JPS63218206A - Pressure detector - Google Patents

Pressure detector

Info

Publication number
JPS63218206A
JPS63218206A JP5102087A JP5102087A JPS63218206A JP S63218206 A JPS63218206 A JP S63218206A JP 5102087 A JP5102087 A JP 5102087A JP 5102087 A JP5102087 A JP 5102087A JP S63218206 A JPS63218206 A JP S63218206A
Authority
JP
Japan
Prior art keywords
pressure
temperature
temp
strain gauge
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5102087A
Other languages
Japanese (ja)
Inventor
Masato Moritoki
正人 守時
Yoshitaka Nimura
仁村 嘉孝
Katsufumi Urabe
克文 卜部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5102087A priority Critical patent/JPS63218206A/en
Publication of JPS63218206A publication Critical patent/JPS63218206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To precisely measure the pressure at the site where the temp. is changed, by immediately correcting the pressure value obtained by a pressure detector by calculation with the use of the temp. simultaneously detected by a temp. sensor provided at the measuring position. CONSTITUTION:A strain gage 3 for pressure detection is stuck on approximately the central part of the outer periphery of a pressure withstanding metallic material 1, and the strain quantity generated in the material 1 due to the variations in pressure is detected. Moreover, the temp. sensor 5 is stuck close to the stain gage 3. Those detection signals are sent to a computing and displaying device 6. At this part, the strain quantity obtained in an electric value is immediately calculated into a pressure value by the computer system, the pressure value is also calculated and corrected based on the temp. information, and the calculated pressure value is immediately displayed on a display part 6a or continuously recorded, if necessary.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、たとえば圧力を主な制御要素とし副次的に温
度の影響を受けて特定成分の精製もしくは濃縮を行なう
圧力晶析装置の如く、温度変化を伴う装置に適用される
歪ゲージ型の圧力検出装置の改良に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is applicable to, for example, a pressure crystallizer that purifies or concentrates a specific component using pressure as the main control element and secondary influence of temperature. , relates to improvements in strain gauge type pressure detection devices applied to devices that are subject to temperature changes.

〔従来の技術〕[Conventional technology]

圧力晶析法とは、周知の通り2種以上の混合物から圧力
及び温度を制御要素として特定成分のみを選択的に晶出
させて分離する比較的新しい精製分離法である。この方
法は、圧力を主たる制御要素として特定成分の晶析を行
なって特定成分の精製を行なうものであるから、圧力の
検出と制御は最も重要な管理項目とされる。かかる用途
に適用される圧力検出器として現在実用化されているの
は、本願出願人の出願に係る特公昭61−58201号
公報に開示した様な歪ゲージ型圧力検出装置である。即
ちこの圧力検出装置は、たとえば第2図に示す如く円筒
状の耐圧金属材1を本体とし、その一方端1aを圧力晶
析装置の加圧室に連通した管路(図示せず)に接続する
と共に、他方端1bを端M2で封鎖したものであり、操
作圧力が耐圧金属材1内へ作用する様に構成されている
。そして該耐圧金属材1外周面適所に歪ゲージの検出素
子(以下単に歪ゲージと記す)3を貼付し、圧力晶析操
作の実施に伴う高圧の影響を受けて生じる該耐圧金属材
1の歪を歪ゲージで測定し、この測定値を圧力に換算し
て操作圧力を知るものである0図中4はシース型ヒータ
を示し、その機能は後述する。
As is well known, the pressure crystallization method is a relatively new purification and separation method in which only specific components are selectively crystallized and separated from a mixture of two or more types using pressure and temperature as control factors. Since this method purifies a specific component by crystallizing it using pressure as the main control element, detection and control of pressure are considered to be the most important management items. A strain gauge type pressure sensor disclosed in Japanese Patent Publication No. 61-58201 filed by the applicant of the present invention is currently in practical use as a pressure sensor for such applications. That is, this pressure detection device has a cylindrical pressure-resistant metal material 1 as a main body, for example, as shown in FIG. At the same time, the other end 1b is closed by the end M2, and the operating pressure is configured to act on the inside of the pressure-resistant metal material 1. Then, a strain gauge detection element (hereinafter simply referred to as a strain gauge) 3 is pasted on the outer circumferential surface of the pressure-resistant metal material 1, and the distortion of the pressure-resistant metal material 1 caused by the influence of high pressure accompanying the implementation of the pressure crystallization operation is is measured with a strain gauge, and this measured value is converted into pressure to determine the operating pressure. 4 in the figure indicates a sheath type heater, the function of which will be described later.

