JPS6321731B2 - - Google Patents
Info
- Publication number
- JPS6321731B2 JPS6321731B2 JP59089930A JP8993084A JPS6321731B2 JP S6321731 B2 JPS6321731 B2 JP S6321731B2 JP 59089930 A JP59089930 A JP 59089930A JP 8993084 A JP8993084 A JP 8993084A JP S6321731 B2 JPS6321731 B2 JP S6321731B2
- Authority
- JP
- Japan
- Prior art keywords
- zone
- temperature
- continuous annealing
- furnace
- steel strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000137 annealing Methods 0.000 claims description 52
- 238000010438 heat treatment Methods 0.000 claims description 43
- 238000001816 cooling Methods 0.000 claims description 41
- 229910000831 Steel Inorganic materials 0.000 claims description 37
- 239000010959 steel Substances 0.000 claims description 37
- 238000002791 soaking Methods 0.000 claims description 19
- 239000010960 cold rolled steel Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 8
- 238000010791 quenching Methods 0.000 claims 1
- 230000000171 quenching effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 description 12
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 9
- 239000005028 tinplate Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000011835 investigation Methods 0.000 description 5
- 238000010583 slow cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 208000034699 Vitreous floaters Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
技術分野
この発明は、冷延鋼帯の連続焼鈍法および連続
焼鈍設備に関し、とくに該鋼帯の連続焼鈍設備内
における蛇行やヒツトバツクルの発生を効果的に
阻止しようとするものである。
技術背景
一般に、冷延鋼帯の連続焼鈍炉としては、設備
設置面積や設備費などの面から堅型炉が使用され
ている。かような堅型連続焼鈍炉においては、第
1図に示すように、鋼帯Sの搬送装置として多数
のハースロール1が炉2の上、下部にそれぞれ列
設されていて、鋼帯Sはこれらの上下ハースロー
ル群に順次に巻がけられて迂曲通板する間に、所
望の材料特性を得るのに必要な所定の熱処理が施
されるしくみになつている。
ところが上記の如くして鋼帯を炉内で連続熱処
理する場合、鋼帯の形状や炉内での張力バランス
または温度条件などによつては、鋼帯に蛇行が生
じて円滑な操業ができなくなることがある。この
ためかかる蛇行を防止すべく、ハースロールとし
ては、第2図aおよびbに示したようなクラウン
を付したロール1′,1″が一般に使用されてい
る。これはクラウンロールのセンタリング力すな
わち鋼帯をロール幅方向中心へ移動させようとす
る力によつて蛇行を修正させようとするものであ
る。しかしながらこのセンタリング力が強過ぎる
と、鋼帯はその幅方向に座屈を生じ、いわゆるヒ
ートバツクルと呼ばれる欠陥が発生する。
従つて蛇行ならびにヒートバツクルの発生を共
に防止するためには、両者が発生しないような適
正量のクラウンを予め付与しておく必要があると
ころ、かかるヒートバツクルの発生要因は多岐に
わたり、たとえば鋼帯の熱処理温度が高い程、ま
た板幅が大きく、板厚が小さい程、さらには通板
速度が大きい程ヒートバツクルは発生し易くなる
ため、適正なクラウン量の選定は極めて困難だつ
たのである。
従来技術とその問題点
上記した如きクラウン量の問題の解決策とし
て、たとえば実開昭55―172359号公報、特開昭57
―177930号公報および実開昭58―105464号公報な
どにおいて、クラウンを可変としたハースロール
が提案されている。
しかしながらクラウン量を制御するには、ハー
スロール毎に、クラウン量を測定するための装置
やこの測定結果に基いてクラウン量をコントロー
ルするための装置などを必要とするので、多大の
費用がかかるほか、応答性が遅いところにも問題
があつた。
ところで深絞り用冷延鋼帯としては、一般にC
量が0.1%以下の低炭素鋼が用いられ、ことに最
近では溶製技術の進歩によつてC量が0.005%以
下程度にも低減した極低炭素鋼も、深絞り用鋼板
の素材として使用されるようになつてきたが、こ
れらの深絞り用冷延鋼板は、800℃以上の温度に
加熱される高温焼鈍材であつてヒートバツクルが
発生し易く、かかる傾向は極低炭素となるに従つ
て著しい。
また最近ではぶりき用原板として、板厚0.2mm
以下の極薄材の需要が高まつているが、かかる極
薄材においても、上記の要請に応じて通板速度を
高くするにつれてヒートバツクルが発生し易くな
るところに問題を残していたのである。
また、極低炭素鋼を素材とした軟質ぶりき用原
板においてもヒートバツクルの問題があつた。
発明の目的
この発明は、上記の諸問題を有利に解決するも
ので、焼鈍炉内における蛇行の発生はいうまでも
なく、製品の歩留りや品質に及ぼす悪影響が殊の
外大きいヒートバツクルの発生を効果的に防止す
ることができる冷延鋼帯の連続焼鈍法を、その実
施に用いて好適な連続焼鈍設備に併せて提案する
ことを目的とする。
解決手段の解明経緯
第3図に、ぶりき原板の連続熱処理に用いて好
適とされる従来の連続焼鈍炉を模式で示す。図中
番号3は加熱帯、4は均熱帯、5は徐冷帯、そし
て6は急冷帯であり、鋼板Sは、かような加熱帯
3、均熱帯4、徐冷帯5および急冷帯6を順次に
通板する間に、所定の熱処理が施されるわけであ
る。
さて第4図a,bにそれぞれ、上記の連続焼鈍
炉を用いた場合における鋼帯の蛇行およびヒート
バツクルの発生頻度について調べた結果を、加熱
帯前半部、同後半部、均熱帯、徐冷帯および急冷
帯毎にハースロールのクラウン量との関係で示
す。
同図より、ヒートバツクルは、加熱帯後半部、
均熱帯および徐冷帯などの高温帯域で発生し易
く、一方蛇行は逆にこれらの高温帯域では発生し
にくいことがわかる。
次に第5図に、主に深絞り用鋼帯を対象とした
従来の連続焼鈍炉を含む連続焼鈍ラインを模式で
示す。同図に示したところにおいて鋼帯Sは、ベ
イオフリール7,7′で巻戻され、ついでウエル
