JPS63216984A - Method for preventing intergranular damage of ni alloy member - Google Patents

Method for preventing intergranular damage of ni alloy member

Info

Publication number
JPS63216984A
JPS63216984A JP4856287A JP4856287A JPS63216984A JP S63216984 A JPS63216984 A JP S63216984A JP 4856287 A JP4856287 A JP 4856287A JP 4856287 A JP4856287 A JP 4856287A JP S63216984 A JPS63216984 A JP S63216984A
Authority
JP
Japan
Prior art keywords
degassed
aqueous solution
contact
alloy member
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4856287A
Other languages
Japanese (ja)
Inventor
Hideaki Yuki
英昭 幸
Kazuo Yamanaka
和夫 山中
Takao Minami
孝男 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4856287A priority Critical patent/JPS63216984A/en
Publication of JPS63216984A publication Critical patent/JPS63216984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To prevent the intergranular corrosion and intergranular stress corrosion cracking of an Ni alloy member brought into contact with a degassed aq. alkali soln. at a high temp. by adding a chain amine having a COOH or OH group to the alkali soln. and gaseous H2 to a vapor phase coming in contact with the alkali soln. CONSTITUTION:When an Ni alloy member is brought into contact with a degassed aq. alkali soln. such as an aq. NaOH soln. at >=300 deg.C, one or more kinds of chain amines each having a COOH or OH group are added to the alkali soln. by 0.1ppm-1% by weight. The chain amines may be sarcosine, alanine and 2-amino-2-methyl-1-propanol. Gaseous H2 is further added to a vapor phase coming in contact with the alkali soln. contg. the added chain amines by 3X10<-3>-1X10<-1>atm per 1atm vapor phase. By this simple means, the intergranular damage of the Ni alloy member brought into contact with the degassed aq. alkali soln. at a high temp. due to intergranular corrosion and intergranular stress corrosion cracking is effectively prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高温の脱気アルカリ水溶液と接触するNi
基合金部材に粒界腐食と粒界応力腐食割れ(α下、これ
を総称して粒界損傷といい、IOAと略記する)が発生
するのを防止する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is directed to the use of Ni
This invention relates to a method for preventing intergranular corrosion and intergranular stress corrosion cracking (hereinafter α, collectively referred to as intergranular damage, abbreviated as IOA) in base alloy members.

〔従来の技術〕[Conventional technology]