ところで現在量も汎用されている歪ゲージは電気抵抗体
を素子とするものであり、該素子にかかる圧力と歪量の
間に一定の相間々係が存在すること、また歪量と電気抵
抗の間にも一定の相間々係があるということ等をうまく
活用したもので、電気抵抗の変化をブリッジ回路により
、増幅して検出するタイプのものである。そして中には
零点出力を補償する回路を組込んで温度補正を行なうも
のも知られているが、その温度補償範囲は、たとえば第
3図に示す如く0〜40℃程度という常温近辺の非常に
限られた温度変化に適応し得るのみであって、該許容範
囲を超える温度変化があった場合は零点出力の調整が不
可能となって測定精度は大幅に低下してくる。一方圧力
晶析法を実施する際において、たとえば第4図における
不純物濃度x2の固液平衡線上の点(p+ 、T、)で
固液分離を行なう場合、特公昭61−58201号にも
開示した様に母液分離の最終段階(放圧状態)で特定成
分濃度の高いスラリー状物質が管路を通して圧力検出器
本体内へ流入することがある。この状態で該圧力検出器
本体内に次サイクルの晶析分11を操業圧力P、が作用
すると、特定成分濃度の高い物質は晶析固化し、その後
の圧力検知が不可能となる。こうした問題点を回避する
ため先の公告発明では第2図に示した如く圧力検出器本
体1内ヘシース型ヒータ4を挿通しておき、内部を加熱
することによって晶析固化が進行しない様に、むしろ侵
入固形成分を溶融する様に工夫している。
By the way, strain gauges, which are currently widely used, have an electrical resistor as an element, and there is a certain correlation between the pressure applied to the element and the amount of strain, and the relationship between the amount of strain and the electrical resistance. This type takes advantage of the fact that there is a certain relationship between the two phases, and detects changes in electrical resistance by amplifying them using a bridge circuit. Some devices are known that incorporate a circuit that compensates for the zero point output to perform temperature compensation, but the temperature compensation range is very close to room temperature, for example, about 0 to 40 degrees Celsius, as shown in Figure 3. It can only adapt to a limited range of temperature changes, and if there is a temperature change that exceeds the permissible range, it becomes impossible to adjust the zero point output, and the measurement accuracy decreases significantly. On the other hand, when carrying out the pressure crystallization method, for example, when solid-liquid separation is performed at a point (p+, T,) on the solid-liquid equilibrium line of impurity concentration x2 in FIG. Similarly, in the final stage of mother liquor separation (pressure release state), a slurry material with a high concentration of specific components may flow into the pressure sensor body through the pipe. In this state, when the operating pressure P acts on the next cycle of crystallization component 11 within the pressure detector body, the substance with a high specific component concentration crystallizes and solidifies, making subsequent pressure detection impossible. In order to avoid such problems, in the previously announced invention, as shown in FIG. 2, a Heshes type heater 4 is inserted into the pressure detector body 1 to prevent crystallization and solidification from proceeding by heating the inside. Rather, it is devised to melt the invading solid components.

こうした晶析固化の防止手段は第2図に示した様なシー
ス型ヒータ加熱に限らず、外部からの間接加熱を採用す
ることも可能である。
The means for preventing such crystallization and solidification is not limited to heating with a sheath type heater as shown in FIG. 2, but indirect heating from the outside can also be employed.

