JPS63217302A - Multlayered optical element - Google Patents

Multlayered optical element

Info

Publication number
JPS63217302A
JPS63217302A JP62051257A JP5125787A JPS63217302A JP S63217302 A JPS63217302 A JP S63217302A JP 62051257 A JP62051257 A JP 62051257A JP 5125787 A JP5125787 A JP 5125787A JP S63217302 A JPS63217302 A JP S63217302A
Authority
JP
Japan
Prior art keywords
thin film
substrate
optical element
vapor deposition
skin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62051257A
Other languages
Japanese (ja)
Inventor
Koichi Sasagawa
孝市 笹川
Norio Shibata
規夫 柴田
Keiji Kuriyama
栗山 桂司
Takeshi Nosaka
野坂 竹志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62051257A priority Critical patent/JPS63217302A/en
Publication of JPS63217302A publication Critical patent/JPS63217302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To prevent optical thin film from stripping off a substrate together with a skin layer by forming an inorganic oxide thin film by the vapor deposition on the substrate by means of resistance heating. CONSTITUTION:Optical thin film is formed by the vapor deposition using electron beams on a plastic substrate provided with a skin layer having a different density or crystallinity from the inside of the skin layer. his film of an inorganic oxide, pref. thin film of SiOx (1<=x<2), is formed as an intermediate layer by the vapor deposition using resistance heating between the substrate and the optical thin film. Said SiOx (1<=x<2) is formed from SiO as a vapor deposition source by the vacuum evaporation in high vacuum (ca. 8X10<-5>-6X10<-4>Torr degree of vacuum) with introduction of a small amt. of gaseous oxygen.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、スキン層を有する合成樹脂製基板上に光学薄
膜を形成してなる光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical element formed by forming an optical thin film on a synthetic resin substrate having a skin layer.

〔従来の技術〕[Conventional technology]

光学薄膜は機能面から分類すると、反射防止膜、反射増
加膜、反射膜、フィルター、偏光フィルター、位相板な
どに分類され、その多くは光学理論に基づいて構造設計
される。設計により、単層膜の場合と多層膜の場合があ
る。
Optical thin films are categorized from a functional standpoint into antireflection films, reflection increasing films, reflective films, filters, polarizing filters, phase plates, etc., and most of them are structurally designed based on optical theory. Depending on the design, it may be a single layer film or a multilayer film.

他方、光学薄膜の構成物質としては、5iO1S io
、 、Zr0z 、MgF、 、Tie、 、CeO,
、ZnS、Aj!、03、ZnOlMgOなどの誘電体
、Ai!、Ag、Au、Geなどの金属又は半金属が使
用される。
On the other hand, as a constituent material of the optical thin film, 5iO1S io
, ,Zr0z,MgF, ,Tie, ,CeO,
, ZnS, Aj! , 03, dielectric materials such as ZnOlMgO, Ai! , Ag, Au, Ge, or other metals or metalloids are used.

そして光学薄膜は、一般に0.01〜10μmと薄いた
めに、一般には真空蒸着、スパッタリング、イオンブレ
ーティングなどで形成される。真空蒸着の場合、蒸着源
を加熱する手段として、抵抗加熱と電子ビーム加熱の2
種がある。抵抗加熱では融点の低い物質例えば5iOx
(1≦x<2)L。
Since the optical thin film is generally as thin as 0.01 to 10 μm, it is generally formed by vacuum evaporation, sputtering, ion blasting, or the like. In the case of vacuum evaporation, there are two methods of heating the evaporation source: resistance heating and electron beam heating.
There are seeds. In resistance heating, substances with low melting points such as 5iOx
(1≦x<2)L.

か蒸着できず、それに対して電子ビーム加熱では、融点
の高い物質、例えばStO□、AlzOx、ZrO,、
Tie、 、W、Mo、Taでも蒸着できる。
On the other hand, electron beam heating cannot deposit substances with high melting points, such as StO□, AlzOx, ZrO, etc.
Tie, , W, Mo, and Ta can also be deposited.

