JPS63216902A - Free-cutting composite steel powder - Google Patents

Free-cutting composite steel powder

Info

Publication number
JPS63216902A
JPS63216902A JP62048246A JP4824687A JPS63216902A JP S63216902 A JPS63216902 A JP S63216902A JP 62048246 A JP62048246 A JP 62048246A JP 4824687 A JP4824687 A JP 4824687A JP S63216902 A JPS63216902 A JP S63216902A
Authority
JP
Japan
Prior art keywords
powder
free
cutting
steel
composite steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62048246A
Other languages
Japanese (ja)
Other versions
JPH0830201B2 (en
Inventor
Takeo Hisada
建男 久田
Kiyohide Hayashi
林 清英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62048246A priority Critical patent/JPH0830201B2/en
Publication of JPS63216902A publication Critical patent/JPS63216902A/en
Publication of JPH0830201B2 publication Critical patent/JPH0830201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the compressibility of a powdery blend during the forming of a sintered body from the blend as starting material and to increase the machinability and sintering density of the sintered body by blending Fe- or Ni-based fine powder contg. a large amt. of alloyed free-cutting elements with steel base powder. CONSTITUTION:Steel base powder is produced by water atomization and Fe- or Ni based fine powder contg. a large amt. of alloyed free-cutting elements is produced by water or gas atomization. The steel base powder is blended with the Fe-or Ni-based fine powder having a smaller particle size than the steel base powder and the blend is further blended with powder of other machinability providing component as required. Thus, free-cutting composite steel powder is obtd.

Description

【発明の詳細な説明】 (技術分野) 本発明は快削性複合鋼粉末に係り、特に被削性や焼結密
度等の諸性能に優れた、またミクロ組織の改善された焼
結体を提供し得る複合鋼粉末に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a free-cutting composite steel powder, and particularly to a sintered body with excellent machinability, sintered density, and other performances, and an improved microstructure. The present invention relates to a composite steel powder that can be provided.

(背景技術) 近年、鋼の粉末を成形し、焼結して得られる焼結体、即
ち焼結鋼が、自動車や農業機械の部品を始め、家電部品
や事務機械部品に至るまで、広く利用されてきている。
(Background technology) In recent years, sintered bodies obtained by molding and sintering steel powder, that is, sintered steel, have been widely used in everything from parts for automobiles and agricultural machinery to parts for home appliances and office machines. It has been done.

このうち、寸法精度を必要とするもの或いは形状の複雑
な部品では、多くの場合、焼結体は切削加工により最終
製品に仕上げられることとなるが、その際、焼結体とし
ての焼結鋼の被削性の良否は、加工能率にとって重要な
問題となっているのである。
Among these, for parts that require dimensional accuracy or parts with complex shapes, the sintered body is often finished into the final product by cutting, but in this case, the sintered steel as the sintered body is The quality of machinability is an important issue for machining efficiency.

このため、従来から、鋼粉末を焼結して得られる焼結鋼
の被削性を向上させるべく、かかる鋼粉末中にS−、C
a % T e −、S e等の快削元素を合金化せし
めたり、かかる鋼粉末にMnS、MoS。
For this reason, in order to improve the machinability of sintered steel obtained by sintering steel powder, S- and C
Free-cutting elements such as a% Te-, Se, etc. are alloyed, or MnS, MoS is added to such steel powder.

等の快削性付与成分の粉末を配合せしめる等の技術が、
明らかにされている。
Technology such as blending powder of free-cutting properties imparting ingredients such as
It has been revealed.

しかしながら、これら従来の被削性向上技術において、
前者のS等の快削元素を所定割合で合金化せしめてなる
鋼粉末を用いて、焼結鋼を製造する手法にあっては、そ
の鋼粉末の圧縮性が、そのようなS等の快削元素を合金
化していない鋼粉末に比して著しく低下し、充分な焼結
密度を有する焼結鋼が得られないといった問題があり、
また後者のMnS等の快削性付与成分の粉末を配合量し
める手法にあっては、そのような快削性付与成分が焼結
体中において粗大な凝集組織を構成して、そのミクロ組
織を悪化せしめ、以て焼結体の機械的性質や耐食性等の
特性を劣化させる問題が内在していたのである。
However, in these conventional machinability improvement techniques,
In the former method of manufacturing sintered steel using steel powder made by alloying free-cutting elements such as S in a predetermined ratio, the compressibility of the steel powder is There is a problem that the cutting element is significantly lower than that of unalloyed steel powder, making it impossible to obtain sintered steel with sufficient sintering density.
In addition, in the latter method of adjusting the amount of powder of a free-machining component such as MnS, such a free-machining component forms a coarse agglomerated structure in the sintered body, and the microstructure is There was an inherent problem in that the properties of the sintered body, such as mechanical properties and corrosion resistance, were deteriorated.