従来、例えば重量%(α下%は重量%を示す)で、16
%Cr−75%Ni−8%Fe(7)組成を有する合金
600などのNi基合金が、8US304や同316な
どの低Ni合金鋼と較べて応力腐食割れ(12i下SC
Cで示す)に対する抵抗性にすぐれていることから、特
(=8CCw起し易い環境にさらされる部材、特に熱交
換器の管材として使用されているうこのような熱交換器
の管材(:おいては、その内側が、例えば3001S以
上の高温高圧水流にさらされ、一方その外側が250〜
300℃の高温高圧水流(蒸気を含む)にさらされるが
、その外側の高温水を単(:脱気しただけでは、前記熱
交換器管材が上記合金600のようなNi基合金で作ら
れていても、IGAv起す傾向があるので、現在ではそ
の管材の外側に供給される高温水に対してA V T 
(A# VocatiAe Treatment ) 
処理ヲ施1. テいろう このAVT処理は、前記熱交換器管材の外側に供給され
る水の中に、アンモニアを加えて、その1)HY8.5
〜9.2に調整し、それによって合金600製管材は外
の部材、例えば管材を固定するために組込まれている炭
素鋼製支持部材の腐食を抑制して、これに溶は込むマグ
ネタイト(Fe304)量を最小限に抑えると共に、さ
ら(=ヒドラジン(N2H4)を添加して、前記水(こ
の水はアンモニアおよびヒドラジンの添加によってアル
カリ水溶液となる)中の溶存酸素fjr:10ppb 
IJ、下に脱気し、そのヒドラジンの残存量を最大でs
 ppbに制御することによって合金600製管材(二
粒界応力腐食割れが発生するのを防止する処理である。
Conventionally, for example, in weight% (% below α indicates weight%), 16
Ni-based alloys such as Alloy 600, which has a composition of
Because of its excellent resistance to 8CCw (denoted by C), it is particularly suitable for use in materials that are exposed to environments that are susceptible to (=8CCw), especially heat exchanger tube materials (: For example, the inside is exposed to a high-temperature, high-pressure water stream of 3001S or higher, while the outside is exposed to a water flow of 250~
It is exposed to a high-temperature, high-pressure water stream (including steam) at 300°C, but if the high-temperature water on the outside is simply degassed, the heat exchanger tube material is made of a Ni-based alloy such as Alloy 600. However, since there is a tendency to cause IGAv, current
(A# Vocatiae Treatment)
Processing 1. Teiroko's AVT treatment involves adding ammonia to the water supplied to the outside of the heat exchanger tube material to obtain 1) HY8.5
~9.2, thereby suppressing the corrosion of external members, such as the carbon steel support members incorporated to secure the pipe, and the magnetite (Fe304) that melts into this. ) while minimizing the amount of dissolved oxygen fjr in the water (this water becomes an alkaline aqueous solution by adding ammonia and hydrazine) by adding hydrazine (N2H4): 10 ppb
IJ, evacuate the bottom and reduce the remaining amount of hydrazine to a maximum of s.
This is a treatment that prevents the occurrence of two-grain boundary stress corrosion cracking in alloy 600 pipe material by controlling the ppb to ppb.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記のAVT処理(−よって調製された脱気ア
ルカリ水溶液を用いても、これが高温で濃縮されて、そ
のアルカリ濃度がNi合金製管材と管材支持部材との隙
間で高くなると、この管材の特に外面隙間付近部位にI
OAが生じるようになり、特に管材表面にFe3O4な
どの酸化物スラリが付着するとIOAは著しく加速され
るようになるのが現状である。
However, even if the degassed alkaline aqueous solution prepared by the above-mentioned AVT treatment (-) is used, if it is concentrated at high temperatures and the alkaline concentration becomes high in the gap between the Ni alloy pipe material and the pipe material support member, this pipe material Particularly in the area near the outer surface gap.
The current situation is that OA begins to occur, and particularly when oxide slurry such as Fe3O4 adheres to the surface of the pipe material, IOA is significantly accelerated.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような問題点を解決すべ
く研究を重ねた結果、 fal  上記のAvT処理により調製された脱気アル
カリ水溶液C二よれば、これと接触している合金600
のようなNi基合金部材の腐食電位は下降してIOA発
生電位領域から外れるはずであるが、上記の炭素鋼製支
持部材などから溶出したFe3O4などの酸化物スラッ
ジが前記脱気アルカリ水溶液中(:存在すると、例えば
第1図に、40%のNaOHを含有する温度=325℃
の高温脱気アルカリ水溶液=2)中に、Fe3O4: 
467 f ’l 添加L e HA 合の合金600
の腐食電位の経時変化が曲線(cr)で示されているよ
うに、合金600の腐食電位は、上記のFe3O4Y含
有しない場合〔(イ)曲線で示す〕よりも上昇し、工G
A発生電位領域(:入って、合金600にIOAが発生
するようになること。
Therefore, as a result of repeated research to solve the above-mentioned problems, the present inventors found that according to the degassed alkaline aqueous solution C2 prepared by the above-mentioned AvT treatment, the alloy 600 in contact with it
The corrosion potential of Ni-based alloy members should fall and move out of the IOA generation potential region. : If present, for example in Figure 1, the temperature containing 40% NaOH = 325 °C
Fe3O4:
Alloy 600 with 467 f 'l addition L e HA
As shown by the curve (cr) showing the change in corrosion potential over time, the corrosion potential of alloy 600 is higher than that in the case without Fe3O4Y [shown by curve (a)], and
In the A generation potential region (:), IOA is generated in alloy 600.

