JPS63217716A - Photoelectric switch - Google Patents

Photoelectric switch

Info

Publication number
JPS63217716A
JPS63217716A JP5069187A JP5069187A JPS63217716A JP S63217716 A JPS63217716 A JP S63217716A JP 5069187 A JP5069187 A JP 5069187A JP 5069187 A JP5069187 A JP 5069187A JP S63217716 A JPS63217716 A JP S63217716A
Authority
JP
Japan
Prior art keywords
light
signal
circuit
emitting element
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5069187A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ichimura
清 市村
Kozo Yasuhara
安原 幸三
Satoshi Takahashi
聡 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP5069187A priority Critical patent/JPS63217716A/en
Publication of JPS63217716A publication Critical patent/JPS63217716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain an optical switch with low cost and high performance by providing a detection terminal comprising a light emitting element and a light receiving element blinked by a high frequency oscillation circuit and a referencing light emitting element whose blink period is opposite to that of the light emitting element and a referencing light receiving element, and applying addition/amplification/binarization to the signals of the signal light and the referencing light at the respective light receiving elements. CONSTITUTION:A reference light 13a of an element 12a becomes a light 13a inverting the period of the signal 13 by an inverter 11a with respect to the pulse light of the element 12. The signal light 13 radiates a body to be detected and its reflected light 15 is received by the element 16. The reference light 13a is received by the element 16a. The light is subject to photoelectric conversion, the signals 16c, 16b are added and inputted to a signal processing circuit 17. The summing signal 16d is subject to AC amplification 17a and only the fluctuation range of the signal is amplified, binaryzed (17b) by the threshold level and synchronized with the signal of the oscillation circuit by the circuit 17c, the circuit 17d confirms the pulse number to obtain an output in response to the presence of an object to be detected. Through the constitution above, the photoelectric switch detecting the fluctuation of a minute luminous quantity is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、物体の有無、位置、回転等の検知全行う光透
過型光電子スイッチ或いは光反射型光電子スイッチに関
するものであシ、特に誤動作がなく、微少な光電変動t
も検知可能にした光電子スイッチに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light-transmitting type optoelectronic switch or a light-reflecting type optoelectronic switch that detects the presence of an object, its position, rotation, etc. No slight photoelectric fluctuations
The present invention relates to an optoelectronic switch that also enables detection.

〔従来の技術〕[Conventional technology]

従来、開発されてきた光電子スイッチ回路のうち反射型
回路を図面によって説明する。第3図のブロック図に示
すように完像回路(31)より例えば10 KHz 、
 Duty 1/10.パルスワイド10μBθCの高
周波で発振し、パルス駆動によってと2 見金れた発光素子(52) (例えばLFiD )から
の出射光(33)全被検矧物体(34)Pi:照射し、
被検知物体(34)によって反射された反射光(35)
 i、受光素子(36)で受光し光電変換した電気信号
を信号処理回路(37)で処理することによって被検知
物体に応じた出力をするものである。ここで信号処理回
路(57)とは、受光素子(66〕で光電変換された電
気信号(36a) i交流増巾する又流増巾回路(37
a)、増巾された電気信号(37θ)をあるスレシホー
ルドレベルで二値化する二値化回路(37b)、発振回
路と同期をとる同期回路(37c)、及び二値化、同期
された出力信号(37f)についてパルス数確認によっ
て出力を行う確認回路(37d)よシ成る。
Among the conventionally developed optoelectronic switch circuits, a reflection type circuit will be explained with reference to the drawings. As shown in the block diagram of FIG. 3, for example, 10 KHz,
Duty 1/10. It oscillates at a high frequency with a pulse width of 10 μBθC, and by pulse driving, the light emitted from the light emitting element (52) (for example, LFiD) (33) and the whole object to be inspected (34) Pi: irradiates,
Reflected light (35) reflected by the detected object (34)
i. The electric signal received by the light receiving element (36) and photoelectrically converted is processed by the signal processing circuit (37) to output an output according to the detected object. Here, the signal processing circuit (57) is a current amplification circuit (37) that amplifies the electric signal (36a) photoelectrically converted by the light receiving element (66).
a), a binarization circuit (37b) that binarizes the amplified electric signal (37θ) at a certain threshold level, a synchronization circuit (37c) that synchronizes with the oscillation circuit, and a binarization and synchronization It consists of a confirmation circuit (37d) which outputs the output signal (37f) by confirming the number of pulses.