[発明が解決しようとする問題点] ところが上記の様な方法で圧力検出器本体を加熱した場
合、該加熱による昇温は歪ゲージによって検出される電
気抵抗値にも直接の影響を及ぼし、検出精度が極端に低
下して圧力制御自体に破綻を来たすこととなる。
[Problems to be Solved by the Invention] However, when the pressure sensor body is heated in the manner described above, the temperature increase due to the heating has a direct effect on the electrical resistance value detected by the strain gauge. The accuracy will be extremely reduced and the pressure control itself will fail.

本発明はこの様な事情に着目してなされたものであって
、その目的は、前述の如く温度が大幅に変動する部位に
適用した場合でも、圧力を正確に検知することのできる
様な装置を提供しようとするものである。
The present invention has been made in view of these circumstances, and its purpose is to provide a device that can accurately detect pressure even when applied to areas where the temperature fluctuates significantly as described above. This is what we are trying to provide.

[問題点を解決するための手段] 上記の目的を達成することのできた本発明装置の構成は
、温度変化を伴う場所で使用される歪ゲージ型圧力検出
装置であって、圧力により変形する金属部材の表面に貼
付された歪ゲージを検出素子とする圧力検出器と、上記
歪ゲージ貼付位置に近接して圧力により変形する前記金
属表面上に貼付された測温センサーと、更に上記圧力検
出器によって得られる温度変化による誤差を含んだ圧力
値を、上記測温センサーによって得られる温度情報を用
いて補正する演算機構を備えてなるところに要旨を有す
るものである。
[Means for Solving the Problems] The configuration of the device of the present invention that has achieved the above object is a strain gauge type pressure sensing device used in places where temperature changes occur, and is a strain gauge type pressure sensing device that uses metal that deforms due to pressure. a pressure sensor whose detection element is a strain gauge affixed to the surface of the member; a temperature sensor affixed on the metal surface that is deformed by pressure in proximity to the strain gauge affixing position; and further the pressure sensor. The gist of the present invention is that it is provided with an arithmetic mechanism that corrects a pressure value including an error due to a temperature change obtained by using temperature information obtained by the temperature sensor.

[作用及び実施例] 本発明に係る圧力検出装置は、前述の如く■圧力により
変形する金属部材の表面に貼付される歪ゲージを検出素
子とする圧力検出器と、■上記歪ゲージ貼付位置に近接
して貼付される測温センサー、及び■上記圧力検出器に
よって得られる圧力値を上記測温センサーによって得ら
れる温度情報を用いて補正する演算機構を備えたところ
に特徴を有するものであり、圧力検出器によって求めら
れる圧力値は、その測定位置に設けられた測温センサー
によって同時に検知される温度を用いて即座に補正演算
されるので、測定部の温度が急変した場合でも圧力測定
値に誤差が生じる様な恐れがなく、圧力制御も的確に遂
行することができる。たとえば第1図は本発明の実施例
を示す縦断面説明図であり、圧力により変化する圧力測
定用金属部材としては第2図に示した従来例と同様円筒
状の耐圧金属材1が使用され、その一方端1aは圧力晶
析装置の加圧室に連通した管路(図示せず)に接続する
と共に、他方端1bはシース型ヒータ4の保持部を兼ね
た端蓋2によって封鎖し、晶析操作圧力が耐圧金属材i
内へ及ぶ様に構成されている。そして該耐圧金属材1の
略中央部外周面には圧力検出用の歪ゲージ3を貼付し、
内圧変化によって耐圧金属材1に生ずる歪量を検知し得
る様に構成すると共に、歪ゲージ3の貼付位置に近接し
た位置に測温センサー5が貼付されている。そしてこれ
らの検知信号は演算・表示装置6へ送られ、この部分で
は、電気抵抗値によって求められる歪量から圧力値への
演算、及び該圧力値の温度情報による補正・演算がコン
ピュータシステムによって即座に実行され、算出された
圧力値は直ちに表示部6aに表示されるほか、必要によ
っては連続的に記録される。尚これらの表示及び記録に
当たっては、晶析分離操業の繰り返しに伴なう温度変化
を同時に表示し、記録することも勿論可能である。
[Operations and Examples] As described above, the pressure detection device according to the present invention includes (1) a pressure detector whose detection element is a strain gauge attached to the surface of a metal member that is deformed by pressure, and (2) at the strain gauge attachment position. It is characterized in that it is equipped with a temperature measurement sensor attached in close proximity, and (1) a calculation mechanism that corrects the pressure value obtained by the pressure detector using temperature information obtained by the temperature sensor, The pressure value determined by the pressure detector is immediately corrected using the temperature simultaneously detected by the temperature sensor installed at the measurement location, so even if the temperature of the measurement part suddenly changes, the pressure measurement value will not change. There is no risk of errors occurring, and pressure control can be performed accurately. For example, FIG. 1 is an explanatory longitudinal cross-sectional view showing an embodiment of the present invention, in which a cylindrical pressure-resistant metal material 1 is used as the metal member for measuring pressure that changes with pressure, as in the conventional example shown in FIG. , one end 1a thereof is connected to a conduit (not shown) communicating with the pressurizing chamber of the pressure crystallizer, and the other end 1b is closed by an end cover 2 which also serves as a holding part for the sheath type heater 4, Crystallization operation pressure is pressure resistant metal material i
It is designed to extend inward. A strain gauge 3 for pressure detection is attached to the outer circumferential surface of the pressure-resistant metal material 1 at approximately the center.
It is configured to be able to detect the amount of strain produced in the pressure-resistant metal material 1 due to changes in internal pressure, and a temperature sensor 5 is attached at a position close to where the strain gauge 3 is attached. These detection signals are then sent to the calculation/display device 6, where the computer system instantly calculates the amount of strain determined by the electrical resistance value into a pressure value, and corrects and calculates the pressure value using temperature information. The calculated pressure value is immediately displayed on the display section 6a, and is also continuously recorded if necessary. Incidentally, in displaying and recording these, it is of course possible to simultaneously display and record temperature changes accompanying repeated crystallization separation operations.