(b)シかし、上記の脱気アルカリ水溶液、に、カルボ
キシル基あるいはアルコール基を有する鎖状アミンを添
加すると、これに接触するNi基合金部材の腐食電位は
、Fe3O4などの酸化物スラッジなどが存在していて
も上昇しないので、前記Ni基合金部材CIGAが発生
しないこと。
(b) However, when a chain amine having a carboxyl group or an alcohol group is added to the above degassed alkaline aqueous solution, the corrosion potential of the Ni-based alloy member that comes into contact with the chain amine increases due to oxide sludge such as Fe3O4, etc. does not rise even if it exists, so the Ni-based alloy member CIGA does not occur.

fcl  このような鎖状アミン添加の作用は、脱気ア
ルカリ水溶液と接触している気相中に、水素ガスを添加
すると、−1促進されるよう(=なること。
fcl This effect of addition of a chain amine is accelerated by -1 when hydrogen gas is added to the gas phase in contact with the degassed alkaline aqueous solution.

以上fal〜lcl I;示される知見を得たのである
The findings shown above have been obtained.

この発明は、上記知見にもとづいてなされたものであっ
て、 Ni基合金部材と接触する高温の脱気アルカリ水溶液中
(ユ、カルボキシル基あるいはアルコール基を有する鎖
状アミンのうちの1種または2種以上を、前記脱気アル
カリ水溶液に対する重量割合で0.1pI)m〜1%添
加すると共に、前記高温の脱気アルカリ水溶液と接触す
る気相中に、気相:1気圧に占める割合で3X10−5
〜1×10 気圧の割合の水素ガスを添加すること(;
よって、高温の脱気アルカリ水溶液と接触するNi基合
金部材i:IGAが発生するのを防止する方法に特徴を
有するものである。
The present invention has been made based on the above findings, and the present invention has been made based on the above findings. At the same time, 0.1 pI) m to 1% by weight of the degassed alkaline aqueous solution is added to the degassed alkaline aqueous solution, and 3×10 -5
Adding hydrogen gas at a rate of ~1×10 atm (;
Therefore, the present invention is characterized by a method for preventing the formation of Ni-based alloy member i:IGA that comes into contact with a high-temperature degassed alkaline aqueous solution.

この発明の方法における高温の脱気アルカリ水溶液とし
て、上記の熱交換器の管材の外側に用いられ、かつ通常
300℃以上の温度にさらされるAVT処理された水溶
液、すなわち一般ζ:アンモニアでp)1vs、s〜9
.2に調製し、ヒドラジンで脱気して、溶存酸素をxo
ppbL2L下にすると共に、ヒドラジンft5ppl
L下残存させ、かつ前記管材の外側で、一般に水蒸気か
らなる気相と接触している水溶液を述べたが、この発明
の方法が対象としている脱気アルカリ水溶液は、このよ
うな熱交換器管材の外側に用いられている水溶液に限定
されるものではなく、気相に接し、かつ高温にさらされ
ている脱気されたアルカリ水溶液のすべてを対象とし、
ごれらの高温の脱気アルカリ水溶液によってNi基合金
部材にIOAが発生するのを防止するものである。
The high-temperature degassed alkaline aqueous solution in the method of the present invention is an AVT-treated aqueous solution that is used on the outside of the tube of the heat exchanger and is normally exposed to a temperature of 300°C or higher, that is, general ζ: p with ammonia. 1vs, s~9
.. 2 and degassed with hydrazine to remove dissolved oxygen
Lower ppbL2L and add hydrazine ft5ppl
Although the aqueous solution that remains under L and is in contact with a gas phase, generally consisting of water vapor, on the outside of the tube material, the degassed alkaline aqueous solution to which the method of the present invention is directed applies to such heat exchanger tube materials. It is not limited to aqueous solutions used outside of the tank, but covers all degassed alkaline aqueous solutions that are in contact with the gas phase and exposed to high temperatures.
This prevents IOA from being generated in Ni-based alloy members due to the high temperature degassed alkaline aqueous solution.