第5図は、第3図に示したブロック図のタイミングチャ
ート図を示したものである。以下第5図を参照しながら
第6図の反射型光電子スイッチの動作原理を説明する。
FIG. 5 shows a timing chart of the block diagram shown in FIG. The operating principle of the reflective optoelectronic switch shown in FIG. 6 will be explained below with reference to FIG.

第6図において、10 KHz、パルスワイド10 μ
sec、周期100μBθCで発信された発光素子(3
2〕からの出射光量は第5図の(53)となり、受光素
子(66〕で受光された反射光量は第5図の(55)と
なシ、反射光量(55)において(A)、(A’)は被
検知物体がない場合の光量を表わし、(0)は被検知物
体が存在する場合の光量で、(B)、CB’)は被検知
物体による反射光が受光素子に入ヤはじめる時、また被
検知物体がなくな9受光素子に被検知物体よりの反射光
が入らなくな9はじめる時の過渡期に発生する光量であ
る。反射光量(55)は受光素子(66)で光電変換さ
れ第3図に示す信号処理回路(67)の交流増巾回路(
37a )により第5図に示す通シ増巾後電気信号(5
7e)となシ、(57e )においてf省 (Thalf)、 (TholiLf)は反射光量(5
5)の過渡期光量(B) 。
In Figure 6, 10 KHz, pulse width 10 μ
sec, a light emitting element (3
2] is (53) in Figure 5, and the amount of reflected light received by the light receiving element (66) is (55) in Figure 5. In the amount of reflected light (55), (A), ( A') represents the amount of light when there is no object to be detected, (0) is the amount of light when there is an object to be detected, and (B) and CB') represent the amount of light reflected by the object to be detected and enters the light receiving element. This is the amount of light generated during the transition period when the object to be detected disappears and the reflected light from the object to be detected stops entering the light receiving element 9. The amount of reflected light (55) is photoelectrically converted by the light receiving element (66) and sent to the AC amplification circuit (67) of the signal processing circuit (67) shown in FIG.
37a), the electric signal after through-width increase (5
7e) In (57e), f half (TholiLf) is the amount of reflected light (5
5) Transitional light amount (B).

(B’)’に除去し二値化する二値化回路(37b)の
ス5と レジホールドレベルを表わしており、出力(弱)の現在
の状態が”0#ならばスレシホールドレペ# f ” 
ThoF#”ニ設定シ(スレシホールドレベルを高めに
する)逆に出力(58)の現在の状態が”1”秤 ならスレシホールドレベ/I/′th″’ ThoPF
 ’に設定(スレシホールド全低めにする〕させて、ス
レシホールドを実線に示す如く変化させる。増巾後電気
信号(37θ)は第3図における二値化回路(37b)
’に通過fることて各パルスのレベルがスレシボールド
以上なら“1″、スレシホールドよシ小さダ7 ければ@0”とした二値化後電気信号(n f )とな
り、さらに(l f )は第3図に示す同期回路(S7
c lで同期がとられ確認回路(37cl)によって同
期、パルス確認を行われた出力(58)となる。(なお
第3図に示す確認回路(37d)は第5図に示した二値
化後電気信号(57f)において1パルスのレベルによ
り確認し出方(58)のレベルefえているが、更に信
頼性を増すには3〜5の連続パルスのレベルによって行
う場合もある。)ココテスレシホールドレベル−Tho
&J−”ト−Tho罪’の差はスイッチ動作を保障する
ヒステリシス量であシ、一般的に次式で示す変動量にの
30〜40%を必要とする。
(B')' represents the threshold level and the threshold level of the binarization circuit (37b) that removes and binarizes. If the current state of the output (weak) is "0#," #f”
ThoF#"2 setting (make the threshold level higher) Conversely, if the current state of the output (58) is "1", the threshold level /I/'th"' ThoPF
' (lower the threshold) and change the threshold as shown by the solid line.The amplified electrical signal (37θ) is converted to the binarization circuit (37b) in Figure 3.
If the level of each pulse is higher than the threshold, it becomes "1", and if it is smaller than the threshold, it becomes @0, and then becomes the electric signal (n f ) after binarization. l f ) is the synchronous circuit (S7
The output (58) is synchronized with c1 and synchronized and pulse-confirmed by the confirmation circuit (37cl). (The confirmation circuit (37d) shown in Fig. 3 confirms the level of one pulse in the binarized electrical signal (57f) shown in Fig. 5, and the level ef of the output (58) is obtained, but it is even more reliable. (To increase the sensitivity, it may be done with 3 to 5 consecutive pulse levels.) Kokotes threshold level - Tho
The difference between &J and Tho is the amount of hysteresis that ensures switch operation, and generally requires 30 to 40% of the amount of variation expressed by the following equation.

