JPS63217542A - Optical information recording member - Google Patents

Optical information recording member

Info

Publication number
JPS63217542A
JPS63217542A JP62050555A JP5055587A JPS63217542A JP S63217542 A JPS63217542 A JP S63217542A JP 62050555 A JP62050555 A JP 62050555A JP 5055587 A JP5055587 A JP 5055587A JP S63217542 A JPS63217542 A JP S63217542A
Authority
JP
Japan
Prior art keywords
resistant protective
heat
protective layer
layer
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62050555A
Other languages
Japanese (ja)
Inventor
Susumu Sanai
佐内 進
Kunio Kimura
邦夫 木村
Masatoshi Takao
高尾 正敏
Kenichi Osada
憲一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62050555A priority Critical patent/JPS63217542A/en
Publication of JPS63217542A publication Critical patent/JPS63217542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To improve recording and erasing characteristics and repetitive characteristic by providing a laminated structure of heat resistant protective layers having absorption in a service wavelength region and heat resistant protective layers having no absorption therein between a recording layer and a transparent heat resistant protective layer. CONSTITUTION:The recording layer 4 having the light absorptivity and the resistant protective layers 2, 6 having no light absorption in the wavelength region of laser light to be used for recording and erasure are provided on the substrate 1; further, the heat resistant protective layers 3, 5 which have the optical absorptivity in the service wavelength region and do not mix with the recording layer when irradiated by the laser are provided between the recording layer 4 and the protective layers 2, 6. The cooling rate of the recording layer 4 can be thereby varied to the cooling speed suitable for recording film and the temp. distribution in the track width direction of the track groove part of a disk is uniformized. The recording and erasing characteristics as well as the repetitive characteristic are, therefore, improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光、熱などを用いて高速かつ、高密度に光学
的手段で情報を記録、消去、再生できる光学情報記録部
材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical information recording member capable of recording, erasing, and reproducing information by optical means at high speed and with high density using light, heat, or the like.

従来の技術 繰り返し記録・消去可能な非破壊型の光学式情報記録部
材、たとえば光デイスクメモリーにおいて、基材として
用いられる樹脂がレーザ加熱時に損傷を受けないように
、酸化物等の耐熱保護層を基材と記録層の間、または記
録層の上に設けることが提案されている。耐熱保護層と
して用いられる材料としては酸化物(SiO2,GeO
2,Al2O3゜B e O2)、窒化物(BN、5t
3N4.AIN)J化恒5ic)、カルコゲン化物(Z
nS、Zn5e)などが提案されている。
Conventional technology In non-destructive optical information recording members that can be repeatedly recorded and erased, such as optical disk memories, heat-resistant protective layers such as oxides are used to prevent the resin used as the base material from being damaged during laser heating. It has been proposed to provide it between the base material and the recording layer or on the recording layer. Materials used as the heat-resistant protective layer include oxides (SiO2, GeO2,
2, Al2O3゜B e O2), nitride (BN, 5t
3N4. AIN) J chemical compound 5ic), chalcogenide (Z
nS, Zn5e), etc. have been proposed.

耐熱保護層に要求される特性の主なものとしは、(1)
使用波長領域(760nm 〜840nm)において透
明であること。
The main characteristics required for a heat-resistant protective layer are (1)
Must be transparent in the wavelength range used (760nm to 840nm).

(リ 融点が動作する温度より高いこと。(The melting point must be higher than the operating temperature.)

斡)機械的強度が大きいこと、 (4)化学的に安定なこと。斡) High mechanical strength; (4) Chemically stable.

(5)適当な熱定数(熱伝導率、比熱)を持っているこ
と。
(5) It must have appropriate thermal constants (thermal conductivity, specific heat).

である。It is.

前記の諸物質はこれらの条件を完全に満足しているとは
言えない。
It cannot be said that the above-mentioned substances completely satisfy these conditions.

発明が解決しようとする問題点 レーザビームの強さ分布はガラス分布をしている。The problem that the invention seeks to solve The intensity distribution of the laser beam has a glass distribution.