ダーや洗浄装置などの入側設備8にて前処理を施
されたのち、入側ルーパ9を経て連続焼鈍炉10
内に送り込まれる。この連続焼鈍炉10において
鋼帯Sは、予熱帯11、加熱帯12、均熱帯1
3、第1次冷却帯14、第2次冷却帯15、過時
効処理帯16および第3次冷却帯17を順次に通
過する間に所定の熱処理が施され、ついで出側ル
ーパ18を経てからシヤーなどの出側処理装置1
9にて後処理が施されたのち、テンシヨンリール
20,20′にて巻取られるしくみになつている。
かかる連続焼鈍炉にて、深絞り用鋼帯に熱処理
を施した場合のヒートバツクル発生率について調
べた結果を、第6図に示す。同図において横軸は
鋼帯の加熱温度、または縦軸は全処理コイル数に
対するヒートバツクル発生コイル数の百分率であ
る。
同図より明らかなように、鋼帯の温度が780℃
以下ではヒートバツクルの発生は皆無であるが、
780℃を超えると温度が高くなるに従つてヒート
バツクルが急激に発生するようになることがわか
る。
また第7図には、同様にして極低炭素鋼を素材
としたぶりき用原板(板厚0.2〜0.3mm)に熱処理
を施した場合におけるヒートバツクルの発生状況
についての調査結果を示す。
第7図から明らかなように、極低炭素ぶりき用
原板も深絞り鋼板と同様に、処理温度の低下に伴
つてヒートバツクルの発生は激減し、とくに700
℃以下では皆無であつた。
以上の実験結果から、発明者らは、ヒートバツ
クルならびに蛇行の防止につき鋭意検討を重ねた
結果、蛇行防止には大きな効力を発揮するハース
ロールも炉の高温帯域ではヒートバツクルを発生
させる大きな要因(その他サーマルクラウン、高
温での材質強度の低下、通板速度および鋼帯の熱
膨張などが微妙に影響していると考えられる)と
なつていることから、炉の高温帯域は、かような
ハースロールを排除した横型炉とする一方、かか
るおそれのない低温帯域についてはハースロール
を内蔵した堅型炉とし、しかもとくに上記横型炉
の入側および出側の鋼帯温度を適切に制御するこ
とによつて、所期した目的が極めて有効に達成さ
れ得ることを究明したのである。
発明の構成
この発明は、上記の知見に由来するものであ
る。
すなわちこの発明は、加熱帯、均熱帯および冷
却帯を順次に形成しつつ堅型炉、横型炉ついで堅
型炉と連なる連続焼鈍設備によつて冷延鋼帯に連
続焼鈍処理を施すに当り、該鋼帯の横型炉への導
入ならびに導出を該鋼帯にヒートバツクルが発生
しない温度下に行うことを特徴とする冷延鋼帯の
連続焼鈍法である。
またこの発明は、加熱帯、均熱帯および冷却帯
をそなえる連続焼鈍設備であつて、該加熱帯およ
び冷却帯をそれぞれ低温部と高温部とに分割し、
低温帯域である低温部加熱帯ならびに低温部冷却
帯をそれぞれ堅型炉、一方高温帯域である高温部
加熱帯、均熱帯および高温部冷却帯をそれぞれ横
型炉としたことを特徴とする冷延鋼帯の連続焼鈍
設備である。
なお、この発明に係る連続焼鈍設備における熱
処理帯域としては、上掲した加熱帯、均熱帯およ
び冷却帯に加え、予熱帯を加熱帯の前に配置する
こともできる。
以下この発明を具体的に説明する。
まずこの発明に従う連続焼鈍設備について説明
すると、第8図に、深絞り用冷却鋼帯を対象とし
た連続焼鈍設備の好適実施例を示し、図中番号2
1は予熱帯、22は低温部加熱帯、そして23が
高温部加熱帯ついで均熱帯と続く横型炉からなる
高温部加熱・均熱帯、また24は引続いて横型の
まま連なり高温部冷却帯をなす第1次冷却帯であ
つて、これらの横型炉23,24は、予熱帯21
および低温部加熱帯22をなす堅型炉の上部に配
設されている。そして25は第2次冷却帯、26
は過時効処理帯、27は第3次冷却帯であつてい
ずれも堅型炉からなる。
さてかかる連続焼鈍設備において、鋼帯Sは、
たとえば第9図に記号Aで示したようなヒートパ
ターンに従つて熱処理が施され、所定の材料特性
が付与されることになる。すなわち鋼帯Sは、ま
ず熱帯21ついで低温部加熱帯22と通過してあ
る温度に昇温してから、これらの炉帯の上部に配
置された横型炉である高温部加熱・均熱帯23に
導入されて所定の熱処理が施され、引続き第1次
冷却帯24に導かれて所定の温度まで降温されて
から再び堅型炉である第2次冷却部体25、過時
効処理帯26ついで第3次冷却帯27を経ること
により、所望の材料特性が付与されるわけであ
る。
ここで横型炉23,24の入側および出側にお
ける鋼帯温度は、前掲第6図に示した結果を見れ
ば明らかなように780℃以下の温度とすることが
ヒートバツクル防止の観点から必要である。
なお加熱手段としては、加熱・均熱帯22,2
3ではラジアントチユーブ式バーナが、また予熱
帯21では上記加熱・均熱帯22,23からの排
ガスによる直接加熱もしくは排ガスと熱交換せし
めた空気による加熱が好ましく、一方冷却手段と
しては、第1,2および3次冷却帯24,25,
27については雰囲気ガスによるガスジエツト式
冷却が、また過時効処理帯26では電熱ヒータ
や、ラジアントチユーブによる輻射式加熱が望ま
しい。
かかる深絞り用冷延鋼帯の焼鈍に用いて好適な
連続焼鈍設備の別の実施例を第10図に示す。こ
の10図に示したタイプにするか、それとも前掲
第8図に示したタイプにするかは、加熱速度や横
型炉入側温度などをどの程度とするかによつて決
定されるものである。
次に第11図に、極低炭素鋼を素材とする深絞
り用冷延鋼帯を対象とした連続焼鈍設備の好適実
施例を示す。この好適例において、後半の堅型炉
が第2次冷却帯25′のみからなる点を除いて、
構成の骨子は前掲第10図に示した設備と共通す
る。
第11図に示したところにおいて、鋼帯Sは、
前掲第9図にBで示したようなヒートパターンに
従つて、順次に予熱帯21、低温部加熱帯22、
高温部加熱・均熱帯23、高温部冷却帯24つい
で低温部冷却帯25′を通つて熱処理されること
により、所望の材料特性が付与されることにな
る。ここで鋼帯Sの横型炉23,24の入側およ
び出側における温度は、やはり780℃以下とする
必要がある。
さらに第12図には、極低炭素鋼を素材とした
ぶりき用原板および板厚0.2mm以下のぶりき原板
などの極薄材の焼鈍に用いて好程な連続焼鈍設備
の他の実施例を示す。
この例で構成の骨子は、前掲第11図に示した
ものとほぼ一致するが、横型炉の第1次冷却帯2
4が徐冷帯、引続く堅型炉の第2次冷却帯25が
急冷帯になつている。
さてかかる設備において鋼帯Sは、たとえば前
掲第9図にCで示したようなヒートパターンに従
つて熱処理が施されるわけであるが、かような鋼
種においては横型炉23,24への入側および出
側における鋼帯温度を、前掲第7図に示したとお
りヒートバツクル発生のない700℃以下に制御す
ることが必要である。
このようにこの発明法においては、横型炉への
鋼帯の導入ならびに導出をヒートバツクルの発生
のない温度で行うことが肝要なわけであるが、か
かる温度は材質や板厚によつて大きく変化するの
で、一義的に定めることはできない。
ところでこの発明では、連続焼鈍における高温
帯域を横型炉とする一方、その前後の低温帯域は
堅型炉とすることで、高温帯域におけるヒートバ
ツクルおよび蛇行の発生を防止するわけである
が、横型炉入口部および出口部のロールをステア
リングロールとすることによつて、さらに蛇行防
止の実効を上げることができる。
また横型炉において、鋼帯の垂下量が問題とな
る場合には、適宜サポートロールやフローターな
どを設置すればよい。
なお上掲した実施例ではいずれも、予熱帯をそ
なえる場合について主に説明したが、予熱帯がな
くても差し支えないのはいうまでもない。