(解決課題) ここにおいて、本発明は、かかる事情を背景にして為さ
れたものであって、その目的とするところは、優れた被
削性を有し、且つ高い焼結密度を有すると共に、ミクロ
組織の改善された焼結体を有利に与え得る、圧縮性の改
善された複合鋼粉末を提供することにある。
(Problem to be Solved) The present invention has been made against the background of the above, and its purpose is to have excellent machinability, high sintered density, and An object of the present invention is to provide a composite steel powder with improved compressibility, which can advantageously provide a sintered body with an improved microstructure.

(解決手段) すなわち、本発明は、かくの如き目的を達成するために
、鋼母粉末に対して、快削元素を多′量に合金化してな
る、該鋼母粉末よりも粒径の小さなFe基若しくはNi
基微粉末を配合すると共に、必要に応じて他の快削性付
与成分の粉末を配合せしめてなる快削性複合鋼粉末を、
その要旨とするものである。
(Solution Means) That is, in order to achieve the above object, the present invention provides a steel base powder that is alloyed with a large amount of free-cutting elements and has a particle size smaller than that of the steel base powder. Fe group or Ni
A free-cutting composite steel powder is prepared by blending a base fine powder and, if necessary, powders of other free-cutting properties imparting components.
This is the summary.

このように、本発明にあっては、鋼母粉末に対して、快
削元素を合金化した所定の微粉末を配合して得られる、
複合鋼粉末を用いて成形し、焼結することによって、目
的とする焼結体(焼結鋼)を得るものであるところから
、快削元素を合金化してなる鋼粉末のみを用いて焼結体
を得る場合とは異なり、鋼母粉末の圧縮性や成形性を有
効に利用して、目的とする焼結体の焼結密度を効果的に
高め得ることとなったのであり、また焼結体の被削性は
、快削元素を合金化してなる微粉末の配合によって発揮
されることとなり、更には快削性付与成分の粉末が配合
せしめられず、或いは配合せしめられても、その配合量
を少なくすることが出来るところから、焼結体のミクロ
組織の改善も有効に図り得ることとなったのである。
As described above, in the present invention, a predetermined fine powder alloyed with a free-cutting element is blended with a steel base powder.
The desired sintered body (sintered steel) is obtained by forming and sintering composite steel powder, so sintering is performed using only steel powder alloyed with free-cutting elements. Unlike when obtaining a sintered body, the compressibility and formability of the steel base powder can be effectively used to effectively increase the sintered density of the desired sintered body, and the sintering process The machinability of the body is achieved by the blending of fine powder made by alloying free-cutting elements, and even if the powder that imparts free-cutting properties is not blended or is blended, the blending Since the amount can be reduced, it has become possible to effectively improve the microstructure of the sintered body.

ところで、かかる本発明において、快削性複合鋼粉末の
主体となる鋼母粉末としては、従来から公知の鋼粉末の
何れもが用いられ得るものであって、例えば普通鋼、低
合金鋼、ステンレス鋼等の粉末がある。そして、これら
の粉末は、それぞれ公知の手法に従って製造されたもの
であって、例えば適当なガス若しくは液体の如き噴霧媒
体を用いて、それぞれの溶湯を噴霧することによって、
目的とする鋼粉末を製造する噴霧法等が適宜に用いられ
ることとなるが、特に本発明にあっては、水を噴霧媒体
とする噴霧法によって製造される水噴霧粉末が、成形性
等の観点から、好適に用いられることとなる。なお、こ
のような鋼母粉末の粒度にあっても、従来から焼結鋼の
製造に用いられる粉末の粒度範囲において適宜に決定さ
れるものであるが、本発明にあっては、一般に150μ
以下の粒度(平均粒径)のものが好適に用いられること
となる。
By the way, in the present invention, any conventionally known steel powder can be used as the steel base powder, which is the main component of the free-cutting composite steel powder, such as ordinary steel, low alloy steel, stainless steel, etc. There are powders such as steel. Each of these powders was manufactured according to a known method, for example, by spraying the respective molten metal using a suitable atomizing medium such as gas or liquid.
A spraying method or the like to produce the desired steel powder is used as appropriate, but in particular in the present invention, the water spray powder produced by the spraying method using water as the spraying medium has good moldability, etc. From this point of view, it will be suitably used. The particle size of such steel base powder is determined as appropriate within the particle size range of powder conventionally used for manufacturing sintered steel, but in the present invention, it is generally 150 μm.
The following particle sizes (average particle diameters) are preferably used.