ところで、近年光学薄膜を形成する基板として従来のガ
ラスから軽くて強靭な合成樹脂例えばポリカーボネート
(pc)、ポリスチレン(PS)、ポリメチルメタクリ
レート(PMMA)に変わりつつある。ここでいう「基
板」とは、単なる平板にとどまらず、それ自体、レンズ
、プリズム、反射基板等の光学素子であってもよい。そ
して、特定の形状を有する合成樹脂製光学素子は、合成
樹脂の特徴として、注形、射出成形、押し出し成形、カ
レンダー成形、プレス成形などの成形方法で製造され、
製造と同時に最終形状が得られる。
Incidentally, in recent years, as substrates on which optical thin films are formed, conventional glass has been replaced by lightweight and strong synthetic resins such as polycarbonate (PC), polystyrene (PS), and polymethyl methacrylate (PMMA). The "substrate" herein is not limited to a simple flat plate, but may also be an optical element such as a lens, a prism, or a reflective substrate. A synthetic resin optical element having a specific shape is manufactured by a molding method such as casting, injection molding, extrusion molding, calendar molding, press molding, etc. as a characteristic of the synthetic resin.
The final shape is obtained at the same time as manufacturing.

〔発明が解決しようとする問題点] ところが、合成樹脂製基板に電子ビーム加熱による蒸着
で光学薄膜を形成すると、光学薄膜がその後基板表面層
と共に剥離することがあるという問題点があった。
[Problems to be Solved by the Invention] However, when an optical thin film is formed on a synthetic resin substrate by vapor deposition using electron beam heating, there is a problem in that the optical thin film may subsequently peel off together with the substrate surface layer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、かかる問題点の解決のため鋭意研究の結
果、問題点の生じるのは、基板表面層に内部とは密度又
は結晶化度の異なる異質層(スキン層と呼ばれ、数μm
の厚さがある)の形成された合成樹脂製基板を使用した
場合に限られることを突き止めた。
The inventors of the present invention have conducted extensive research to solve these problems, and have found that the problem arises because the substrate surface layer has a heterogeneous layer (called a skin layer, with a density or crystallinity of several μm) that differs from the inside.
It has been found that this is limited to cases where a synthetic resin substrate with a thickness of

そして更に研究を進めた結果、かかるスキン層を有する
基板であっても基板上に予め抵抗加熱により無機酸化物
例えばS iox薄膜を形成しておけば、その後電子ビ
ーム加熱蒸着で光学薄膜を形成しても前記問題点が生じ
ないことを見い出し、本発明を成すに至った。
As a result of further research, we found that even if a substrate has such a skin layer, if an inorganic oxide such as Siox thin film is formed on the substrate by resistance heating in advance, then an optical thin film can be formed by electron beam heating evaporation. The inventors have found that the above-mentioned problems do not occur even if the above-mentioned method is used, and have accomplished the present invention.

従って、本発明は、[内部とは密度又は結晶化度の異な
るスキン層を有する合成樹脂製基板上に、電子ビーム加
熱蒸着により光学薄膜を形成してなる光学素子に於いて
、前記基板と前記光学薄膜との間に、中間層として抵抗
加熱蒸着により無機酸化物好ましくは5iOx(1≦x
く2)の薄膜を形成したことを特徴とする光学素子」を
提供する。
Therefore, the present invention provides an optical element in which an optical thin film is formed by electron beam heating evaporation on a synthetic resin substrate having a skin layer having a density or crystallinity different from that of the inside, An inorganic oxide, preferably 5iOx (1≦x
(2) An optical element characterized by forming the thin film of (2) above.