次にこの発明に従う焼鈍方法の実施例について
説明する。
第8図に示した連続焼鈍設備を用いて極低炭素
鋼を素材とした下表1のサイズになる深絞り用冷
延鋼帯を、同じく表1に示したとおり高温部の加
熱・均熱帯および一次冷却帯の導入・導出温度お
よび、ラインスピードを種々変更した通板条件下
に40コイル宛の焼鈍を施した。
かかる焼鈍処理中におけるヒートバツクルおよ
び蛇行の発生状況について調べた結果を表1に併
記する。
TECHNICAL FIELD This invention relates to a continuous annealing method and continuous annealing equipment for cold-rolled steel strip, and in particular, to effectively prevent the occurrence of meandering and hit buckles in the continuous annealing equipment for the steel strip. Technical Background Generally, a vertical furnace is used as a continuous annealing furnace for cold-rolled steel strips due to the installation area and equipment cost. In such a rigid continuous annealing furnace, as shown in FIG. While the material is sequentially wound around these upper and lower hearth roll groups and passed through a roundabout path, a predetermined heat treatment necessary to obtain desired material properties is applied. However, when a steel strip is continuously heat-treated in a furnace as described above, depending on the shape of the steel strip, tension balance in the furnace, temperature conditions, etc., meandering may occur in the steel strip, making smooth operation impossible. Sometimes. Therefore, in order to prevent such meandering, crowned rolls 1' and 1'' as shown in FIGS. 2a and 2b are generally used as hearth rolls.This is due to the centering force of the crown roll, This method attempts to correct the meandering by applying a force that moves the steel strip toward the center in the width direction of the roll.However, if this centering force is too strong, the steel strip will buckle in the width direction. A defect called a heat buckle occurs. Therefore, in order to prevent both meandering and heat buckles from occurring, it is necessary to apply an appropriate amount of crown in advance to prevent both from occurring. For example, the higher the heat treatment temperature of the steel strip, the wider the strip width, the smaller the strip thickness, and the higher the strip threading speed, the more likely heat buckles will occur, so it is extremely difficult to select the appropriate amount of crown. Prior art and its problems As a solution to the above-mentioned crown amount problem, for example, Japanese Utility Model Application No. 55-172359 and Japanese Patent Application Laid-open No. 57
Hearth rolls with variable crowns have been proposed in Japanese Patent No. 177930 and Japanese Utility Model Application No. 105464/1983. However, controlling the crown amount requires a device to measure the crown amount for each hearth roll and a device to control the crown amount based on the measurement results, which incurs a large amount of cost. There were also problems with slow response times. By the way, cold-rolled steel strip for deep drawing is generally made of C.
Low carbon steel with a C content of 0.1% or less is used, and in recent years, due to advances in melting technology, ultra-low carbon steel with a carbon content of 0.005% or less is also used as a material for deep drawing steel sheets. However, these cold-rolled steel sheets for deep drawing are high-temperature annealed materials that are heated to temperatures of 800°C or higher, and are prone to heat buckling. Very noticeable. Recently, it has been used as a base plate for tinplate with a thickness of 0.2 mm.