このため、ディスクの溝の中央と端の部分では昇温、冷
却の温度・時間特性が異なるため、溝内において記録材
料の相分離及び偏析がおこる。このため記録・消去の繰
シ返しによって、相分離及び偏析が増加し、繰シ返しの
寿命が制限される。また、記録材料に適した冷却速度で
ないと記録・消去特性を向上させることができない問題
がある。
For this reason, the temperature and time characteristics of heating and cooling differ between the center and the end portions of the grooves of the disk, so that phase separation and segregation of the recording material occur within the grooves. For this reason, repeated recording and erasing increases phase separation and segregation, limiting the repeatable life. Further, there is a problem that recording/erasing characteristics cannot be improved unless the cooling rate is appropriate for the recording material.

本発明は上述の問題点を、耐熱保護層の材料及び構造を
変えることで解決したものである。
The present invention solves the above-mentioned problems by changing the material and structure of the heat-resistant protective layer.

問題点を解決するための手段 本発明では、耐熱保護層として、使用波長領域760〜
830 nmにおいて、耐熱保護層自体が光を吸収して
rMLwが上がる光学的消衰係数(k>o )を持つ材
料と光吸収のない透明な耐熱保護層との少なくとも2層
の積層による耐熱保護層を用いた構造とする。
Means for Solving the Problems In the present invention, the heat-resistant protective layer is used in the wavelength range 760~
Heat-resistant protection by laminating at least two layers: a material with an optical extinction coefficient (k>o), at which the heat-resistant protective layer itself absorbs light and increases rMLw at 830 nm, and a transparent heat-resistant protective layer that does not absorb light. The structure uses layers.

作  用 本発明は耐熱保護層として、光吸収性のある保護層と光
吸収性のない耐熱保護層を用いることによシ、光吸収層
の厚さく記録層+保護層)が従来よシ厚くなる。つまシ
レーザ加熱による熱容量が大きくなる理由で、ディスク
のトラック幅方向の溝内の温度分布を均一にできる。ま
た光吸収性の耐熱保護層の厚さを変えることで、記録材
料の記録、消去に適した冷却速度に変えることができも
実施例 以下本発明の実施例について添付図面に基づき説明する
。第1図は、本発明において基本となる光学式情報記録
部材の断面の概略であシ、1,7が基材、2と6が従来
の耐熱保護層、3と6が光吸収のある耐熱保護層、4が
記録層であって、8の保護基材企7の接着剤で貼シ合せ
ている。本発明では、3と6の耐熱保護層の材質を特定
のものにすることが特徴である。従来の材料、たとえば
2酸化ゲルマニウム(GeO3)、2酸化ケイ素(S 
102) 。
Function The present invention uses a light-absorbing protective layer and a non-light-absorbing heat-resistant protective layer as the heat-resistant protective layer, so that the thickness of the light-absorbing layer (recording layer + protective layer) is thicker than before. Become. Since the heat capacity due to laser heating increases, the temperature distribution within the groove in the track width direction of the disk can be made uniform. Further, by changing the thickness of the light-absorbing heat-resistant protective layer, it is possible to change the cooling rate to suit recording and erasing of the recording material.Examples Hereinafter, examples of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of the optical information recording member that is the basis of the present invention. 1 and 7 are base materials, 2 and 6 are conventional heat-resistant protective layers, and 3 and 6 are light-absorbing heat-resistant The protective layer 4 is a recording layer, and is bonded to the protective base material 8 using an adhesive 7. The present invention is characterized in that the heat-resistant protective layers 3 and 6 are made of specific materials. Conventional materials such as germanium dioxide (GeO3), silicon dioxide (S
102).

硫化アニン(ZnS)などを用いた場合、特に熱的性質
に問題があった。
When anine sulfide (ZnS) or the like is used, there are problems with thermal properties in particular.

そしてこの熱的性質はレーザの熱エネルギを効率よく利
用するために、適当な熱伝導率、比熱。
This thermal property has appropriate thermal conductivity and specific heat in order to efficiently utilize the thermal energy of the laser.

密度を持っていることが必要である。熱伝導率が大き過
ぎると、熱が逃げやすく、多くのエネルギを必要とする
ので不都合であるし、また小さ過ぎると今度は急冷条件
が得られなくなってしまう。
It is necessary to have density. If the thermal conductivity is too high, heat easily escapes and a lot of energy is required, which is disadvantageous, and if the thermal conductivity is too low, it becomes impossible to obtain rapid cooling conditions.