M=−X100[係」 Po封ル 式中、K・・・・・変動量 M・・・・・変動率 PoW・・・被検知物体が存在する時の検知出力 Po′P−F・・・被検知物体が存在しない時の検知出
力 ム ここで、変動率か数係と小さい場合に従来開発された光
電子スイッチで被検知物体の検知を行うと、反射光は増
巾回路を通って第6図に示す如く増巾後電気信号(61
〕となシニ値回路全通って“01か″1”かに二値化さ
れるが、ヒステリシスが小さいために過渡期(B)、C
B’)の影響を受けた二値化後電気信号(62)となシ
、この二値化後電気信号(62)によって確認回路から
の出力は(66)に示す如く斜線で示されたチャタリン
グ等が発生し動作か不安定となシ信頼性が低下する。
M=-X100 [Part] During Po sealing ceremony, K...Variation amount M...Variation rate PoW...Detection output when a detected object is present Po'P-F...・Detection output when there is no object to be detected Here, when the variation rate is small and the coefficient of variation is small, if the object to be detected is detected using a conventionally developed optoelectronic switch, the reflected light passes through the amplification circuit and As shown in Figure 6, the electrical signal after amplification (61
] The entire digital value circuit is binarized into “01” or “1”, but because the hysteresis is small, the transition period (B), C
The output from the confirmation circuit due to the binarized electrical signal (62) affected by B') is chattering as shown by diagonal lines as shown in (66). etc. may occur, resulting in unstable operation and reduced reliability.

そこでヒステリシスを大す<桝保ちながら動作を正常に
行うため従来技術においては第4図に示す如くクランプ
回路(41aρ、  (41a2)と増巾回路(41b
+ )、 (411)x ) k多段に付加した回路と
することによって、第6図の増巾後電気信号(61)に
示す変動範囲LA−LBのみ増巾した第7図の増巾後電
気信号(71)に対してスレシホールド?設定し二値化
した二値化後電気信号(72)によって出力(731−
得て被検知物体の差を正確に検知しスイッチ動作を行う
方法がとられていた。
Therefore, in order to maintain normal operation while increasing the hysteresis, the conventional technology uses clamp circuits (41aρ, (41a2) and amplification circuits (41b) as shown in FIG.
+ ), (411) Threshold for signal (71)? Output (731-
The method used was to accurately detect the difference in the detected object and perform a switch operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第4図に示す如くクランプ回路、増巾回路を多段に付加
した光電子スイッチではクランプ回路にダイオード等の
整流素子を用いることが必要なため温度依存性が非常に
高くなると共に多段に増巾回路を設けるため非常に複雑
な回路となり誤動作発生率が高くなるばかシでなくスイ
ッチ自体のコストが高くなシ、形状の大きくなるという
難点があった。
As shown in Fig. 4, an optoelectronic switch with multiple stages of clamp circuits and amplifier circuits requires the use of rectifying elements such as diodes in the clamp circuit, resulting in extremely high temperature dependence and the addition of multiple stages of amplifier circuits. This not only makes the circuit extremely complicated and increases the rate of malfunctions, but also increases the cost and size of the switch itself.