また、この発明の方法において、カルボキシル基を有す
る鎖状アミンとしては、サルコシン、アラニン、βアミ
ノイソ吉草酸、αアミノイソ吉草酸、L−アルギニン、
αアミノ酪酸、βアミノ酪酸などを挙げることができ、
その種類に制限はなく、あらゆるものが適用可能である
が、好ましくはサルコシン、アラニン、およびL−アル
ギニンの使用が望ましく、また、アルコール基を有する
鎖状アミンとしては、例えば2アミノ−2メftレー1
プロバール(以下AMPという)や2アミノ−エタノー
ル(α下ABという)などの使用が望よしい。
In addition, in the method of the present invention, examples of the chain amine having a carboxyl group include sarcosine, alanine, β-aminoisovaleric acid, α-aminoisovaleric acid, L-arginine,
Examples include α-aminobutyric acid and β-aminobutyric acid.
There are no restrictions on the type, and any type of amine is applicable, but preferably sarcosine, alanine, and L-arginine are used.As the chain amine having an alcohol group, for example, 2-amino-2-meth Leh 1
It is desirable to use probal (hereinafter referred to as AMP), 2-amino-ethanol (hereinafter referred to as α-AB), and the like.

上記のように、この発明の方法における力!レボキシル
基あるいはアルコール基を有する鎖状アミンには、高温
の脱気アルカリ水溶液中で、この水溶液と接する気相中
に添加された水素ガスと共(ニなって、前記水溶液中に
溶出してスラッジ状またはスケール状に析出するFe3
O4などの不純物によるNi基合金部材の腐食電位の上
昇を抑制し、その腐食電位がIOA発生電位領域に入る
のを防止する作用があるが、その添加がか前記脱気アル
カリ水溶液に対する重量割合にして、o、ippm未満
では、前記作用に所望の効果が得られず、一方その添加
量が同じ割合で1%を越えても前記作用により一層の向
上効果は現われず、経済性を考慮して、その添加量Y0
.1pI)m〜1%と定めた。
As mentioned above, the power in this inventive method! A chain amine having a levoxyl group or an alcohol group is produced in a high-temperature degassed alkaline aqueous solution together with hydrogen gas added to the gas phase in contact with the aqueous solution (which in turn dissolves into the aqueous solution and creates sludge). Fe3 precipitates in a shape or a scale shape
It has the effect of suppressing the increase in the corrosion potential of Ni-based alloy members due to impurities such as O4 and preventing the corrosion potential from entering the IOA generation potential region, but its addition has the effect of reducing the weight ratio to the degassed alkaline aqueous solution. Therefore, if the amount is less than o,ippm, the desired effect cannot be obtained in the above action, and on the other hand, even if the addition amount exceeds 1% at the same ratio, the effect of further improvement in the above action will not appear. , its addition amount Y0
.. 1pI)m~1%.

さらに、この発明の方法における水素ガスは、上記鎖状
アミンが脱気アルカリ水溶液中でFe3O4などの不純
物の悪影響?打ち消す作用、すなわち脱気アルカリ水溶
液と接触しているNi基合金部材の腐食電位の上昇を抑
制する作用を促進助長するため(:、前記脱気アルカリ
水溶液と接合する気相中に添加されるものであることは
上記の通りであるが、その添加量が、気相:1気圧に対
する割合で3 X 10−5気圧未満では、前記作用に
所望の効果が得られず、Ni基合金部材の腐食電位が(
GA発生電位領域(二人るようになり、一方その添加量
が同I X 10−1気圧?越えると、合金600のよ
うなNi基合金部材が水素脆性を起すおそれがある上に
、実機に適用した場合水素ガスの消費量が非常に多ぐな
ってコスト高を招くようになることから、その添加量を
、気相:1気圧に対する割合で3 X 10−5〜1×
10 気圧としなければならない。
Furthermore, the hydrogen gas in the method of the present invention may be caused by the adverse effects of impurities such as Fe3O4 in the degassed alkaline aqueous solution of the chain amine. In order to promote the counteracting effect, that is, the effect of suppressing the increase in the corrosion potential of the Ni-based alloy member that is in contact with the degassed alkaline aqueous solution (:, something added to the gas phase that joins with the degassed alkaline aqueous solution) As mentioned above, if the amount added is less than 3 x 10-5 atm relative to 1 atm in the gas phase, the desired effect will not be obtained and corrosion of the Ni-based alloy member will occur. The potential is (
On the other hand, if the amount added exceeds the GA generation potential range (I x 10-1 atm?), there is a risk of hydrogen embrittlement in Ni-based alloy members such as Alloy 600, and If this is applied, the amount of hydrogen gas consumed will be very large, leading to high costs, so the amount added should be 3 x 10-5 to 1
Must be at 10 atmospheres.