冷却条件は、光学式情報記録法のうちで、相変化型の場
合には加熱と、急冷または徐冷を組み合せて2つの層の
間を可逆的に往復させることにょシ記録、消去を実現し
ているので、重要である。
Among optical information recording methods, in the case of the phase change type, the cooling conditions are achieved by reversibly reciprocating between the two layers by combining heating and rapid cooling or slow cooling. It is important because

そして本発明の特徴は、光学的消衰係数(k>O)のあ
る耐熱保護材料を用いることで、保護材料自体を加熱す
ることができ、記録層の冷却条件を変えることが可能で
ある。またレーザ照射部の内、ディスクトラック溝部の
温度分布を均一にすることができる。この効果によシ記
録、消去特性を改善でき、更に記録、消去の繰シ返しの
信頼性を向上できる。
A feature of the present invention is that by using a heat-resistant protective material with an optical extinction coefficient (k>O), the protective material itself can be heated, and the cooling conditions of the recording layer can be changed. Moreover, the temperature distribution in the disk track groove part of the laser irradiation part can be made uniform. This effect can improve the recording and erasing characteristics, and further improve the reliability of repeated recording and erasing.

従来の耐熱保護材料を用いて繰シ返し特性が劣化する原
因を検討した結果、第2図の9に示すように、トラック
溝幅方向に温度分布があり、記録材料が相分離又は偏析
することがわかった。そこでトラック溝のトラック幅方
向の温度分布を均一にする方法を検討した。
As a result of examining the causes of deterioration of repeat characteristics using conventional heat-resistant protective materials, we found that there is a temperature distribution in the width direction of the track groove, as shown in 9 in Figure 2, and that the recording material undergoes phase separation or segregation. I understand. Therefore, we investigated a method to make the temperature distribution of the track groove uniform in the track width direction.

本発明者らはレーザ照射によって加熱される部分の熱容
量を増加させることで、温度分布を均一にできると考え
た。そこで光学的消衰係数(k>O)であるPb5(k
=o、s)  を用いて、記録層をpbsではさんで、
さらにその上をZnS  ではさんだ。このようにする
ことで、従来よりトラック溝内の温度分布を小さくでき
、繰シ返し特性を向上できた。
The present inventors thought that temperature distribution could be made uniform by increasing the heat capacity of the portion heated by laser irradiation. Therefore, Pb5(k
= o, s), sandwich the recording layer between PBS,
Furthermore, ZnS was sandwiched on top of that. By doing so, the temperature distribution within the track groove can be made smaller than before, and the repeatability characteristics can be improved.

ここで保護材料として光吸収性の材料と光吸収のない材
料の2層構造にしたのは、光吸収性の材料に熱的な役割
を、従来の保護層に化学的な安定性と記録層との光学的
な役割を分担させるためである。
The reason why we adopted a two-layer structure of a light-absorbing material and a non-light-absorbing material as a protective material is that the light-absorbing material has a thermal role, while the conventional protective layer has a chemical stability and a recording layer. This is to share the optical role with.

そしてこの光吸収性の保護材料を用いることで、第2図
の9に示すように、従来よシ溝内の温度分布は均一にな
った。しかし溝以外の部分に温度分布が生じた。このよ
うに、トラック幅方向で、温度分布の生じる部分を光吸
収性の保護材料を用いることで変えることができた。
By using this light-absorbing protective material, the temperature distribution within the groove has become more uniform than in the past, as shown by 9 in FIG. However, a temperature distribution occurred in areas other than the groove. In this way, it was possible to change the portion where the temperature distribution occurs in the track width direction by using the light-absorbing protective material.

一方、このPbS層を設けることで、光吸収部分の熱容
量が増加するため、第3図の11.12に示すように記
録膜の冷却速度を従来よシ遅くすることができた。この
ためこの光学的吸収のある保護層を用いることで、記録
膜の記録、消去に適した冷却速度に変えることができた
On the other hand, by providing this PbS layer, the heat capacity of the light-absorbing portion increases, so that the cooling rate of the recording film can be made slower than before, as shown at 11.12 in FIG. Therefore, by using this optically absorbing protective layer, it was possible to change the cooling rate to be suitable for recording and erasing the recording film.

さらに実験を続けたところ、光学的消衰係数k(k>O
)のある保護層を用いることで、 pbsと同様に、レ
ーザ照射部分の温度をほぼ均一にすることが可能となシ
、また記録層の冷却速度を変えることが可能であること
がわかった。
Further experiments revealed that the optical extinction coefficient k (k>O
It has been found that by using a protective layer with ), it is possible to make the temperature of the laser irradiated part almost uniform, as with PBS, and it is also possible to change the cooling rate of the recording layer.