〔作用〕[Effect]

S iox (1<x<2)は、蒸着源としてSiOを
用い、少量の酸素ガスを導入した低真空中(真空度8 
X 10−’〜6 X 10−’Torr程度)で真空
蒸着することにより形成され、幸いなことに透明で1.
45〜1.90の屈折率ndを有するので光学薄膜の機
能に影響を与えないようにすることもできる。しかし、
この5tyxを積極的に多層光学薄膜の一部と兼用させ
てもよい。S iox (1<x〈2)薄膜は薄膜故に
Xの特定は難しいが、X=1.3〜1.9と思われる。
Siox (1<x<2) uses SiO as a deposition source in a low vacuum (vacuum degree 8) with a small amount of oxygen gas introduced.
It is formed by vacuum evaporation at a temperature of about 1.5 x 10-' to 6.
Since it has a refractive index nd of 45 to 1.90, it can also be prevented from affecting the function of the optical thin film. but,
This 5tyx may also be actively used as a part of the multilayer optical thin film. Siox (1<x<2) Although it is difficult to specify X because the thin film is a thin film, it is thought that X=1.3 to 1.9.

しかし、本発明ではSiOを中間層として使用してもよ
く、その場合には酸素ガスを導入せずに真空蒸着を行な
う。光学薄膜の一部と兼用させずに単に中間層としてな
らば、5iOx(1≦x〈2)膜厚は一般に0.005
〜10μm程度でよい。0.01μm以上特に0゜05
μm以上の膜厚があれば、スキン層と共に基板から剥離
する問題は心配ない。
However, in the present invention, SiO may be used as the intermediate layer, in which case vacuum deposition is performed without introducing oxygen gas. If it is simply used as an intermediate layer without also serving as a part of the optical thin film, the film thickness of 5iOx (1≦x<2) is generally 0.005
It may be about 10 μm. 0.01μm or more especially 0゜05
If the film has a thickness of μm or more, there is no need to worry about the problem of peeling off from the substrate together with the skin layer.

5iOx(1≦X〈2)の薄膜(中間層)の上に、光学
薄膜が電子ビーム加熱で蒸着される。電子ビーム加熱に
よる蒸着膜は、ち密なため耐擦傷性に優れる。
An optical thin film is deposited on the thin film (intermediate layer) of 5iOx (1≦X<2) by electron beam heating. The film deposited by electron beam heating is dense and has excellent scratch resistance.

以下、実施例によって本発明を説明するが、本発明はこ
れに限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

〔実施例1〕 真空チャンバー内にスキン層を有するPMMA基板と蒸
着源としてSiOをセットし、5×10− ”Torr
まで排気した。酸素を導入して2X10−’Torrに
した後、抵抗加熱によってSiOを飛ばして0.05μ
m蒸着し、第1層5fox (1<x<2)を形成した
。次に酸素導入をやめチャンバーを3 X 10−hT
orrまで排気して、電子ビーム法にて、ZrO,を0
.2μm、その上にSin、を0゜2μ涌蒸着すること
により2層反射防止膜を形成した。
[Example 1] A PMMA substrate having a skin layer and SiO as an evaporation source were set in a vacuum chamber, and the pressure was set at 5×10-” Torr.
Exhausted until. After introducing oxygen to 2X10-'Torr, SiO is blown off by resistance heating to 0.05μ
m vapor deposition to form a first layer 5fox (1<x<2). Next, stop introducing oxygen and change the chamber to 3 x 10-hT.
Evacuate to orr and remove ZrO to 0 using electron beam method.
.. A two-layer antireflection film was formed by vapor-depositing 2 μm of Sin at 0° and 2 μm thereon.

〔実施例2〕 実施例1と同様にスキン層を有するPS基板に抵抗加熱
法にてS iox (1<x<2)を蒸着後、酸素導入
をやめ、チャンバー内を5 X 10−”Torrまで
排気して、電子ビーム法にてAzz 03を0゜2μn
+、ZrO,を0.2μm、SiO,を0.1 u−そ
れぞれ順に蒸着することにより3層反射防止膜を形成し
た。
[Example 2] As in Example 1, after depositing Siox (1<x<2) on a PS substrate having a skin layer using a resistance heating method, oxygen introduction was stopped and the inside of the chamber was heated to 5 x 10-” Torr. Azz 03 was evacuated to 0°2 μn using the electron beam method.
A three-layer antireflection film was formed by sequentially depositing 0.2 μm of ZrO, 0.1 μm of SiO, and 0.1 μm of ZrO.