なお、この発明の方法における水素ガスの添加は、上記
のように気相=1気圧に対する割合で定めているので、
気相の圧力が変動しても、添加される水素ガスの圧力は
、気相の全圧に応じて(比例して)変動することになる
から、水素ガスの添加量は気相の圧力(全圧)の変動に
かかわらず一定となるのである。
Note that the addition of hydrogen gas in the method of this invention is determined by the ratio to the gas phase = 1 atm as described above.
Even if the pressure of the gas phase fluctuates, the pressure of the hydrogen gas added will vary (in proportion) to the total pressure of the gas phase, so the amount of hydrogen gas added will depend on the pressure of the gas phase ( It remains constant regardless of fluctuations in the total pressure.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

まず、腐食電位測定用試験片1として、合金600製の
外径:22.2園×肉厚:1.27回の管材から、第2
図(一平面図で示される形状、長さ:200 w X幅
:2■の細長い弧状部1aと、この弧状部の一端にはり
出る10日X10mの板状部1bとかうなる形状C=、
前記管材の軸線方向と直角方向にそって切り出し、また
IOA試験用試験片として用いるCリング試験片2を、
同じく上記の600合金製管材から、第3図(イ)に正
面図で、同((ff)に側面図で示される形状(ただし
、幅:151で、直径方向で互に向かい合った位置に貫
通孔2a、2aを形成)に切り出し、このCリング試験
片2には、第3図Cイ)に示されるように前記貫通孔2
a、2aCボルト3を挿通し、外側からナツト4゜4で
締め付けて、合金600のヤング率を20000として
、これにzoK4f/−の応力を負荷した。
First, as test piece 1 for corrosion potential measurement, a second
Figure (shape shown in one plan view, length: 200 w x width: 2 cm elongated arc-shaped part 1a, and a plate-like part 1b of 10 days x 10 m protruding from one end of this arc-shaped part, curving shape C=,
A C-ring test piece 2 cut out along the direction perpendicular to the axial direction of the pipe material and used as a test piece for the IOA test,
Similarly, from the above-mentioned 600 alloy pipe material, the shape shown in the front view in Fig. 3 (a) and in the side view in Fig. The C-ring test piece 2 has the through-holes 2a and 2a formed therein as shown in FIG.
A, 2aC bolt 3 was inserted and tightened with a nut 4°4 from the outside to set the Young's modulus of alloy 600 to 20,000, and a stress of zoK4f/- was applied to it.