また、かかる鋼母粉末に対して配合せしめられて、目的
とする焼結体に有効な快削特性を付与する粉末は、所定
の快削元素を多量に合金化してなる、かかる鋼母粉末よ
りも粒径の小さなFe基若しくはNi基微粉末を有利に
は該鋼母粉末と同様な成分組成乃至は類似の成分を有す
るものであって、公知の手法に従って粉末化して得られ
たものであるが、本発明にあっては、特に噴霧法、なか
でも、水若しくはガスを噴霧媒体として用いる手法によ
って、それぞれの溶湯から得られる水噴霧粉末またはガ
ス噴霧粉末が好適に用いられることとなる。また、その
中でも、本発明では、水噴霧粉末が、成形性等の観点か
ら、より有利に用いられ得るものである。
In addition, the powder that is blended into such a steel base powder and imparts effective free-cutting properties to the desired sintered body is a powder that is alloyed with a large amount of a predetermined free-cutting element. Also, Fe-based or Ni-based fine powder with a small particle size is preferably one having the same composition or similar components as the steel base powder, and is obtained by powdering according to a known method. However, in the present invention, water atomized powder or gas atomized powder obtained from each molten metal is suitably used, particularly by a spraying method, especially a method using water or gas as the atomizing medium. Moreover, among these, in the present invention, water spray powder can be used more advantageously from the viewpoint of moldability and the like.

ところで、このようなFe基若しくはNi基微粉末をお
いて、合金化せしめられる快削元素としては、S% C
aXpb、Tes 5eSB i等の公知の元素があり
、これら元素の少なくとも1種がFeベース若しくはN
iベースの組成中に、所定割合で含有せしめられること
となる。尤も、この快削元素の含有割合は、そのような
微粉末の配合割合、快削元素の種類、更には目的とする
複合鋼粉末全体の快削元素の含有量等に従って、適宜に
決定されるものであるが、一般に前記調厚粉末よりも2
倍以上の割合であることが望ましく、より具体的には1
0%、特に5%を越えない割合において含有せしめられ
ることとなる。
By the way, free-cutting elements that can be alloyed with such Fe-based or Ni-based fine powder include S% C
There are known elements such as aXpb, Tes 5eSB i, etc., and at least one of these elements is Fe-based or N
It will be contained in a predetermined proportion in the i-base composition. Of course, the content ratio of this free-cutting element is appropriately determined according to the blending ratio of such fine powder, the type of free-cutting element, and the content of free-cutting element in the entire target composite steel powder. However, it is generally 2 times thicker than the above-mentioned powder.
It is desirable that the ratio is at least twice as high, more specifically 1
It will be contained in a proportion not exceeding 0%, particularly 5%.

また、かかるFe基若しくはNi基微粉末を、その粒径
が小なる程、前記調厚粉末の特性を有利に利用し得ると
ころから、該f4母粉末よりも小さな粒径において、特
にかかる調厚粉末の粒径の1/2以下の粒径となるよう
に調製され、更にそのような微粉末は、複合鋼粉末全体
の30重量%を越えない割合において、好適には20重
量%を越えない割合において配合せしめられることとな
る。
In addition, the smaller the particle size of the Fe-based or Ni-based fine powder, the more advantageously the properties of the thickness-adjusted powder can be utilized. The fine powder is prepared to have a particle size not more than 1/2 of the particle size of the powder, and furthermore, such fine powder is used in a proportion not exceeding 30% by weight of the total composite steel powder, preferably not exceeding 20% by weight. They will be blended in different proportions.

さらに、本発明にあっては、調厚粉末に対して、上記の
如きFe基若しくはNi基微粉末を配合せしめると共に
、必要に応じて他の快削性付与成分の粉末、例えばMn
5SFeS、BN、、MnTe。
Furthermore, in the present invention, the above-mentioned Fe-based or Ni-based fine powder is blended with the thickness adjusting powder, and if necessary, powder of other free-cutting properties imparting components, such as Mn.
5SFeS, BN, MnTe.