しかし、この光吸収のある耐熱保護層を薄くすれば、熱
特性を改善することが困難となシ、また厚くすれば、元
が記録層に達しなくなるため、記録、消去を感知するこ
とができない。そこでこの光吸収のある耐熱保護層の厚
さは最適な厚さがあり、第1表に示すように100〜5
00人が適当であった。
However, if this heat-resistant protective layer that absorbs light is made thinner, it will be difficult to improve its thermal properties, and if it is made thicker, the source will not reach the recording layer, making it impossible to detect recording or erasing. . Therefore, the thickness of this heat-resistant protective layer that absorbs light has an optimum thickness, as shown in Table 1.
00 people was appropriate.

また光学的消衰係数にの値は、光学計算によシ0.2か
ら3.0までが適当であった。kの値が小さいと耐熱保
護層をレーザ照射で温度抽上げることが困難となシ、記
録層の冷却速度を耐熱保護層の膜厚で制御できる範囲が
狭くなること及び、ディスク溝部の温度分布を均一にで
きない問題があった。またkの値が3.0よシ大きくな
ると、サンプルの透過率が低くなシ、記録膜の光学的変
化を検出することが困難となる問題があった。
Further, the appropriate value for the optical extinction coefficient was 0.2 to 3.0 according to optical calculation. If the value of k is small, it will be difficult to extract the temperature of the heat-resistant protective layer by laser irradiation, the range in which the cooling rate of the recording layer can be controlled by the thickness of the heat-resistant protective layer will be narrowed, and the temperature distribution in the disk groove will be reduced. There was a problem that it could not be made uniform. Furthermore, when the value of k is greater than 3.0, there are problems in that the transmittance of the sample is low and it becomes difficult to detect optical changes in the recording film.

そしてこの耐熱保護層の融点が800℃以下であると記
録、消去時に保護層が損傷すること及び、記録膜構成元
素が、耐熱保護層に拡散することがわかった。
It has been found that if the melting point of the heat-resistant protective layer is 800° C. or lower, the protective layer is damaged during recording and erasing, and elements constituting the recording film diffuse into the heat-resistant protective layer.

一方この光学的吸収のある、つまり光学的消衰係数にの
ある誘電体と、透明な光学的に吸収のない誘電体の2層
以上にした場合、たとえば第4図のような構成にした場
合も、前記と同様に記録。
On the other hand, when two or more layers are used: a dielectric material with optical absorption, that is, a dielectric material with an optical extinction coefficient, and a transparent dielectric material with no optical absorption, for example, when the structure is as shown in Fig. 4. Also recorded in the same way as above.

消去特性及び繰り返し特性の向上に効果があった。This was effective in improving erasing characteristics and repeatability.

同図において、第1図と同様の部分には同一番号を付し
て説明を省略する。
In this figure, the same parts as in FIG. 1 are given the same numbers and their explanations will be omitted.

そしてこの光学的消衰係数のある耐熱保護材料を種々実
験した結果、カルコゲン化物、窒化物。
As a result of various experiments on heat-resistant protective materials with optical extinction coefficients, we found chalcogenides and nitrides.

炭化物、酸化物、または7ツ化物で前記と同様な効果が
あった。
Carbides, oxides, or heptadides had similar effects to those described above.

特にカルコゲン化物として硫化物(PbS、Mn5)、
テルル化物(PbTe、ZnTe)を用いた場合、窒化
物としてTaN、TiN、ZrNを用いた場合、酸化物
として遷移金属の酸化物(Tio2.Fe3O4,Ni
p。
In particular, sulfides (PbS, Mn5) as chalcogenides,
When tellurides (PbTe, ZnTe) are used, when TaN, TiN, ZrN are used as nitrides, transition metal oxides (Tio2.Fe3O4, Ni) are used as oxides.
p.

Cr2o3.WO2)を用いた場合、炭化物としてTa
C。
Cr2o3. When using WO2), Ta is used as a carbide.
C.

T I C、W2 Gを用いた場合、フッ化物としてC
r F3−F e F 2− N z F 2を用いた
場合に、繰シ返し特性及び、記録消去特性が従来よシ向
上することがわかった。
When TIC, W2G is used, C as a fluoride
It has been found that when rF3-FeF2-NzF2 is used, the repetition characteristics and recording/erasing characteristics are improved compared to the conventional ones.