〔問題点を解決するための手段」 本発明は、上記の如き問題点のない光電子スイッチを提
供することを目的として検討した結果得られたもので、
その要旨とするところは、高周波発信回路、当該発振回
路により点滅される信号用発光素子と発光素子よりの光
を受光する受光素子よシなる光学的検出端、高周波発振
回路により点滅される信号用発光素子の点滅周期を逆に
した参照用発光素子と当該参照用発光素子の光を受光す
る参照用受光素子と当該信号用受光素子よりの電気信号
及び当該参照用受光素子よりの電気信号全加算後、増巾
し二値化処理をするための信号処理回路とよりなること
を特徴とする光電子スイッチにある。
[Means for Solving the Problems] The present invention was obtained as a result of studies aimed at providing a photoelectronic switch that does not have the above-mentioned problems.
The main points are a high frequency oscillation circuit, a light emitting element for signals blinked by the oscillation circuit, an optical detection terminal such as a light receiving element that receives light from the light emitting element, and a signal detection terminal for signals blinked by the high frequency oscillation circuit. A reference light-emitting element with the blinking cycle of the light-emitting element reversed, a reference light-receiving element that receives light from the reference light-emitting element, an electrical signal from the signal light-receiving element, and an electric signal from the reference light-receiving element. A photoelectronic switch further comprises a signal processing circuit for amplification and binarization processing.

〔実施例〕〔Example〕

以下、図面により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明による光電子スイッチの一例を示す実施
例のブロック図であシ、反射型スイッチの例である。
FIG. 1 is a block diagram of an embodiment of an optoelectronic switch according to the present invention, and is an example of a reflective switch.

第1図中で、(11)は発信回路、(12)は信号用発
光素子、(16)は信号用受光素子、(11a)はイン
バータ、(12a)は参照用発光素子、(16a)は参
照用受光素子、(17)は信号用処理回路であシ、信号
用処理回路(17)は増巾回路(17a)、二値化回路
(171))、同期回路(17c)、確認回路(17d
)によって構成されている。
In Figure 1, (11) is a transmitting circuit, (12) is a signal light emitting element, (16) is a signal light receiving element, (11a) is an inverter, (12a) is a reference light emitting element, and (16a) is a The reference light receiving element (17) is a signal processing circuit, and the signal processing circuit (17) includes an amplification circuit (17a), a binarization circuit (171)), a synchronization circuit (17c), and a confirmation circuit ( 17d
).

次に上記構成の本発明の反射型光電子スイッチの動作原
理を第1図及び第2図により詳細に説明する。
Next, the operating principle of the reflective optoelectronic switch of the present invention having the above structure will be explained in detail with reference to FIGS. 1 and 2.

第1図において信号用発光素子(12)よ多投光される
信号光(チ)の光量は、発振回路(11)によって例え
ば第2図の(23)に示す如く周波数10ICH2,パ
ルスワイド10 peec、周期100 peecのパ
ルス光となるが、参照用発光素子(12a)から投光さ
れる参照光(?−!ia )は、インバータ(Ila)
によって第2図に示す如く信号光量中〕の周期と反転し
た参照光量(23a)となる。信号光(16)が、被検
知物体に照射されると反射光(15)とな多信号用受光
素子(16)で受光され、受光された反射光(15)の
光量は第2図の(25)に示す如く、被検知物体からの
光量が少ない時は(At、  仏勺、被検知物体からの
光量が多い時は(C)、過渡期には(B)。
In FIG. 1, the amount of signal light (H) that is multiple-projected from the signal light emitting element (12) is determined by the oscillation circuit (11) with a frequency of 10ICH2 and a pulse width of 10 peec, as shown in (23) in FIG. , the reference light (?-!ia) emitted from the reference light emitting element (12a) is pulsed light with a period of 100 peec.
As a result, as shown in FIG. 2, a reference light amount (23a) is obtained which is inverted from the cycle of the signal light amount. When the signal light (16) is irradiated onto the object to be detected, the reflected light (15) is received by the multi-signal light-receiving element (16), and the amount of the received reflected light (15) is as shown in FIG. As shown in 25), when the amount of light from the detected object is small (At), when the amount of light from the detected object is large (C), and during the transition period (B).