S n Oz 、S iOz sタルク、ガラス等の化
合物の如きものの粉末を配合せしめることも可能である
。この快削性付与成分の粉末の更なる配合によって、目
的とする焼結体の快削性は向上せしめられることとなる
が、その配合量の増大に従って、焼結体のミクロ組織が
悪化するようになるところから、その配合量は必須の配
合成分たるFe基若しくはNi基微粉末を配合割合に関
連して、悪影響をもたらさない程度において決定される
必要がある。
It is also possible to incorporate powders of compounds such as S n Oz, SiOz talc, glass, etc. By further blending the powder of this free-machinability imparting component, the desired free-cutting properties of the sintered body will be improved, but as the amount added increases, the microstructure of the sintered body will deteriorate. Therefore, the blending amount needs to be determined in relation to the blending ratio of Fe-based or Ni-based fine powder, which is an essential blending component, to an extent that does not cause any adverse effects.

なお、調厚粉末に対して、上記のFe基若しくはNi基
微粉末を配合し、更に必要に応じて他の快削性付与成分
の粉末を配合せしめて、本発明に従う快削性複合鋼粉末
を製造するに際しては、基本的に、それらの粉末を単に
混合することによって、その目的は達成されることとな
るが、また本発明にあっては、かかる調厚粉末に対して
、上記の快削性微粉末を熱処理や糊付は等の方法によっ
てその表面に付着乃至は接合せしめて、複合化する方法
も採用可能であり、これによって、粉末の偏析を避け、
比較的均質な複合粉末を得ることが出来る。
In addition, the above-mentioned Fe-based or Ni-based fine powder is blended with the thickness-adjusted powder, and if necessary, powders of other free-machinability imparting components are blended to obtain the free-machinability composite steel powder according to the present invention. In manufacturing, the purpose is basically achieved by simply mixing these powders, but in the present invention, the above-mentioned convenience is applied to such powders. It is also possible to adopt a method in which machinable fine powder is attached or bonded to the surface by heat treatment, gluing, etc., to form a composite.
A relatively homogeneous composite powder can be obtained.

そして、このようにして得られた本発明に従う快削性複
合鋼粉末は、通常の粉末焼結手法に従って成形され、所
定の成形体(圧粉体)とされた後、焼結せしめられるこ
とにより、被削性や焼結密度の諸性能に優れた、またミ
クロ!IJl織の改善された焼結体を与え、以て各種の
用途に有利に適用され得るのである。
The free-cutting composite steel powder according to the present invention thus obtained is molded according to a normal powder sintering method to form a predetermined compact (powder compact), and then sintered. , with excellent machinability and sintered density performance, and micro! This provides a sintered body with an improved IJl weave, which can be advantageously applied to various uses.

(実施例) 以下に、本発明の代表的な実施例を示し、本発明を更に
具体的に明らかにすることとするが、本発明が、そのよ
うな実施例の記載によって、何等の制約をも受けるもの
でないことは、言うまでもないところである。
(Example) Below, typical examples of the present invention will be shown to clarify the present invention more specifically. However, the present invention is not limited in any way by the description of such examples. Needless to say, it is not something that can be accepted.

また、本発明には、以下の実施例の他にも、更には上記
の具体的記述以外にも、本発明の趣旨を逸脱しない限り
において、当業者の知識に基づいて種々なる変更、修正
、改良等を加え得るものであることが、理解されるべき
である。
In addition to the following examples and the above-mentioned specific description, the present invention includes various changes, modifications, and changes based on the knowledge of those skilled in the art, as long as they do not depart from the spirit of the present invention. It should be understood that improvements and the like may be made.

なお、以下の実施例中の部及び百分率は、特に断わりの
ない限り、何れも重を基準によって示されるものである
It should be noted that all parts and percentages in the following examples are based on weight, unless otherwise specified.