以下に具体的実施例を示す。Specific examples are shown below.

実施例1 PMMA基村上に蒸着法でZnSよシなる耐熱保護層を
蒸着した。さらにこの上にPbS’1100゜200.
400.500.600,800人蒸着した。記録層の
成分は可逆的に結晶状態とアモルファス状態との間を往
復させることにより、記録。
Example 1 A heat-resistant protective layer such as ZnS was deposited on a PMMA substrate by a vapor deposition method. Furthermore, on top of this, PbS'1100°200.
400,500,600,800 people were deposited. Recording is performed by reversibly reversing the components of the recording layer between a crystalline state and an amorphous state.

消去が可能な相変化型の材料のひとつであるTeGe5
nO系のものを用い、膜厚は1ooO人としfco C
O上にまたPbS’i100.200.400゜500
.600人、800人蒸漬した。さらにこの上にZnO
を2000人蒸着人蒸。
TeGe5 is one of the phase change materials that can be erased.
Use an nO-based material, and the film thickness is 100% fco C.
PbS'i100.200.400゜500 on O
.. 600 and 800 people were steamed. Furthermore, on top of this, ZnO
2000 people vaporized.

このZnSの膜厚構成はレーザーの吸収効率の観点から
と光学定数の変化が大きくなるような観点からとから決
めたものである。
This ZnS film thickness structure was determined from the viewpoint of laser absorption efficiency and from the viewpoint of increasing the change in optical constants.

第1表にpbs  の膜厚に対する繰シ返し回数を示す
。この測定はディスク状に形成したものを回転しながら
動的に測定したものである。レーザの波長は830 n
mでビームはディスク上で回折限界まで絞っている。P
bS層を設けることで繰シ返しの回数は上昇している。
Table 1 shows the number of repetitions with respect to the film thickness of PBS. This measurement was performed dynamically while rotating a disc-shaped disc. The wavelength of the laser is 830n
At m, the beam is focused to the diffraction limit on the disk. P
By providing the bS layer, the number of repetitions is increased.

さらにPbS層を厚くすると繰シ返しの回数は減少しは
じめる。この結果から明らかなようにPbSが200〜
SOO入のときに繰り返し特性が上昇した。
Further, as the PbS layer becomes thicker, the number of repetitions begins to decrease. As is clear from this result, PbS is 200~
The repeatability increased when SOO was turned on.

第1表 実施例2 実施例10トラック幅方向の温度をコンピュータシミュ
レーションで熱解析した結果を第2図に示す。第2図の
9は従来のZnSを用いた場合の温度分布、第2図の1
0は本発明のpbs層+ZnS層を用いた場合の温度分
布である。図から明らかなように、pbs層+ZnS層
では従来の場合よシ、ピークの温度の値が押えられ、ト
ラック溝内でほぼ同じ値になっていた。その結果、記録
膜の劣化がおこ、!IIIK< <なった。ディスクに
よる繰シ返し特性は105回から107回に上昇した。
Table 1 Example 2 Example 10 The temperature in the track width direction was thermally analyzed by computer simulation. The results are shown in FIG. 9 in Figure 2 is the temperature distribution when conventional ZnS is used, 1 in Figure 2
0 is the temperature distribution when the pbs layer+ZnS layer of the present invention is used. As is clear from the figure, in the PBS layer+ZnS layer, the peak temperature value was suppressed compared to the conventional case, and the value was almost the same within the track groove. As a result, the recording film deteriorates! IIIK<<became. The repeatability with the disk increased from 105 times to 107 times.

実施例3 熱シミュレーションで、レーザ照射後の記録ピットの冷
却過程を解析した。光学活性層の温度と時間の関係を第
3図に示す。第3図の11は従来のZnSを用いた場合
の冷却曲線、第3図の12はPbS層とZnS層を用い
た場合の冷却曲線であムpbs層を設けることで従来よ
シ冷却速度が遅くなることがわかった。
Example 3 The cooling process of recording pits after laser irradiation was analyzed by thermal simulation. FIG. 3 shows the relationship between the temperature and time of the optically active layer. 11 in Figure 3 is the cooling curve when conventional ZnS is used, and 12 in Figure 3 is the cooling curve when PbS layer and ZnS layer are used.By providing the PBS layer, the cooling rate is faster than before. I knew it was going to be late.