一方、アルカリ水溶液として、濃度:40%のNaOH
水溶液水溶液中11中純物としてFe3O4:467f
k添加してIOAが加速する状態で用意した◎ つぎに、上記の2種類の試験片を、上記のアルカリ水溶
液と一緒に、21の内容積を有する合金600製オート
クレーブに装入し、前記アルカリ水溶液なArで脱気し
、続いてオートクレーブ中の圧力(給体圧力)=1気圧
の気相中に、それぞれ第1表に示される分圧で水素ガス
(残りはArガス)を添加し、さらに同じ〈第1表に示
される割合で各種の鎖状アミンをマイクa注射器?用い
て、前記脱気したアルカリ水溶液中に添加し、ついで、
オートクレーブ?加熱して、その中の前記脱気アルカリ
水溶液を325℃に加熱し、オートクレーブの内圧?6
5〜/dとして、前記各試験片をこの温度と圧力に20
0時間さらす本発明法1〜19および比較法1〜6を実
施し、かつこの間に発生した腐食′磁位は、前記腐食電
位測定用試験片にボテンヅオスタント(電位測定用計器
)を接続して計測し、一方標準電極としてはAg / 
AgC/!電極?使用し、この計測値vsHE(水素電
極)基準値に換算して求めたつ また、オートクレーブから取り出したCリング試験片に
ついては、中央部(切欠き部と対向する部分)を幅方向
にマイクロカッターで切断し、その切断面をエポキシ樹
脂に埋め込み、研磨して切断面に形成されたIGAの最
大割れ深さ?光学顕微鏡を用いて測定した。これらの測
定結果を第1表に示した。
On the other hand, as an alkaline aqueous solution, NaOH with a concentration of 40%
Fe3O4:467f as pure substance in 11 in aqueous solution
◎ Next, the above two types of test pieces were charged into an autoclave made of alloy 600 having an internal volume of 21 mm, together with the above aqueous alkali solution, and the above alkali solution was added to accelerate the IOA. Degassing with an aqueous Ar solution, followed by adding hydrogen gas (the rest is Ar gas) into the gas phase at a pressure (feed pressure) = 1 atm in the autoclave at the partial pressure shown in Table 1, Furthermore, the same <Mike A syringe with various chain amines in the proportions shown in Table 1? and added to the degassed alkaline aqueous solution, and then
Autoclave? The degassed alkaline aqueous solution therein was heated to 325°C, and the internal pressure of the autoclave was raised to ? 6
5~/d, each test piece was exposed to this temperature and pressure for 20 minutes.
Methods 1 to 19 of the present invention and comparative methods 1 to 6 are carried out for 0 hours, and the corrosion magnetic potential generated during this period is measured by connecting a potenduo stand (potential measurement instrument) to the corrosion potential measurement test piece. The standard electrode was Ag/
AgC/! electrode? The C-ring test piece was taken out from the autoclave, and the central part (the part facing the notch) was cut with a micro cutter in the width direction. What is the maximum crack depth of IGA that is formed on the cut surface by cutting, embedding the cut surface in epoxy resin, and polishing? Measured using an optical microscope. The results of these measurements are shown in Table 1.

なお、比較法1−6は、鎖状アミンおよび水素ガスの添
加のない場合(比較法1)、鎖状アミンの添加があって
も水素ガスの添加がない場合(比較法2.3)、および
鎖状アミンの添加があっても水素ガスの添加がこの発明
の範囲から低い方);外れた場合(比較法4〜6)をそ
れぞれ示すものである。
In addition, Comparative Method 1-6 is a case where a chain amine and hydrogen gas are not added (Comparative Method 1), a case where a chain amine is added but no hydrogen gas is added (Comparative Method 2.3), and (Comparative Methods 4 to 6) where the addition of hydrogen gas is lower than the scope of the present invention even if a chain amine is added;