(8勺と変化する。−万、第1図において参照元(15
a)は、参照用受光素子(16a)で受光される。
(changes to 8. - 10,000, reference source (15) in Figure 1
A) is received by the reference light receiving element (16a).

受光後の反射光(15)、参照光(13a)は信号用受
光素子(16)、参照用受光素子(16a)にて光電変
換され、信号側電気信号(16c)、参照側電気信号(
161))となシ加算され加算後電気信号(16(1)
となって信処理回路(17)へ入る。なお信号何重+b 気信号(肘c)、参照側電気信号(汁b )、加算後電
気信号(W d)の交流波形を第2図に示す。
After receiving the light, the reflected light (15) and the reference light (13a) are photoelectrically converted by the signal light receiving element (16) and the reference light receiving element (16a), resulting in a signal side electric signal (16c) and a reference side electric signal (
161)) and the electrical signal after addition (16(1)
and enters the signal processing circuit (17). FIG. 2 shows the alternating current waveforms of the signal multiplication +b signal (elbow c), the reference side electric signal (juice b), and the added electric signal (Wd).

第1図において、信号処理回路(17)へ入った加算後
電気信号(16(1)は、交流増巾N路(17a)によ
って交流増巾され増巾後電気信号(17θ)となるが、
第2図に示す通シ加算後電気信号(26cL)の変動範
囲(26a)のみ増巾された増巾後電気信号(27e)
となる。増巾後電気信号(24θ)は二値電気信号(1
7f)となり、第2図(27f)に示す通シの交流波形
となる。さらに二値化後電気信号(17f)は周期回路
(17c)によって発振回路の発振信号と同期がとられ
て、確認回路(17d)に入シ、確認回路(17d)に
よってババス数確認をし、第2図の(2日)に示した被
検知物体の有、無に応じた出力となる。
In FIG. 1, the added electrical signal (16(1)) entering the signal processing circuit (17) is AC amplified by the AC amplification N path (17a) and becomes an amplified electrical signal (17θ).
Amplified electrical signal (27e) in which only the variation range (26a) of the electrical signal (26cL) shown in FIG. 2 is amplified
becomes. The electrical signal after amplification (24θ) is a binary electrical signal (1
7f), resulting in a continuous AC waveform shown in FIG. 2 (27f). Further, the binarized electric signal (17f) is synchronized with the oscillation signal of the oscillation circuit by the periodic circuit (17c), inputted to the confirmation circuit (17d), and the confirmation circuit (17d) confirms the Babas number. The output corresponds to the presence or absence of the object to be detected as shown in (2nd day) in FIG.

以上、詳述した如く本発明の光電子スイッチにおいて信
号側電気信号(26c)と参照側電気信号(26b)と
を加算した加算後電気信号(26d) ’i増巾する手
法tとっているので、増巾後電気信梓 号(27e)の” Tho丼”、@″Tho31!−f
’の差を大きくとるテ (ヒス←リシスを大きくとれる)ことができ変動率Mが
数憾と小さくても検知可能と々シ、極めて感度の高い光
電子スイッチとすることができる。また、本発明によれ
ばスイッチ感度等β のレベル設定は参照用光量(la)のピーク出力だけ全
調整すればよく、その調整方法も被検知物体からの光量
が少ない時、あるいは被検知物体からの光fが多い時の
出力を参考にして設定すればよい。なお、本発明の光電
子スイッチは透過型光電子スイッチまたは反射型光電子
スイッチのいずれとしても用いることができる。
As described above in detail, in the optoelectronic switch of the present invention, the method of amplifying the added electrical signal (26d) obtained by adding the signal side electrical signal (26c) and the reference side electrical signal (26b) is used. "Tho bowl" of Denshin Azusa (27e) after increasing the width, @"Tho31!-f
It is possible to make a large difference in hysteresis (hysteresis ← lysis), and even if the variation rate M is extremely small, it can be detected, resulting in an extremely sensitive optoelectronic switch. In addition, according to the present invention, the level setting of the switch sensitivity, etc., only needs to be done by fully adjusting the peak output of the reference light amount (la), and the adjustment method can also be used when the amount of light from the object to be detected is small, or when the amount of light from the object to be detected is small. The setting may be made with reference to the output when there is a large amount of light f. Note that the optoelectronic switch of the present invention can be used as either a transmission type optoelectronic switch or a reflective type optoelectronic switch.