Demand for the following ultra-thin materials is increasing, but even in such ultra-thin materials, there remains a problem in that heat buckles are more likely to occur as the sheet passing speed is increased in response to the above requirements. Furthermore, the problem of heat buckling also occurred in soft tin plates made of ultra-low carbon steel. Purpose of the Invention The present invention advantageously solves the above-mentioned problems, and effectively prevents the occurrence of heat buckles, which have a particularly large adverse effect on the yield and quality of products, as well as the occurrence of meandering in the annealing furnace. The purpose of the present invention is to propose a continuous annealing method for cold-rolled steel strips that can prevent such problems, together with suitable continuous annealing equipment for its implementation. Background of the elucidation of the solution Figure 3 schematically shows a conventional continuous annealing furnace that is suitable for continuous heat treatment of tin plate blanks. In the figure, number 3 is a heating zone, 4 is a soaking zone, 5 is a slow cooling zone, and 6 is a rapid cooling zone. A predetermined heat treatment is performed while the sheets are passed one after another. Now, Figures 4a and b show the results of an investigation into the meandering of the steel strip and the frequency of occurrence of heat buckles when using the above-mentioned continuous annealing furnace, respectively. and the relationship with the crown amount of the hearth roll for each rapid cooling zone. From the figure, the heat buckle is located in the latter half of the heating zone,
It can be seen that meandering tends to occur in high-temperature zones such as the soaking zone and slow cooling zone, while meandering is less likely to occur in these high-temperature zones. Next, FIG. 5 schematically shows a continuous annealing line including a conventional continuous annealing furnace mainly intended for deep drawing steel strips. In the place shown in the figure, the steel strip S is rewound by bay-off reels 7 and 7', and then subjected to pretreatment in input side equipment 8 such as a welder and cleaning device, and then passed through an input side looper 9. Continuous annealing furnace 10
sent inside. In this continuous annealing furnace 10, the steel strip S is divided into a preheating zone 11, a heating zone 12, a soaking zone 1
3. A predetermined heat treatment is performed while sequentially passing through the first cooling zone 14, the second cooling zone 15, the overaging treatment zone 16, and the third cooling zone 17, and then after passing through the outlet looper 18. Output processing device 1 such as shear
After being subjected to post-processing at step 9, it is wound up at tension reels 20, 20'. FIG. 6 shows the results of an investigation of the heat buckle generation rate when a steel strip for deep drawing was heat treated in such a continuous annealing furnace. In the figure, the horizontal axis represents the heating temperature of the steel strip, and the vertical axis represents the percentage of the number of coils generating heat buckles relative to the total number of coils processed. As is clear from the figure, the temperature of the steel strip is 780℃.