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、鎖状アミンおよび水素ガス
を添加しない比較法1では、腐食電位が−1,30V 
ト高<、I OAのJlIIJれlさ41270pmに
達し、肉厚を貫通し、耐IGA性のきわめて悪いもので
あり、また、鎖状アミンだけヲ0.lppm添加した比
較法2,3では、腐食電位はやや低下するが、未だIO
A発生電位領域にあり、IOAの最大割れ深さは幾分減
少する程度であり、さら(二比較法4〜6に見られるよ
うに、鎖状アミンを添加しても、水素ガスの添加量がこ
の発明の範囲から外れて低いと、同様にIOAの最大割
れ保さは減少するものの、未だ300〜400/7mと
かなり大きいものであるのC二対して、本発明法1〜1
9においては、腐食電位がIOA発生電位領域から外れ
て低く、かつIOAの発生もほとんどなく、IOAの発
生があっても著しく抑制されることが明らかである。
From the results shown in Table 1, in Comparative method 1 without adding chain amine and hydrogen gas, the corrosion potential was -1.30V.
The IOA resistance reached 41,270 pm, penetrated through the wall thickness, and had extremely poor IGA resistance. In Comparative Methods 2 and 3, in which lppm was added, the corrosion potential decreased slightly, but the IO
The maximum crack depth of IOA is in the A generation potential region, and the maximum crack depth of IOA is only slightly reduced (as seen in Comparative Methods 4 to 6, even if chain amine is added, the amount of hydrogen gas added is When C2 is outside the range of this invention, the maximum crack retention of IOA decreases as well, but it is still quite large at 300 to 400/7 m.
In No. 9, the corrosion potential is outside the IOA generation potential region and is low, and there is almost no IOA generation, and it is clear that even if IOA generation occurs, it is significantly suppressed.

なお、上記実施例では、高温の脱気アルカリ水溶液と接
触する環境下で現在広く使用されているNi基合金部材
の1つとして、合金600部材を例に挙げて説明したが
、この発明の方法は、これ(二限定されるものではなく
、前記環境下でIOAを生ずるおそれのあるあらゆるN
i基合金部材に適用できることは勿論である。
In addition, in the above example, the explanation was given using an alloy 600 member as an example of a Ni-based alloy member that is currently widely used in an environment where it comes into contact with a high-temperature degassed alkaline aqueous solution. This (without limitation) any N that may cause IOA under the above environment.
Of course, it can be applied to i-based alloy members.

上述のよう(−1この発明の方法によれば、気相と接す
る高温の脱気アルカリ水溶液と接触するNi基合金部材
に発生するIOAを、前記気相中に少量の水素ガスを添
加し、かつ前記水溶液中に少量の鎖状アミンを添加する
という簡単な手段で効果的に防止でき、前記Ni基合金
部材の著しく長期に亘る性能発揮を可能とするものであ
る。
As described above (-1) According to the method of the present invention, IOA generated in a Ni-based alloy member that comes into contact with a high-temperature degassed alkaline aqueous solution that is in contact with a gas phase is removed by adding a small amount of hydrogen gas to the gas phase, Moreover, the problem can be effectively prevented by simply adding a small amount of chain amine to the aqueous solution, and the Ni-based alloy member can exhibit its performance for an extremely long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2種の高温脱気アルカリ水溶液中の合金600
の腐食電位の経時変化を示すグラフ、第2図は腐食電位
測定用試験片の平面図、第3図(イ)および同(ロ)は
IOA試験用試験片の正面図および側面図である。 1・・・腐食電位測定用試験片、 2・・・IOA試験用試験片としてのCIJソング験片
、 3・・・ボルト、    4・・・ナツト。
Figure 1 shows alloy 600 in two types of high-temperature degassed alkaline aqueous solutions.
FIG. 2 is a plan view of a test piece for corrosion potential measurement, and FIGS. 3(A) and 3(B) are a front view and a side view of a test piece for IOA testing. 1... Test piece for corrosion potential measurement, 2... CIJ song test piece as a test piece for IOA test, 3... Bolt, 4... Nut.