先ず、下記第1表に示される化学成分を有するステンレ
ス鋼溶湯を用いて、通常の水噴霧手法若しくはガス噴霧
手法にて、快削元素:Sの含有量の異なる3種のステン
レス鋼粉末を製造した。なお、第1表における粉末:A
は鋼母粉末であり、また粉末:Bは従来レベルの快削性
鋼粉末であり、更に粉末:Cは、本発明に従って鋼母粉
末に配合される快削性微粉末である。
First, three types of stainless steel powders with different contents of the free-cutting element S were produced using a molten stainless steel having the chemical components shown in Table 1 below, using a normal water spraying method or gas spraying method. did. In addition, powder in Table 1: A
is a steel base powder, Powder B is a conventional free-cutting steel powder, and Powder C is a free-cutting fine powder blended into the steel base powder according to the present invention.

次いで、かかる3種の鋼粉末: A、B、Cと共に、市
販のMnS粉末を用いて、0.2%S含有量になるよう
に、下記第2表に示される如き配合割合にて配合して、
各種の焼結用粉末試料1〜5を得た。なお、それぞれの
焼結用粉末試料1〜5には、何れも潤滑剤として、ステ
アリン酸亜鉛の1部を同時に均一に混合せしめた。
Next, commercially available MnS powder was used together with the three types of steel powders A, B, and C, and the mixture ratios were as shown in Table 2 below so that the S content was 0.2%. hand,
Various powder samples 1 to 5 for sintering were obtained. In addition, a part of zinc stearate was simultaneously mixed uniformly into each of the sintering powder samples 1 to 5 as a lubricant.

第2表  焼結用粉末(目標二0.2%S)そして、こ
の得られた5種の焼結用粉末試料1〜5を用いて、それ
ぞれの焼結体の特性を、次のようにして調べた。先ず、
圧粉密度、焼結密度及び収縮率を測定するために、それ
ぞれの試料を成形圧カニ3.5.7.9t/am”にて
成形して、それぞれ円柱状のサンプル(φllXl0)
を製造し、次いで通常の焼結手法に従って、真空下、5
00℃×30分の脱ろう操作の後、1200℃×60分
の焼結操作を行なって、目的とする焼結体サンプルを得
た。これら得られたサンプルについて、それぞれの成形
体の圧粉密度、更には得られた焼結体の焼結密度、収縮
率をそれぞれ調べて、その結果を第1図乃至第3図に示
した。
Table 2: Powder for sintering (target 2: 0.2% S) Using the obtained five types of powder samples 1 to 5 for sintering, the characteristics of each sintered body were determined as follows. I looked it up. First of all,
In order to measure the green powder density, sintered density, and shrinkage rate, each sample was molded at a molding pressure of 3.5, 7.9 t/am'', and a cylindrical sample (φllXl0) was obtained.
was prepared and then sintered under vacuum according to conventional sintering techniques.
After a dewaxing operation at 00°C for 30 minutes, a sintering operation was performed at 1200°C for 60 minutes to obtain the desired sintered body sample. For these obtained samples, the green density of each molded body, as well as the sintered density and shrinkage rate of the obtained sintered body were examined, and the results are shown in FIGS. 1 to 3.

この第1図乃至第3図の結果から明らかなように、本発
明に従う複合粉末:3.4を用いて得られた成形体やそ
の焼結体にあっては、充分な圧縮性を有すると共に、焼
結密度においても、従来の快削粉(試料2)を用いた場
合に比べて、著しく改善されており、収縮率においても
低いことが認められる。
As is clear from the results shown in FIGS. 1 to 3, the compacts and sintered bodies obtained using the composite powder 3.4 according to the present invention have sufficient compressibility and The sintered density was also significantly improved compared to the case using conventional free-cutting powder (sample 2), and the shrinkage rate was also found to be low.

また、上記で得られた成形圧力が7t/am”の焼結晶
について、それぞれの試料のもののミクロMi織につい
て顕微鏡で調べたところ、MnSのみを配合せしめた試
料:5の粉末を使用した焼結体にあっては、粗大粒子が
析出、混在した組織となっており、これによって、焼結
体の機械的性質や耐食性を劣化させることが認められた
Regarding the sintered crystals obtained above with a molding pressure of 7 t/am", microscopic Mi textures of each sample were examined using a microscope. Samples containing only MnS: The sintered body had a structure in which coarse particles were precipitated and intermixed, and it was observed that this deteriorated the mechanical properties and corrosion resistance of the sintered body.