〔実施例3〕 実施例1と同様にスキン層を有するPC基板に抵抗加熱
法にてS iox (1<x<2)を蒸着後、酸素導入
をやめ、チャンバー内を3 X 10−”Torrまで
排気後、電子ビーム法にて順にTie、を0゜2μta
 −、S Z Ozを0.l#s、ZrO,を0.2μ
m、510gを0.1μ−それぞれ蒸着することにより
4層反射防止膜を形成した。
[Example 3] After depositing Siox (1<x<2) on a PC board having a skin layer using a resistance heating method in the same manner as in Example 1, oxygen introduction was stopped and the inside of the chamber was heated to 3×10-” Torr. After evacuation to
-, S Z Oz is 0. l#s, ZrO, 0.2μ
A four-layer anti-reflection film was formed by depositing 0.1 μm of 510 g of 4-layer anti-reflection film.

〔比較例1〕 実施例1と同様にPMMA基板にここでは直接に電子ビ
ーム法にてZrO,を0.2μm、SiO2を0.2μ
s積層した。。
[Comparative Example 1] As in Example 1, a 0.2 μm thick layer of ZrO and a 0.2 μm thick layer of SiO2 were directly deposited on a PMMA substrate using the electron beam method.
s laminated. .

〔比較例2〕 実施例2と同様にPS基板にここでは直接に電子ビーム
法にてAffi、 O,を0.2μm、ZrO。
[Comparative Example 2] As in Example 2, Affi, O, and ZrO were directly applied to the PS substrate to a thickness of 0.2 μm using the electron beam method.

を0.2μ園、stowを0.1μ−積層した。A layer of 0.2 μm was layered, and a layer of 0.1 μm of stow was layered.

〔比較例3〕 実施例3と同様にPC基板にここでは直接に電子ビーム
法にてTiotを0.2μ鴎、Sin、を0.1μs、
Zr0=を0.2μs+、5iO1を0.1μs蒸着し
た。
[Comparative Example 3] Similar to Example 3, Tiot was applied directly to the PC board using the electron beam method for 0.2 μs, and Sin was applied for 0.1 μs.
Zr0 was deposited for 0.2 μs+, and 5iO1 was deposited for 0.1 μs.

以上、実施例1〜3、比較例1〜3の光学素子について
次のような試験を行なった。この結果を第1表に示す。
As described above, the following tests were conducted on the optical elements of Examples 1 to 3 and Comparative Examples 1 to 3. The results are shown in Table 1.

〔試験例1〕 薄膜表面にセロハンテープを貼り、思い切り剥して薄膜
の密着性を調べた。
[Test Example 1] Cellophane tape was applied to the surface of the thin film, and the adhesiveness of the thin film was examined by peeling it off.

〔試験例2〕 薄膜表面をスチールウール(#0O00)で荷重200
gfの負荷をかけながら30回擦った。
[Test Example 2] Apply a load of 200 to the surface of the thin film using steel wool (#0O00).
I rubbed it 30 times while applying a load of gf.

尚、実施例ではS ioxを使用したが、TiOx (
1<x<2)やCeOx (1<x≦2)も使用し得る
Although Siox was used in the example, TiOx (
1<x<2) or CeOx (1<x≦2) may also be used.

〔発明の効果〕〔Effect of the invention〕

以上の通り、スキン層を有する合成樹脂基板であっても
、本発明に従い基板上に抵抗加熱蒸着により無機酸化物
薄膜特にSiOx (1≦x〈2)薄膜を設けることに
より、その上に電子ビーム蒸着に種々の光学薄膜を形成
しても、光学薄膜がスキン層と共に基板から剥離する問
題が解消される。
As described above, even if the synthetic resin substrate has a skin layer, by providing an inorganic oxide thin film, particularly a SiOx (1≦x<2) thin film, on the substrate by resistance heating vapor deposition according to the present invention, electron beams can be applied on the substrate. Even if various optical thin films are formed by vapor deposition, the problem of the optical thin film peeling off from the substrate together with the skin layer is solved.

また、SiOxは帯電防止効果もあり、耐擦傷性にも優
れる。
Furthermore, SiOx has an antistatic effect and is also excellent in scratch resistance.