次に従来のZnR層を用いたディスクと、PbS層+Z
nS層を用いたディスク特性の比較を行った。
Next, a disk using a conventional ZnR layer and a disk using a PbS layer + Z
A comparison was made of the characteristics of disks using the nS layer.

記録パワー8 mW、消去パワー16mWで行った結果
、ZnS系C/N 52dB、消去率5sdBであった
pbs層+ZnS層系ではC/N 50dB、消去率6
0dBであった。このよう忙記録、消去特性は改善した
As a result of recording power of 8 mW and erasing power of 16 mW, the ZnS system had a C/N of 52 dB and an erasure rate of 5 sdB.The PBS layer + ZnS layer system had a C/N of 50 dB and an erasure rate of 6.
It was 0dB. In this way, the busy recording and erasing characteristics have been improved.

また顕微鏡を用いて記録ビットを観察した結果、従来の
ZnS系では消去後ビットの中央部がアモルファスで白
いのに対し、PbS層+ZnS層系では消去後、アモル
ファス部分は残っていなかった。
Further, as a result of observing the recorded bits using a microscope, it was found that in the conventional ZnS system, the central part of the bit was amorphous and white after erasing, whereas in the PbS layer + ZnS layer system, no amorphous part remained after erasing.

実施例4 PMMA基村上に蒸着法で第4図のような構成の試料を
作製した。基材1にはPMMA、耐熱保護層2にはZn
S、光学的消衰係数k)Oをもつ耐熱保護層3にはpb
s、記録層4にはTeGe5nO系のものを用いた。P
bS層の厚さは100人で4層とし、記録層の厚さは1
000八とした。またZn8層2の厚さは500人、6
の厚さは1000Aとした。このZnS層の厚さはレー
ザーの吸収効率の観点から決めたものである。
Example 4 A sample having the structure shown in FIG. 4 was prepared on a PMMA substrate by vapor deposition. PMMA is used for the base material 1, and Zn is used for the heat-resistant protective layer 2.
S, optical extinction coefficient k) The heat-resistant protective layer 3 with O is pb.
s, the recording layer 4 was made of TeGe5nO. P
The thickness of the bS layer was 4 layers for 100 people, and the thickness of the recording layer was 1.
It was set as 0008. In addition, the thickness of Zn8 layer 2 is 500,6
The thickness was 1000A. The thickness of this ZnS layer was determined from the viewpoint of laser absorption efficiency.

上記のディスクを用いて繰り返し回数を測定した。レー
ザの波長は830nmである。繰り返し特性はPbS層
がないとき104回であるのに対し、106回と向上し
た。
The number of repetitions was measured using the above disk. The wavelength of the laser is 830 nm. The repeatability was improved to 106 times compared to 104 times without the PbS layer.

実施例5 耐熱保護層の光学定数n、kをn=2.0. kを0.
1〜3.6まで変化させたときの耐熱保護層200への
透過率(r)をシミュレーションで検討した結果、k=
o、1のときT:96%、に=3.0のとき37%。
Example 5 The optical constants n and k of the heat-resistant protective layer were set to n=2.0. k is 0.
As a result of a simulation study of the transmittance (r) to the heat-resistant protective layer 200 when changing it from 1 to 3.6, k=
T: 96% when o, 1, 37% when ni = 3.0.

k=3.5のとき25%であった。そこでkを3.0よ
り大きくすれば、耐熱保護層の透過率が小さくなシ、記
録膜の光学変化が小さくなった。
When k=3.5, it was 25%. Therefore, when k was made larger than 3.0, the transmittance of the heat-resistant protective layer was reduced and the optical change of the recording film was reduced.