他の実施例を第8図に示す。第8図は信号用発光素子(
12)と信号用受光素子(16)の先端及び参照用発光
素子(12a)と参照用受光素子(16a)の間に光フ
ァイバ等の導光体(81) 、 (82) 、 (83
)を接続することにより操作性の良好にして感度の高い
光電子スイッチとすることかでさる。また光し、信号用
発光素子(16)に照射することで、上述した信号用電
気信号と参照用電気信号の加算金光の状態で行い同様な
効果を得るものである。
Another embodiment is shown in FIG. Figure 8 shows the signal light emitting element (
12) and the tip of the signal light-receiving element (16), and between the reference light-emitting element (12a) and the reference light-receiving element (16a), there are light guides (81), (82), (83) such as optical fibers.
), it is possible to create a photoelectronic switch with good operability and high sensitivity. Further, by emitting light and irradiating the signal light emitting element (16), the above-mentioned signal electric signal and reference electric signal are added in a state of golden light, and the same effect is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば第4図に示す従来例に比べ部品点数が拡
るかに少なく、1だ温度特性も向上するため、故障の原
因が減シ、また低コストで容易に通常の光電子スイッチ
の改造でできて、設置が容易等の数々のメリット’に持
った微少光量変動を検知できる光電子スイッチの提供が
できた。
According to the present invention, compared to the conventional example shown in Fig. 4, the number of parts is much smaller and the temperature characteristics are improved, so the causes of failure are reduced, and the switch can be easily replaced with an ordinary optoelectronic switch at low cost. We have been able to provide an optoelectronic switch that can detect minute fluctuations in light intensity and has numerous advantages such as being easily modified and easy to install.

また本発明の光電子スイッチは本米有するスイッチ作用
金利用してカラーセッサ、アークセンサ、探傷センサ等
に応用可能である。
Further, the photoelectronic switch of the present invention can be applied to color processors, arc sensors, flaw detection sensors, etc. by utilizing the switch function metal of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の反射型光電子スイッチの実施例を示す
ブロック図、第2図は第1図の動作を示すタイムチャー
ト図、第3図は従来の反射型光電子スイッチを示すブロ
ック図、第4図は従来の変動率Mが数条でも検知できる
反射型光電子スイッチのブロック図、第5図、第6図は
第6図の動作を示すタイムチャート図、第7図は第4図
の動作を示すタイムチャート図、第8図、第9図は本発
明の反射型光電子スイッチの他の実施例を示すブロック
図である。 なお、図面中に使用した符号において 11.31・・・・・発振回路 12・・・・・信号用発光素子 12a・・・・・参照用発光素子 16・・・・・信号用受光素子 16a・・・・・参照用受光素子 17.37・・・・・信号処理回路 14・・・・・被検知物体 纂7I!1 第2罰 時藺 葬、3凹 ぐ 襄4 回 狐5図 喬藺 乳2凹 竜7図
FIG. 1 is a block diagram showing an embodiment of the reflective optoelectronic switch of the present invention, FIG. 2 is a time chart showing the operation of FIG. 1, and FIG. 3 is a block diagram showing a conventional reflective optoelectronic switch. Figure 4 is a block diagram of a conventional reflective optoelectronic switch that can detect even a few fluctuation rates M, Figures 5 and 6 are time charts showing the operation of Figure 6, and Figure 7 is the operation of Figure 4. 8 and 9 are block diagrams showing other embodiments of the reflective optoelectronic switch of the present invention. In addition, in the symbols used in the drawings, 11.31...Oscillation circuit 12...Signal light emitting element 12a...Reference light emitting element 16...Signal light receiving element 16a ...Reference light receiving element 17.37...Signal processing circuit 14...Detected object collection 7I! 1. 2nd punishment, 3. Concave 4, 5 foxes, 2. concave dragons, 7.