本発明で使用する歪ゲージ構成素子としては格別特殊な
ものが要求される訳ではなく線状抵抗体や箔状抵抗体あ
るいは半導体等の従来から知られた歪測定用素子のすべ
てを使用することができ、また測温センサーとしても貼
付型熱電対や抵抗線温度ゲージ等従来から知られたあら
ゆるタイプのものが使用可能である。また耐圧金属材1
の形状や構造も図示したものに限定される理由はなく、
圧力に応じて一定の歪を生ずるものであれば、金属のf
it類を含めて一切制限されないが、耐圧強度や圧力に
応じた歪変化量の安定性等の観点から最も好ましいのは
図示した様な円筒状の基本構造を有するものである。
The strain gauge components used in the present invention do not require particularly special ones, and all conventional strain measurement elements such as linear resistors, foil resistors, and semiconductors can be used. In addition, all conventional types of temperature sensors such as adhesive thermocouples and resistance wire temperature gauges can be used. Also, pressure-resistant metal material 1
There is no reason to limit the shape and structure to what is shown in the diagram.
If the metal produces a certain strain in response to pressure, f
Although there are no particular limitations on the type, the most preferable one from the viewpoint of pressure resistance, stability of strain change depending on pressure, etc. is one having a cylindrical basic structure as shown in the drawing.

何れにしても本発明では歪ゲージ3の貼付位置に近接し
て貼付された測温センサーによって求められる温度を用
いて実測圧力値を補正・演算する構成を採用しているの
で測温結果の応答が非常に速く、温度の変動による悪影
響を受けることなく、圧力を高精度で検知することがで
きる。
In any case, the present invention employs a configuration in which the actual pressure value is corrected and calculated using the temperature determined by the temperature sensor attached close to the attachment position of the strain gauge 3, so the response of the temperature measurement result is is extremely fast and can detect pressure with high precision without being adversely affected by temperature fluctuations.

