preventing abnormal phenomenon of activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62049397A JPH0741263B2 (en) 1987-03-04 1987-03-04 Abnormal phenomenon preventive agent and method for preventing abnormal phenomenon of activated sludge

Publications (2)

Publication Number Publication Date
JPS63218297A true JPS63218297A (en) 1988-09-12
JPH0741263B2 JPH0741263B2 (en) 1995-05-10

Family

ID=12829901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62049397A Expired - Lifetime JPH0741263B2 (en) 1987-03-04 1987-03-04 Abnormal phenomenon preventive agent and method for preventing abnormal phenomenon of activated sludge

Country Status (1)

Country Link
JP (1) JPH0741263B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005117A1 (en) * 1988-11-04 1990-05-17 Mitsubishi Monsanto Chemical Company Limited Treatment of activated sludge
WO1990009966A1 (en) * 1989-02-23 1990-09-07 Mitsubishi Kasei Polytec Company Treatment of activated sludge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005117A1 (en) * 1988-11-04 1990-05-17 Mitsubishi Monsanto Chemical Company Limited Treatment of activated sludge
WO1990009966A1 (en) * 1989-02-23 1990-09-07 Mitsubishi Kasei Polytec Company Treatment of activated sludge

Also Published As

Publication number Publication date
JPH0741263B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
Yoon et al. Comparison of pilot scale performances between membrane bioreactor and hybrid conventional wastewater treatment systems
KR940006408B1 (en) Method of preventing the bulking of activated sludge
US4729831A (en) Method for preventing the bulking of activated sludge
JPS63218297A (en) Process for preventing activated sludge from occurrence of abnormal phenomenon
CN115536213A (en) Oily wastewater treatment method
JPS63218294A (en) Process for preventing activated sludge from bulking
JPS63218296A (en) Process for preventing activated sludge from bulking
JPS63218295A (en) Process for preventing activated sludge from bulking
EP0316348A1 (en) Method for the treatment of sewage and other impure water
JP2808326B2 (en) Activated sludge abnormal phenomenon preventive agent and activated sludge abnormal phenomenon prevention method
JP4221422B2 (en) Bulking inhibitor and wastewater treatment method
JPH0536119B2 (en)
WO1990009966A1 (en) Treatment of activated sludge
Bragstad et al. Packinghouse waste and sewage treatment at Sioux Falls, South Dakota
JP3901292B2 (en) Activated sludge bulking inhibitor and wastewater treatment method
JPH0312293A (en) Abnormal phenomenon preventing agent and method of activated sludge
JPS63218298A (en) Process for preventing activated sludge from occurrence of abnormal phenomenon
JPS63218299A (en) Process for preventing activated sludge from bulking
JPH04161295A (en) Abnormal phenomenon-preventing agent of activated sludge and method for preventing abnormal phenomenon of activated sludge
JPH0312294A (en) Abnormal phenomenon preventing agent and method of activated sludge
JPH02169096A (en) Activated-sludge abnormality preventive agent and method for preventing abnormality and bulking of activated sludge
USRE34127E (en) Method for preventing the bulking of activated sludge
WO1990015030A1 (en) Inhibitor of abnormal phenomena of activated sludge and method of inhibitng abnormal phenomena of activated sludge
JPH04317798A (en) Abnormal phenomenon preventing agent and abnormal phenomenon preventing method of active sludge
USRE34343E (en) Method for preventing the bulking of activated sludge

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term