Claims (4)

【特許請求の範囲】[Claims] (1)高周波発振回路、当該発振回路により点滅される
信号用発光素子と発光素子よりの光を受ける信号用受光
素子とよりなる光学的検出端、高周波発振回路により点
滅される信号用発光素子の点滅周期を逆にした参照用発
光素子と、当該参照用発光素子の光を受ける参照用受光
素子と当該信号用受光素子よりの電気信号及び当該参照
用受光素子よりの電気信号を加算後、増巾し二値化処理
するための信号処理回路とよりなることを特徴とする光
電子スイッチ。
(1) A high-frequency oscillation circuit, an optical detection end consisting of a signal light-emitting element blinked by the oscillation circuit and a signal light-receiving element that receives light from the light-emitting element, and a signal light-emitting element blinked by the high-frequency oscillation circuit. After adding the electrical signals from the reference light-emitting element with the blinking period reversed, the reference light-receiving element that receives the light from the reference light-emitting element, the signal light-receiving element, and the reference light-receiving element, An optoelectronic switch comprising a signal processing circuit for width binarization processing.
(2)光学的検出端として光導光体を信号用発光素子及
び信号用受光素子に結合したことを特徴とする特許請求
の範囲第1項記載の光電子スイッチ。
(2) A photoelectronic switch according to claim 1, characterized in that a light guide is coupled to a signal light emitting element and a signal light receiving element as an optical detection end.
(3)光の送受を負わしめる光導光体を参照用発光素子
及び参照用受光素子間に結合したことを特徴とする特許
請求の範囲第1項記載の光電子スイッチ。
(3) A photoelectronic switch according to claim 1, characterized in that a light guide for transmitting and receiving light is coupled between a reference light emitting element and a reference light receiving element.
(4)参照用受光素子として信号用受光用素子を用いる
ことを特徴とする特許請求の範囲第1項記載の光電子ス
イッチ。
(4) The optoelectronic switch according to claim 1, wherein a signal light receiving element is used as the reference light receiving element.
JP5069187A 1987-03-05 1987-03-05 Photoelectric switch Pending JPS63217716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5069187A JPS63217716A (en) 1987-03-05 1987-03-05 Photoelectric switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5069187A JPS63217716A (en) 1987-03-05 1987-03-05 Photoelectric switch

Publications (1)

Publication Number Publication Date
JPS63217716A true JPS63217716A (en) 1988-09-09

Family

ID=12865948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5069187A Pending JPS63217716A (en) 1987-03-05 1987-03-05 Photoelectric switch

Country Status (1)

Country Link
JP (1) JPS63217716A (en)

Similar Documents

Publication Publication Date Title
JP3454360B2 (en) Photoelectric sensor
DE3781657D1 (en) REFLECTION TYPE PHOTOELECTRIC SWITCH.
JPS63217716A (en) Photoelectric switch
EP3356846B1 (en) Method to detect a signal and optoelectronic sensor
ES8502545A1 (en) Device for the detection of a gas using a sensor consisting of a metallic oxide.
JPH1038751A (en) Optical fiber breakage detector
KR101462140B1 (en) Infrared ray processing Method and apparatus for removing a light source of illumination
JP3638243B2 (en) Reflection type light modulation type detection device
JP3062265B2 (en) Photoelectric switch
JPS61122799A (en) Optical type smoke detector
JP2761702B2 (en) Photodetector
JP2000131435A (en) Reflected light coupling detector
JPH0514162A (en) Photoelectric sensor
JPS5967480A (en) Optical fiber type photoelectric switch
JPS6196626A (en) Reflection type photoelectric switch
KR970000926Y1 (en) Tape terminal detection circuit
JP2000164087A (en) Photoelectric switch
JPH0936725A (en) Photoelectric sensor
JPH0440314A (en) Optical measuring instrument
JPH08184680A (en) Device and method for detecting light
JPS6365585A (en) Optical reader
JPH0381686A (en) Reflection type human body detecting circuit
JPS5967482A (en) Optical fiber type photoelectric switch
SU1702176A2 (en) Photoelectric sensor of angular displacements
SU765829A1 (en) Photoelectric method of reading-out information from punched carrier