Claims (1)

【特許請求の範囲】 Ni基合金部材と接触する高温の脱気アルカリ水溶液中
に、カルボキシル基あるいはアルコール基を有する鎖状
アミンのうちの1種または2種以上を、前記脱気アルカ
リ水溶液に対する重量割合で0.1ppm〜1%添加す
ると共に、 前記高温の脱気アルカリ水溶液と接触する気相中に、気
相:1気圧に占める割合で3×10^−^5〜1×10
^−^1気圧の割合の水素ガスを添加することを特徴と
するNi基合金部材の粒界損傷を防止する方法。
[Scope of Claims] One or more types of chain amines having a carboxyl group or an alcohol group are added to a high-temperature degassed alkali aqueous solution that comes into contact with the Ni-based alloy member, based on the weight relative to the degassed alkali aqueous solution. 0.1 ppm to 1% in proportion, and 3 x 10^-^5 to 1 x 10 in proportion to 1 atmosphere of gas phase in the gas phase that contacts the high temperature degassed alkaline aqueous solution.
^-^ A method for preventing grain boundary damage in a Ni-based alloy member, characterized by adding hydrogen gas at a rate of 1 atm.
JP4856287A 1987-03-03 1987-03-03 Method for preventing intergranular damage of ni alloy member Pending JPS63216984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4856287A JPS63216984A (en) 1987-03-03 1987-03-03 Method for preventing intergranular damage of ni alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4856287A JPS63216984A (en) 1987-03-03 1987-03-03 Method for preventing intergranular damage of ni alloy member

Publications (1)

Publication Number Publication Date
JPS63216984A true JPS63216984A (en) 1988-09-09

Family

ID=12806827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4856287A Pending JPS63216984A (en) 1987-03-03 1987-03-03 Method for preventing intergranular damage of ni alloy member

Country Status (1)

Country Link
JP (1) JPS63216984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203329A1 (en) * 2002-01-29 2003-08-14 Bayer Ag Corrosion protection agent for the protection of metallic materials in a strongly alkaline medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203329A1 (en) * 2002-01-29 2003-08-14 Bayer Ag Corrosion protection agent for the protection of metallic materials in a strongly alkaline medium

Similar Documents

Publication Publication Date Title
JP5660253B2 (en) Titanium alloy with excellent corrosion resistance in environments containing bromine ions
EP0365884A1 (en) Corrosion resistant nickel-base alloy
JP2009068079A (en) Steel tube with excellent steam oxidation resistance
JP2007284704A (en) METHOD FOR MANUFACTURING Cr-CONTAINING NICKEL-BASED ALLOY PIPE AND Cr-CONTAINING NICKEL-BASED ALLOY PIPE
JP2006307313A (en) Steel tube excellent in exfoliating resistance for scale on inner surface of tube
JPS63216984A (en) Method for preventing intergranular damage of ni alloy member
WO2004015151A1 (en) Titanium alloys excellent in hydrogen absorption-resistance
CN107130242B (en) The surface treatment method of the based high-temperature alloy containing ferrochrome and the part of based high-temperature alloy containing ferrochrome
TWI301826B (en) Water treatment agent for boiler
Troselius Corrosion Resistance of Type 18Cr2MoTi Stainless Steel
US3836473A (en) Etching solution
EP0733722A1 (en) Process and solution for chemically passivating nuclear steam generator surfaces
JP2004083965A (en) Method for producing austenitic stainless steel pipe and austenitic stainless steel pipe
JPS63143274A (en) Method for preventing intergranular damage of ni-based alloy
JPS63216985A (en) Method for preventing intergranular stress corrosion cracking of ni alloy member
JPS62107040A (en) Titanium alloy excellent in crevice corrosion resistance
JPS63130785A (en) Method for preventing intergranular stress corrosion cracking of ni-based alloy
Niu et al. Effect of Formic Acid on Pitting Corrosion of Steam Turbine Blade Material 13Cr Steel in Simulated Boiler Water Containing Chloride Ions
JP3470250B2 (en) Heat treatment method for improving corrosion resistance of high Cr austenitic steel
JP2005298878A (en) Steel surface treating method
Kim et al. Influence of lead on surface oxide of Ni-based alloy in a caustic solution
Boyd et al. Stress Corrosion Cracking Behavior of Nickel and Nickel Alloys
JPS6280285A (en) Method for preventing damage of grain boundary of ni in environment containing water at high temperature and pressure
JPH07243784A (en) Heat pipe made of stainless steel
US3664885A (en) Method for protection of evaporator heating elements from corrosion