There are no heat buckles in the following cases,
It can be seen that heat buckles rapidly occur as the temperature rises above 780°C. Further, FIG. 7 shows the results of an investigation regarding the occurrence of heat buckles when heat treatment was similarly performed on a tinplate original plate (thickness: 0.2 to 0.3 mm) made of ultra-low carbon steel. As is clear from Figure 7, the occurrence of heat buckles in ultra-low carbon tinplate plates, similar to deep-drawn steel plates, decreases dramatically as the processing temperature decreases, especially at 700
There were no cases below ℃. Based on the above experimental results, the inventors have conducted extensive studies on the prevention of heat buckles and meandering, and have found that hearth rolls, which are highly effective in preventing meandering, are also a major factor in generating heat buckles in the high-temperature zone of the furnace (other thermal (This is thought to be subtly influenced by the crown, decrease in material strength at high temperatures, threading speed, and thermal expansion of the steel strip.) Therefore, in the high-temperature zone of the furnace, such hearth rolls are While using a horizontal furnace that eliminates this risk, a vertical furnace with built-in hearth rolls is used for the low temperature zone where there is no risk of such a problem, and in particular, by appropriately controlling the steel strip temperature on the entrance and exit sides of the horizontal furnace. It was discovered that the intended purpose could be achieved very effectively. Structure of the Invention The present invention is derived from the above knowledge. That is, this invention provides continuous annealing treatment to a cold-rolled steel strip using continuous annealing equipment connected to a vertical furnace, a horizontal furnace, and then a vertical furnace while sequentially forming a heating zone, a soaking zone, and a cooling zone. This is a continuous annealing method for a cold-rolled steel strip, characterized in that the steel strip is introduced into a horizontal furnace and taken out at a temperature that does not cause heat buckles in the steel strip. The present invention also provides a continuous annealing facility equipped with a heating zone, a soaking zone, and a cooling zone, each of which is divided into a low temperature zone and a high temperature zone,
A cold-rolled steel characterized in that the low-temperature heating zone and the cooling zone, which are low-temperature zones, are each a vertical furnace, while the high-temperature zones, which are the high-temperature heating zone, soaking zone, and high-temperature cooling zone, are each a horizontal furnace. This is a continuous annealing facility for strips. In addition, as the heat treatment zone in the continuous annealing equipment according to the present invention, in addition to the above-mentioned heating zone, soaking zone, and cooling zone, a preheating zone can also be arranged in front of the heating zone. This invention will be specifically explained below. First, the continuous annealing equipment according to the present invention will be explained. Fig. 8 shows a preferred embodiment of the continuous annealing equipment for cooling steel strips for deep drawing.
1 is a pre-heating zone, 22 is a low-temperature heating zone, 23 is a high-temperature heating/soaking zone consisting of a horizontal furnace, followed by a high-temperature heating zone, followed by a soaking zone, and 24 continues to be horizontal and has a high-temperature cooling zone. These horizontal furnaces 23 and 24 are the primary cooling zone of the preheating zone 21.
and the upper part of the vertical furnace forming the low temperature heating zone 22. and 25 is the secondary cooling zone, 26
2 is an overaging treatment zone, and 27 is a tertiary cooling zone, both of which are comprised of a vertical furnace. Now, in such continuous annealing equipment, the steel strip S is
For example, heat treatment is performed according to a heat pattern as shown by symbol A in FIG. 9 to impart predetermined material properties. That is, the steel strip S first passes through a tropical zone 21 and then a low-temperature heating zone 22 to be heated to a certain temperature, and then passes through a high-temperature zone heating/soaking zone 23, which is a horizontal furnace placed above these furnace zones. It is introduced and subjected to a predetermined heat treatment, and then guided to the first cooling zone 24 where the temperature is lowered to a predetermined temperature. By passing through the tertiary cooling zone 27, desired material properties are imparted. As can be seen from the results shown in Figure 6 above, it is necessary to keep the steel strip temperature at the entrance and exit sides of the horizontal furnaces 23 and 24 below 780°C from the viewpoint of preventing heat buckling. be. As a heating means, heating/soaking zone 22, 2
3 is preferably a radiant tube burner, and the preheating zone 21 is preferably heated directly by the exhaust gas from the heating/soaking zones 22 and 23 or heated by air heat exchanged with the exhaust gas. and tertiary cooling zones 24, 25,