発明の効果 本発明の効果は、基材上に記録層と使用波長領域におい
て吸収のない透明な耐熱保護層を設けてなる光学情報記
録部材の記録層と透明な耐熱保護層の間に、使用波長領
域において吸収のある耐熱保護層、または吸収のある耐
熱保護層と吸収のない耐熱保護層の少なくとも2層の積
層構造にすることで、記録層の冷却速度を記録膜に適し
た冷却速度に可変できると共に、ディスクのトラック溝
部のトラック幅方向の温度分布を均一にすることができ
るため、記録、消去特性及び、繰シ返し特性を改善する
ことができる。
Effect of the Invention The effect of the present invention is that the recording layer and the transparent heat-resistant protective layer that does not absorb in the wavelength range used are provided on the base material. By creating a heat-resistant protective layer that absorbs in the wavelength region, or a laminated structure of at least two layers: a heat-resistant protective layer that absorbs and a heat-resistant protective layer that does not absorb, the cooling rate of the recording layer can be adjusted to a cooling rate that is suitable for the recording film. It is possible to make the temperature distribution variable and to make the temperature distribution in the track width direction of the track groove portion of the disk uniform, so that the recording and erasing characteristics and the repetition characteristics can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における元学茸情報記録部材
の断面図、第2図はディスクのトラック幅方向における
温度分布を示すグラフ、第3図はレーザ照射後の記録膜
の温度と時間の関係を示すグラフ、第4図は本発明の他
の実施例における光学情報記録部材の断面図である。 1・・・・・・基材、2・・・・・・耐熱保護層(k=
o)、3・・・・・・耐熱保護層(k>O)、4・・・
・・・記録層、6・・・・・・耐熱保護層(k>O)、
6・・・・・・耐熱保N層(k=oλ7・・・・・・接
着剤、8・・・・・・基材。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名18
−基材 第2図 パラ、)巾方誼 第3図 1−一一基釈
Fig. 1 is a cross-sectional view of a Motago Mushroom information recording member in an embodiment of the present invention, Fig. 2 is a graph showing the temperature distribution in the track width direction of the disk, and Fig. 3 is a graph showing the temperature distribution of the recording film after laser irradiation. FIG. 4, a graph showing the relationship with time, is a sectional view of an optical information recording member in another embodiment of the present invention. 1...Base material, 2...Heat-resistant protective layer (k=
o), 3... Heat-resistant protective layer (k>O), 4...
...Recording layer, 6...Heat-resistant protective layer (k>O),
6...Heat-resistant N layer (k=oλ7...Adhesive, 8...Base material. Name of agent: Patent attorney Toshio Nakao and 1 other person18)
-Base material Figure 2 Paragraph,) Width Figure 3 Figure 1-11 Base interpretation

Claims (8)

【特許請求の範囲】[Claims] (1)基材上に光吸収性の記録層と、記録・消去に用い
るレーザ光の波長領域において光吸収のない透明な第1
の耐熱保護層と、さらに上記記録層と透明な耐熱保護層
の間に、前記使用波長領域において光学的に吸収があり
、かつレーザ照射によって記録層と混じりあわない第2
の耐熱保護層を設けたことを特徴とする光学情報記録部
材。
(1) A light-absorbing recording layer on the base material and a transparent first layer that does not absorb light in the wavelength range of the laser light used for recording and erasing.
and a second heat-resistant protective layer that is optically absorbed in the used wavelength range and that does not mix with the recording layer by laser irradiation, between the recording layer and the transparent heat-resistant protective layer.
An optical information recording member characterized by being provided with a heat-resistant protective layer.
(2)第2の耐熱保護層を構成する化合物が、カルコゲ
ン化物、窒化物、炭化物、酸化物、またはフッ化物であ
ることを特徴とする特許請求の範囲第1項記載の光学情
報記録部材。
(2) The optical information recording member according to claim 1, wherein the compound constituting the second heat-resistant protective layer is a chalcogenide, nitride, carbide, oxide, or fluoride.
(3)第2の耐熱保護層を構成するカルコゲン化物が、
硫化物(例えばPbS、MnS)、またはテルル化物(
例えばPbTe、ZnTe)であることを特徴とする特
許請求の範囲第2項記載の光学情報記録部材。
(3) The chalcogenide constituting the second heat-resistant protective layer is
Sulfides (e.g. PbS, MnS) or tellurides (
The optical information recording member according to claim 2, wherein the optical information recording member is made of, for example, PbTe or ZnTe.
(4)第2の耐熱保護層を構成する窒化物が、TaN、
TiN、又はZrNであることを特徴とする特許請求の
範囲第2項記載の光学情報記録部材。
(4) The nitride constituting the second heat-resistant protective layer is TaN,
The optical information recording member according to claim 2, characterized in that it is TiN or ZrN.
(5)第2の耐熱保護層を構成する酸化物が、遷移金属
の酸化物(例えば、Fe_3O_4、NiO、Cr_2
O_3)であることを特徴とする特許請求の範囲第2項
記載の光学情報記録部材。
(5) The oxide constituting the second heat-resistant protective layer is a transition metal oxide (for example, Fe_3O_4, NiO, Cr_2
The optical information recording member according to claim 2, wherein the optical information recording member is O_3).
(6)第2の耐熱保護層を構成する炭化物がTaC、T
iC又はW_2Cであることを特徴とする特許請求の範
囲第2項記載の光学情報記録部材。
(6) The carbides constituting the second heat-resistant protective layer are TaC and T.
The optical information recording member according to claim 2, which is iC or W_2C.
(7)第2の耐熱保護層を構成するフッ化物がCrF_
3、FeF_2又はNiF_2であることを特徴とする
特許請求の範囲第2項記載の光学情報記録部材。
(7) The fluoride constituting the second heat-resistant protective layer is CrF_
3. The optical information recording member according to claim 2, which is FeF_2 or NiF_2.
(8)第2の耐熱保護層の光学的消衰係数kが0.2≦
k≦3.0であることを特徴とする特許請求の範囲第1
項記載の光学情報記録部材。
(8) The optical extinction coefficient k of the second heat-resistant protective layer is 0.2≦
Claim 1 characterized in that k≦3.0.
Optical information recording member described in Section 2.
JP62050555A 1987-03-05 1987-03-05 Optical information recording member Pending JPS63217542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050555A JPS63217542A (en) 1987-03-05 1987-03-05 Optical information recording member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050555A JPS63217542A (en) 1987-03-05 1987-03-05 Optical information recording member