Claims (1)

【特許請求の範囲】 1 内部とは密度又は結晶化度の異なるスキン層を有す
る合成樹脂製基板上に、電子ビーム加熱蒸着により光学
薄膜を形成してなる光学素子に於いて、 前記基板と前記光学薄膜との間に、抵抗加熱蒸着により
無機酸化物薄膜を形成したことを特徴とする光学素子。 2 前記無機酸化物がSiO_x(1≦x<2)である
ことを特徴とする特許請求の範囲第1項記載の光学素子
。 3 前記SiO_x薄膜の膜厚が0.005〜10μm
であることを特徴とする特許請求の範囲第2項記載の光
学素子。 4 前記基板がポリカーボネート、ポリスチレンまたは
ポリメチルメタクリレートであることを特徴とする特許
請求の範囲第1項記載の光学素子。
[Scope of Claims] 1. An optical element in which an optical thin film is formed by electron beam heating evaporation on a synthetic resin substrate having a skin layer having a different density or crystallinity from the inside, comprising: An optical element characterized in that an inorganic oxide thin film is formed between an optical thin film and an inorganic oxide thin film by resistance heating vapor deposition. 2. The optical element according to claim 1, wherein the inorganic oxide is SiO_x (1≦x<2). 3 The thickness of the SiO_x thin film is 0.005 to 10 μm
The optical element according to claim 2, characterized in that: 4. The optical element according to claim 1, wherein the substrate is polycarbonate, polystyrene, or polymethyl methacrylate.
JP62051257A 1987-03-06 1987-03-06 Multlayered optical element Pending JPS63217302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62051257A JPS63217302A (en) 1987-03-06 1987-03-06 Multlayered optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62051257A JPS63217302A (en) 1987-03-06 1987-03-06 Multlayered optical element

Publications (1)

Publication Number Publication Date
JPS63217302A true JPS63217302A (en) 1988-09-09

Family

ID=12881892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62051257A Pending JPS63217302A (en) 1987-03-06 1987-03-06 Multlayered optical element

Country Status (1)

Country Link
JP (1) JPS63217302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052074A1 (en) * 1997-05-16 1998-11-19 Hoya Kabushiki Kaisha Plastic optical component having a reflection prevention film and mechanism for making reflection prevention film thickness uniform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052074A1 (en) * 1997-05-16 1998-11-19 Hoya Kabushiki Kaisha Plastic optical component having a reflection prevention film and mechanism for making reflection prevention film thickness uniform
US6250758B1 (en) 1997-05-16 2001-06-26 Hoya Corporation Plastic optical devices having antireflection film and mechanism for equalizing thickness of antireflection film

Similar Documents

Publication Publication Date Title
US4944581A (en) Rear face reflection mirror of multilayer film for synthetic resin optical parts
CA2429150A1 (en) Cold antireflection layer deposition process
JPH07111484B2 (en) Antireflection film for plastic optical parts and method for forming the same
JPS5860701A (en) Reflection preventing film
JPH01273001A (en) Antireflection film of optical parts made of synthetic resin
JPH02109003A (en) Reflection mirror
JP3221764B2 (en) Anti-reflection coating for optical parts made of synthetic resin
JPS63217302A (en) Multlayered optical element
JPS60130704A (en) Antireflection film for plastic substrate
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JP2546203B2 (en) Optical element using TiOx thin film
JPH09211204A (en) Film forming method of antireflection film on plastic film
JP2936103B2 (en) Aluminum oxide thin film
Guenther Coating of plastics-coatings on plastic
JPH077126B2 (en) Synthetic resin reflector
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JP2693500B2 (en) Anti-reflective coating
JPH08146202A (en) Optical parts having antireflection film
JP2979327B2 (en) Anti-reflective coating deposited on low melting point substrate
JPS63172201A (en) Two-layer antireflection coating
JPS60130703A (en) Antireflection film for plastic substrate
JPS60130702A (en) Antireflection film for plastic substrate
JP2003057404A (en) Antireflection film for faraday rotator
JPH03255401A (en) Formation of mgf2 film on plastic substrate