尚本発明を圧力晶析装置における圧力測定に使用する際
の加熱手段は図示した様なシース型ヒータ加熱に限られ
るものではなく、外部からの間接加熱法等を採用するこ
とも可能であるが、シース型ヒータ加熱法であれば加熱
を必要とする部位を直接加熱することができるので効率
が良く、隣接機器に対する熱影響を最小限に抑え得ると
いった利点に加えて、次の様な応用も可能となる。即ち
本発明を実施するに当たっては、測温センサー5によっ
て測定される温度を連続的に記録できる様に構成しても
よいことは先に説明した通りであるが、第1図にも示し
ている様にその測温結果をシース型ヒータ4の出力電源
フに伝達し、当該測定温度に応じて内部温度が予め設定
した目標温度(具体的にはたとえば晶出物を溶融し得る
限界温度)となる様に電源7の出力を自動制御する構成
を組込んでおけば、加熱温度自体を必要最低温度に保つ
ことができ、エネルギー経済性からしても、また関連機
器への熱影響を抑制する意味からも有効な利益を享受す
ることができる。
It should be noted that the heating means when using the present invention for pressure measurement in a pressure crystallizer is not limited to heating with a sheath type heater as shown in the figure, but it is also possible to adopt an indirect heating method from the outside. The sheath type heater heating method is highly efficient as it can directly heat the area that requires heating, and has the advantage of minimizing the thermal effect on adjacent equipment, as well as the following applications: It becomes possible. That is, in carrying out the present invention, it is possible to configure the system so that the temperature measured by the temperature sensor 5 can be continuously recorded, as described above, but this is also shown in FIG. The temperature measurement result is transmitted to the output power source of the sheathed heater 4, and the internal temperature is adjusted to a preset target temperature (specifically, for example, the limit temperature at which crystallized material can be melted) according to the measured temperature. By incorporating a configuration that automatically controls the output of the power supply 7 so that Effective benefits can also be enjoyed from the meaning.

[発明の効果] 本発明は以上の様に構成されており、温度変化を伴なう
部位における歪ゲージによる圧力測定を精度良く行なう
ことができ、圧力を重要な制御要素とする圧力晶析法等
を実施する際の温度の影響を的確に判断してより高精度
の圧力制御を行なうことに寄与することがで赴る梯にな
った。
[Effects of the Invention] The present invention is configured as described above, and is capable of accurately measuring pressure using a strain gauge at a location where temperature changes occur, and provides a pressure crystallization method in which pressure is an important control element. This has led to the achievement of contributing to more accurate pressure control by accurately determining the influence of temperature when carrying out such operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す縦断面説明図、第2図は
従来例を示す縦断面説明図、第3図は温度による零点出
力補償例を示す説明図、第4図は圧力晶析法を実施する
際の圧力と温度の関係を示すグラフである。 1・・・金属部材    2・・・端蓋3・・・歪ゲー
ジ    4・・・シース型ヒータ5・・・測温センサ
ー  6・・・演算・表示装置7・・・出力電源
Fig. 1 is an explanatory longitudinal cross-sectional diagram showing an embodiment of the present invention, Fig. 2 is an explanatory longitudinal cross-sectional diagram showing a conventional example, Fig. 3 is an explanatory diagram showing an example of zero point output compensation by temperature, and Fig. 4 is an explanatory diagram of a pressure crystal. 2 is a graph showing the relationship between pressure and temperature when carrying out an analysis method. 1...Metal member 2...End cover 3...Strain gauge 4...Sheath type heater 5...Temperature sensor 6...Calculation/display device 7...Output power supply

Claims (2)