27, it is preferable to use gas jet cooling using atmospheric gas, and for the overaging treatment zone 26, it is preferable to use radiation heating using an electric heater or a radiant tube. Another embodiment of continuous annealing equipment suitable for use in annealing such cold-rolled steel strips for deep drawing is shown in FIG. Whether to use the type shown in FIG. 10 or the type shown in FIG. 8 above is determined depending on the heating rate, temperature at the entrance of the horizontal furnace, etc. Next, FIG. 11 shows a preferred embodiment of continuous annealing equipment for deep drawing cold rolled steel strips made of ultra-low carbon steel. In this preferred example, except that the latter half vertical furnace consists only of the secondary cooling zone 25',
The gist of the configuration is the same as the equipment shown in Figure 10 above. In the place shown in FIG. 11, the steel strip S is
According to the heat pattern shown by B in FIG. 9 above, the preheating zone 21, the low temperature heating zone 22,
Desired material properties are imparted by heat treatment through the high temperature heating/soaking zone 23, the high temperature cooling zone 24, and the low temperature cooling zone 25'. Here, the temperature of the steel strip S at the entrance and exit sides of the horizontal furnaces 23 and 24 must also be 780° C. or lower. Furthermore, Fig. 12 shows another example of continuous annealing equipment suitable for annealing ultra-thin materials such as tinplate blanks made of ultra-low carbon steel and tinplate blanks with a thickness of 0.2 mm or less. shows. The gist of the configuration in this example is almost the same as that shown in Figure 11 above, but the primary cooling zone 2 of the horizontal furnace
4 is a slow cooling zone, and the following secondary cooling zone 25 of the vertical furnace is a rapid cooling zone. Now, in such equipment, the steel strip S is heat treated according to the heat pattern shown by C in FIG. As shown in FIG. 7 above, it is necessary to control the temperature of the steel strip at the side and outlet side to 700° C. or lower, at which no heat buckles occur. In this way, in the method of this invention, it is important to introduce and remove the steel strip into the horizontal furnace at a temperature that does not generate heat buckles, but this temperature varies greatly depending on the material and thickness of the steel strip. Therefore, it cannot be determined unambiguously. By the way, in this invention, the high-temperature zone in continuous annealing is a horizontal furnace, while the low-temperature zones before and after the horizontal furnace are vertical furnaces to prevent the occurrence of heat buckles and meandering in the high-temperature zone. By using the rolls at the end and the exit end as steering rolls, it is possible to further improve the effectiveness of preventing meandering. Further, in a horizontal furnace, if the amount of drooping of the steel strip is a problem, support rolls, floaters, etc. may be installed as appropriate. In the above-mentioned embodiments, the case where a preheating zone is provided has been mainly explained, but it goes without saying that there is no problem even if the preheating zone is not provided. Next, an embodiment of the annealing method according to the present invention will be described. Using the continuous annealing equipment shown in Figure 8, deep-drawing cold-rolled steel strips made of ultra-low carbon steel and having the sizes shown in Table 1 below are heated and soaked in the high-temperature area as shown in Table 1. Then, 40 coils were annealed under various strip-threading conditions in which the introduction and exit temperatures of the primary cooling zone and the line speed were varied. Table 1 also shows the results of an investigation into the occurrence of heat buckles and meandering during the annealing process.
【表】
表1に示した成績から明らかなように、780℃
以上の高温域を横型炉にて、加熱・均熱および一
次冷却することによつてヒートバツクルは防止で
きた。また、ヒートバツクルの発生しにくい、低
温域堅型炉のハースロールクラウン量を大きくと
り、横型炉の導入、導出部分に、ステアリング装
置を設けることで蛇行も防止できた。
以上述べたようにこの発明に従い、高温帯域を
横型炉とする一方、低温帯域は堅型炉とすること
により、ヒートバツクルならびに蛇行の発生を効
果的に防止することができるが、その他の効果に
ついては次のとおりである。
(1) 連続焼鈍設備の設置面積を削減することがで
きる。
(2) ヒートバツクルの発生を懸念することなしに
通板速度を上げることができるので、生産性が
向上する。
(3) 従来とくに高温帯域において張力変動が問題
とされたが、かかる高温帯域を横型炉としたこ
とにより鋼帯の垂下量によつて張力変動を緩和
できる。
(4) 高温帯域でとくに入り易いビツクアツプ疵す
なわち鋼帯表面の異物がハースロールに付着、
堆積し、これが鋼帯に転写されて生じる疵を低
減させることができる。[Table] As is clear from the results shown in Table 1, 780℃
Heat buckling could be prevented by heating, soaking, and primary cooling in the above-mentioned high-temperature range in a horizontal furnace. In addition, we were able to prevent meandering by increasing the hearth roll crown of the low-temperature vertical furnace, where heat buckles are less likely to occur, and by installing a steering device at the introduction and exit portions of the horizontal furnace. As described above, according to the present invention, by using a horizontal furnace for the high-temperature zone and a vertical furnace for the low-temperature zone, it is possible to effectively prevent the occurrence of heat buckles and meandering. It is as follows. (1) The installation area of continuous annealing equipment can be reduced. (2) Productivity is improved because the threading speed can be increased without worrying about the occurrence of heat buckles. (3) Tension fluctuations have traditionally been a problem, particularly in high-temperature zones, but by using a horizontal furnace for such high-temperature zones, tension fluctuations can be alleviated by changing the amount of droop of the steel strip. (4) Pick-up flaws, which are particularly easy to form in high-temperature zones, occur when foreign matter on the surface of the steel strip adheres to the hearth roll.
It is possible to reduce defects caused by deposits and transfer to the steel strip.