Publications (1)

Publication Number Publication Date
JPS63217542A true JPS63217542A (en) 1988-09-09

Family

ID=12862260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050555A Pending JPS63217542A (en) 1987-03-05 1987-03-05 Optical information recording member

Country Status (1)

Country Link
JP (1) JPS63217542A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149999A (en) * 1996-02-28 2000-11-21 Asahi Kasei Kogyo Kabushiki Kaisha Method of designing a phase-change optical recording medium, and a phase-change optical recording medium
FR2813138A1 (en) * 2000-08-21 2002-02-22 Commissariat Energie Atomique TRANSPARENT THERMAL WELL MULTI-LEVEL OPTICAL RECORDING MEDIUM FOR LASER READ / WRITE SYSTEM
US6706360B2 (en) 2001-04-20 2004-03-16 Tdk Corporation Optical recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149999A (en) * 1996-02-28 2000-11-21 Asahi Kasei Kogyo Kabushiki Kaisha Method of designing a phase-change optical recording medium, and a phase-change optical recording medium
FR2813138A1 (en) * 2000-08-21 2002-02-22 Commissariat Energie Atomique TRANSPARENT THERMAL WELL MULTI-LEVEL OPTICAL RECORDING MEDIUM FOR LASER READ / WRITE SYSTEM
WO2002017304A2 (en) * 2000-08-21 2002-02-28 Commissariat A L'energie Atomique Multilevel optical recording medium with transparent heat sink for laser read/write system
WO2002017304A3 (en) * 2000-08-21 2002-07-04 Commissariat Energie Atomique Multilevel optical recording medium with transparent heat sink for laser read/write system
US6706360B2 (en) 2001-04-20 2004-03-16 Tdk Corporation Optical recording medium

Similar Documents

Publication Publication Date Title
US4839883A (en) Optical information recording medium
EP0237181B1 (en) Information recording medium and information write/read method using the same
JPH03297689A (en) Data recording medium
JPS61269247A (en) Reversible optical information recording and reproducing method
JPH06282876A (en) Optical recording medium
JP4509431B2 (en) Information recording medium
JPS63217542A (en) Optical information recording member
JPS60257291A (en) Optical information recording member
JPS639040A (en) Optical information recording medium
JP2962052B2 (en) Optical information recording medium
JPH03240590A (en) Data recording medium
JP3151848B2 (en) Optical information recording medium
JP3159500B2 (en) Information recording medium
JP2962050B2 (en) Optical information recording medium
JPS63121142A (en) Optical information recording medium
JPS634166B2 (en)
JPS6358639A (en) Optical information recording medium
JPH03125343A (en) Optical information recording medium
KR0161910B1 (en) Structure of phase transition type optical disk
JPH1173680A (en) Optical recording medium
JPH11134713A (en) Optical information recording medium
JP2990901B2 (en) Optical information recording medium
JPS63187435A (en) Optical information recording carrier
JPH02177141A (en) Optical information recording medium
JPS639039A (en) Optical information recording medium