【特許請求の範囲】[Claims] (1)温度変化を伴う場所で使用される歪ゲージ型圧力
検出装置であって、圧力により変形する金属部材の表面
に貼付された歪ゲージを検出素子とする圧力検出器と、
上記歪ゲージ貼付位置に近接して圧力により変形する前
記金属表面上に貼付された測温センサーと、更に上記圧
力検出器によって得られる温度変化による誤差を含んだ
圧力値を、上記測温センサーによって得られる温度情報
を用いて補正する演算機構を備えてなることを特徴とす
る圧力検出装置。
(1) A strain gauge type pressure detection device used in a place with temperature changes, which uses a strain gauge as a detection element attached to the surface of a metal member that deforms due to pressure;
The temperature sensor is attached to the metal surface that deforms due to pressure in the vicinity of the strain gauge attachment position, and the pressure value including an error due to temperature change obtained by the pressure sensor is measured by the temperature sensor. A pressure detection device characterized by comprising a calculation mechanism that performs correction using obtained temperature information.
(2)圧力によって変形する金属部材が、一方端の閉塞
された内圧式円筒体であり、且つ内部にシース型ヒータ
が挿入されたものである特許請求の範囲第1項に記載の
圧力検出装置。
(2) The pressure detection device according to claim 1, wherein the metal member that is deformed by pressure is an internal pressure type cylinder with one end closed, and a sheath type heater is inserted inside. .
JP5102087A 1987-03-05 1987-03-05 Pressure detector Pending JPS63218206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5102087A JPS63218206A (en) 1987-03-05 1987-03-05 Pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5102087A JPS63218206A (en) 1987-03-05 1987-03-05 Pressure detector

Publications (1)

Publication Number Publication Date
JPS63218206A true JPS63218206A (en) 1988-09-12

Family

ID=12875111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5102087A Pending JPS63218206A (en) 1987-03-05 1987-03-05 Pressure detector

Country Status (1)

Country Link
JP (1) JPS63218206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284033A (en) * 1989-04-24 1990-11-21 Daiwa Can Co Ltd Method for deciding internal pressure of canned food

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158201A (en) * 1984-08-29 1986-03-25 ティーディーケイ株式会社 Method of producing partial glazed ceramic board
JPS61221613A (en) * 1985-03-27 1986-10-02 Shimadzu Corp Zero point correcting device for measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158201A (en) * 1984-08-29 1986-03-25 ティーディーケイ株式会社 Method of producing partial glazed ceramic board
JPS61221613A (en) * 1985-03-27 1986-10-02 Shimadzu Corp Zero point correcting device for measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284033A (en) * 1989-04-24 1990-11-21 Daiwa Can Co Ltd Method for deciding internal pressure of canned food

Similar Documents

Publication Publication Date Title
US10656036B2 (en) Self-heated pressure sensor assemblies
JP2783059B2 (en) Process state detection device, semiconductor sensor and its status display device
EP2577245B1 (en) Process variable transmitter with thermocouple polarity detection
US9155481B2 (en) Apparatus for monitoring a position of a tube's distal end with respect to a blood vessel
US7467547B2 (en) Fluid-measuring device and fluid-measuring method
EP3586097B1 (en) Thermocouple temperature sensor with cold junction compensation
JP2579143B2 (en) Method of digital correction of process variable sensor and process variable transmitter therefor
KR102197378B1 (en) Thermal flow sensor device and flow rate correcting method
JP6594250B2 (en) Temperature measuring device and temperature measuring method
JPS63218206A (en) Pressure detector
US10386218B2 (en) Temperature measurement system for measuring the temperature of a tube and flowmeter comprising the temperature measurement system
US3534809A (en) Temperature measuring devices
JP3068526B2 (en) Heater temperature detection device for pulse heating type bonding equipment
US4619144A (en) Method of and apparatus for gas pressure measurement by the gas-friction principle
US11841277B2 (en) Skin-point temperature measurement assembly
WO2019163363A1 (en) Temperature measuring device, ambient temperature measuring method, and ambient temperature measuring program
JPH0635933U (en) Measuring instruments for temperature and pressure
JP2004198417A (en) Mass flow meter for fluid, and compensation method for measured signal of the mass flow meter for fluid
KR910009304B1 (en) Measuring method and its apparatus of heat strain
JPH01152317A (en) Load detector
JP2011085568A (en) Heat-conducting moisture meter
SU1446459A1 (en) Strain gauge transducer
JP3373083B2 (en) thermometer
JPH0781813B2 (en) Strain gauge device
JPH10185642A (en) Flowmeter