第1図は、堅型連続焼鈍炉の模式図、第2図
a,bはそれぞれクラウンロールの正面図、第3
図は、従来のぶりき原板用の連続焼鈍設備の模式
図、第4図a,bはそれぞれ、鋼帯の蛇行および
ヒートバツクルの発生頻度に及ぼすハースロール
のクラウン量の影響を、加熱帯前半部、同後半
部、均熱帯、徐冷帯および急冷帯毎に調べた結果
を比較して示したグラフ、第5図は、従来の深絞
り用冷延鋼帯用の連続焼鈍設備の模式図、第6図
は、深絞り用冷延鋼帯の焼鈍温度とヒートバツク
ル発生率との関係を示したグラフ、第7図は、極
低炭素鋼を素材とするぶりき用原板における焼鈍
温度とヒートバツクル発生率との関係を示したグ
ラフ、第8図および第10図はいずれも深絞り用
冷延鋼帯を対象としたこの発明に従う連続焼鈍設
備の模式図、第9図は、この発明法に従う鋼帯の
ヒートパターンを示した図、第11図は、極低炭
素鋼を素材とする深絞り用冷延鋼帯を対象とした
連続焼鈍設備の模式図、第12図は、極低炭素お
よび極薄のぶりき用原板の焼鈍に用いて好適な連
続焼鈍設備の模式図である。
21…予熱帯、22…低温部加熱帯、23…高
温部加熱・均熱帯、24…第1次冷却帯、25…
第2次冷却帯、26…過時効処理帯、27…第3
次冷却帯。
Figure 1 is a schematic diagram of a rigid continuous annealing furnace, Figures 2a and b are front views of the crown roll, and Figure 3
The figure is a schematic diagram of a conventional continuous annealing equipment for tinplate blanks, and Figures 4a and 4b show the influence of the crown amount of the hearth roll on the meandering of the steel strip and the frequency of heat buckles, respectively, in the first half of the heating zone. , the second half of the same, a graph comparing the results of the investigation for each soaking zone, slow cooling zone, and rapid cooling zone, Figure 5 is a schematic diagram of a conventional continuous annealing equipment for cold-rolled steel strips for deep drawing, Figure 6 is a graph showing the relationship between the annealing temperature and the heat buckle generation rate of cold-rolled steel strip for deep drawing, and Figure 7 is the graph showing the relationship between the annealing temperature and heat buckle generation rate in a tin plate made of ultra-low carbon steel. Figures 8 and 10 are both schematic diagrams of continuous annealing equipment according to the present invention for cold-rolled steel strips for deep drawing, and Figure 9 is a graph showing the relationship between the Figure 11 is a schematic diagram of continuous annealing equipment for deep drawing cold-rolled steel strips made of ultra-low carbon steel, and Figure 12 is a diagram showing the heat pattern of the strip. FIG. 2 is a schematic diagram of continuous annealing equipment suitable for annealing thin tin plate blanks. 21...Pre-preparation zone, 22...Low temperature heating zone, 23...High temperature heating/soaking zone, 24...Primary cooling zone, 25...
Secondary cooling zone, 26... Overaging treatment zone, 27... Third
Next cooling zone.
Claims (1)
つつ堅型炉、横型炉ついで堅型炉と連なる連続焼
鈍設備によつて冷延鋼帯を連続焼鈍処理を施すに
当り、該鋼帯の横型炉への導入ならびに導出を該
鋼帯にヒートバツクルが発生しない温度で行うこ
とを特徴とする冷延鋼帯の連続焼鈍法。 2 加熱帯、均熱帯および冷却帯をそなえる連続
焼鈍設備であつて、該加熱帯および冷却帯をそれ
ぞれ低温部と高温部とに分割し、低温帯域である
低温部加熱帯ならびに低温部冷却帯をそれぞれ堅
型炉、一方高温帯域である高温部加熱帯、均熱帯
および高温部冷却帯をそれぞれ横型炉としたこと
を特徴とする冷延鋼帯の連続焼鈍設備。 3 冷却帯が、横型炉の第1次冷却帯と、堅型炉
の第2次冷却帯、過時効処理帯および第3次冷却
帯とからなる特許請求の範囲第2項記載の連続焼
鈍設備。 4 冷却帯が、横型炉の徐冷帯と、堅型炉の急冷
帯とからなる特許請求の範囲第2項記載の連続焼
鈍設備。 5 横型炉入側および出側における導入および導
出ロールが、ステアリングロールである特許請求
の範囲第2,3または4項記載の連続焼鈍設備。[Claims] 1. Continuously annealing a cold-rolled steel strip using continuous annealing equipment connected to a vertical furnace, a horizontal furnace, and then a vertical furnace while sequentially forming a heating zone, a soaking zone, and a cooling zone. 1. A continuous annealing method for a cold-rolled steel strip, characterized in that the steel strip is introduced into a horizontal furnace and taken out at a temperature at which heat buckles do not occur in the steel strip. 2 Continuous annealing equipment equipped with a heating zone, a soaking zone, and a cooling zone, in which the heating zone and the cooling zone are each divided into a low temperature zone and a high temperature zone, and the low temperature zone is a low temperature zone heating zone and a low temperature zone cooling zone. Continuous annealing equipment for cold-rolled steel strip, characterized in that each of the vertical furnaces is a vertical furnace, and the high-temperature zones, namely a high-temperature heating zone, a soaking zone, and a high-temperature cooling zone, are each horizontal furnaces. 3. The continuous annealing equipment according to claim 2, wherein the cooling zone comprises a primary cooling zone of a horizontal furnace, a secondary cooling zone, an overaging treatment zone, and a tertiary cooling zone of a vertical furnace. . 4. The continuous annealing equipment according to claim 2, wherein the cooling zone comprises an annealing zone of a horizontal furnace and a quenching zone of a vertical furnace. 5. The continuous annealing equipment according to claim 2, 3 or 4, wherein the introduction and lead-out rolls on the horizontal furnace entry side and exit side are steering rolls.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59089930A JPS60234923A (en) | 1984-05-04 | 1984-05-04 | Method and installation for continuous annealing of cold-rolled steel strip |
DE8585303046T DE3567480D1 (en) | 1984-05-04 | 1985-04-30 | Continuous annealing method and apparatus for cold rolled steel strips |
ES542786A ES8700697A1 (en) | 1984-05-04 | 1985-04-30 | Continuous annealing method and apparatus for cold rolled steel strips. |
EP85303046A EP0161861B1 (en) | 1984-05-04 | 1985-04-30 | Continuous annealing method and apparatus for cold rolled steel strips |
ZA853256A ZA853256B (en) | 1984-05-04 | 1985-05-01 | Continuous annealing method and apparatus for cold rolled steel strips |
US06/730,282 US4595357A (en) | 1984-05-04 | 1985-05-03 | Continuous annealing method and apparatus for cold rolled steel strips |
CA000480691A CA1245136A (en) | 1984-05-04 | 1985-05-03 | Continuous annealing method and apparatus for cold rolled steel strips |
KR1019850003046A KR900006693B1 (en) | 1984-05-04 | 1985-05-04 | Continous annealing method and apparatus for cold rolled steel strips |
ES551714A ES8701234A1 (en) | 1984-05-04 | 1986-02-06 | Continuous annealing method and apparatus for cold rolled steel strips. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59089930A JPS60234923A (en) | 1984-05-04 | 1984-05-04 | Method and installation for continuous annealing of cold-rolled steel strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60234923A JPS60234923A (en) | 1985-11-21 |
JPS6321731B2 true JPS6321731B2 (en) | 1988-05-09 |
Family
ID=13984411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59089930A Granted JPS60234923A (en) | 1984-05-04 | 1984-05-04 | Method and installation for continuous annealing of cold-rolled steel strip |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS60234923A (en) |
KR (1) | KR900006693B1 (en) |
ZA (1) | ZA853256B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200483189Y1 (en) | 2015-11-05 | 2017-04-14 | 주식회사 엔젤악기 | Mouthpiece cap for a pipe and pipe having the same |
CN110331276B (en) * | 2019-07-17 | 2020-12-15 | 首钢京唐钢铁联合有限责任公司 | Anti-buckling start method for annealing furnace |
-
1984
- 1984-05-04 JP JP59089930A patent/JPS60234923A/en active Granted
-
1985
- 1985-05-01 ZA ZA853256A patent/ZA853256B/en unknown
- 1985-05-04 KR KR1019850003046A patent/KR900006693B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR900006693B1 (en) | 1990-09-17 |
KR850008689A (en) | 1985-12-21 |
JPS60234923A (en) | 1985-11-21 |
ZA853256B (en) | 1985-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5130733B2 (en) | Continuous annealing equipment | |
JP2505841B2 (en) | Method for producing non-aged fused zinc matt strips | |
EP0779370A1 (en) | Method of continuous annealing of cold rolled steel plate and equipment therefor | |
JPS6321731B2 (en) | ||
JP3396932B2 (en) | Continuous heat treatment apparatus and continuous heat treatment method for metal strip | |
JPS6321732B2 (en) | ||
CN113699365A (en) | Method for improving oxidation color defect of steel coil after cover annealing | |
US4595357A (en) | Continuous annealing method and apparatus for cold rolled steel strips | |
JP7302563B2 (en) | CONTINUOUS ANNEALING METHOD FOR COLD-ROLLED STEEL | |
JPS5944367B2 (en) | Water quenching continuous annealing method | |
JPS5849626B2 (en) | Manufacturing method and equipment for hot-dip galvanized steel sheet for deep drawing | |
JP3168753B2 (en) | Threading method in direct reduction heating equipment of continuous metal strip processing line | |
JPH01219128A (en) | Manufacture of thin scale hot rolled steel sheet | |
JPS5993826A (en) | Manufacture of soft sheet for tinning | |
JP5888515B2 (en) | Rapid heating method and rapid heating apparatus for steel sheet | |
JPH09137233A (en) | Method for heat treating band-shaped metallic sheet | |
JPS6335690B2 (en) | ||
JPH0297622A (en) | Finish-annealing method for grain orientated silicon steel strip | |
JPH08127819A (en) | Method and device for flattened annealing for grain oriented silicon steel sheet | |
JPS62124233A (en) | Method and apparatus for continuously annealing dead soft steel for deep drawing | |
JPS62296913A (en) | Straightening method for thickness distribution in width direction of metal strip | |
JPH05295427A (en) | Production of soft starting sheet for surface treatment by continuous annealing | |
JPS6123722A (en) | Production of hot rolled steel sheet | |
JPS61204319A (en) | Method for continuously annealing cold rolled steel sheet for drawing | |
JPH06306486A (en) | Heat treating device for steel strip |