さらに、被削性調査のために、切削試験片として、それ
ぞれの試料から、成形圧カニ5.7t/cIn2にて円
板状成形品(φ33X35)を成形した後、上記と同様
にして、500℃×30分の熱処理の後、1200℃×
60分の焼結操作を真空中において行ない、それぞれの
試料から二つの焼結体を製造し、下記切削条件にて旋盤
により切削し、その結果を第4図に示した。
Furthermore, in order to investigate machinability, a disc-shaped molded product (φ33×35) was molded from each sample as a cutting test piece at a molding pressure of 5.7t/cIn2, and then After heat treatment at ℃×30 minutes, 1200℃×
A 60 minute sintering operation was carried out in a vacuum to produce two sintered bodies from each sample, which were cut using a lathe under the following cutting conditions, and the results are shown in FIG.

朗M条件 工具材質・・・P2O 工具形状・・・5PP321 送り速度・・・0.2 mm / rev切り込み・・
・2.0 m 切削速度・・・100m/min 切削油 ・・・なし 第4図の結果から明らかなように、快削元素:Sが充分
に添加されていない通常の鋼粉末、即ちベース粉(試料
l)を用いて得られた焼結体にあっては、切削抵抗が大
きく、従って被削性は良好でないのに対して、本発明に
従う複合粉末(試料3.4)を用いて得られた焼結体や
、通常の快削粉(試料2) 、MnS添加粉(試料5)
から得られた焼結体にあっては、何れも切削抵抗が小さ
く、それ放液削性に優れていることが認められるのであ
る。
Low M conditions Tool material...P2O Tool shape...5PP321 Feed rate...0.2 mm/rev depth of cut...
・2.0 m Cutting speed: 100 m/min Cutting oil: None As is clear from the results in Figure 4, the free-cutting element: ordinary steel powder without sufficient addition of S, that is, base powder. The sintered body obtained using the composite powder according to the present invention (sample 3.4) had high cutting resistance and therefore had poor machinability. sintered compact, normal free-cutting powder (sample 2), MnS-added powder (sample 5)
It is recognized that all of the sintered bodies obtained from the above have low cutting resistance and excellent liquid discharge machinability.

(発明の効果) 以上の説明から明らかなように、本発明は、鋼母粉末に
対して、快削元素を多量に合金化してなる粒径の小さな
Fe基若しくはNi基微粉末を配合せしめて、快削性複
合鋼粉末としたものであって、これにより成形時の圧縮
性を改善し、以て高い焼結密度を有する、被削性に優れ
た焼結体を有利に製造し得るようにしたものであり、そ
こに、本発明の大きな工業的意義が存するのである。
(Effects of the Invention) As is clear from the above description, the present invention incorporates Fe-based or Ni-based fine powder with small particle size, which is alloyed with a large amount of free-cutting elements, into the steel base powder. , a free-machining composite steel powder, which improves compressibility during molding, thereby making it possible to advantageously produce a sintered body with high sintered density and excellent machinability. This is where the present invention has great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、それぞれ、実施例において得られ
た各種焼結体の圧粉密度、焼結密度、収縮率及び被削性
の測定の結果を示すグラフである。
FIGS. 1 to 4 are graphs showing the results of measuring green powder density, sintered density, shrinkage rate, and machinability of various sintered bodies obtained in Examples, respectively.

Claims (7)

【特許請求の範囲】[Claims] (1)鋼母粉末に対して、快削元素を多量に合金化して
なる、該鋼母粉末よりも粒径の小さなFe基若しくはN
i基微粉末を配合すると共に、必要に応じて他の快削性
付与成分の粉末を配合せしめてなる快削性複合鋼粉末。
(1) Fe-based or N-based powder with a grain size smaller than that of the steel base powder, which is obtained by alloying a large amount of free-cutting elements with the steel base powder.
A free-cutting composite steel powder made by blending an i-based fine powder and, if necessary, blending powders of other free-cutting properties imparting components.
(2)前記鋼母粉末が、水噴霧粉末である特許請求の範
囲第1項記載の快削性複合鋼粉末。
(2) The free-cutting composite steel powder according to claim 1, wherein the steel base powder is a water atomized powder.
(3)前記Fe基若しくはNi基微粉末が、水噴霧粉末
またはガス噴霧粉末である特許請求の範囲第1項または
第2項記載の快削性複合鋼粉末。
(3) The free-cutting composite steel powder according to claim 1 or 2, wherein the Fe-based or Ni-based fine powder is a water atomized powder or a gas atomized powder.
(4)前記Fe基若しくはNi基微粉末が、前記鋼母粉
末よりも2倍以上の快削元素を含んでいる特許請求の範
囲第1項乃至第3項の何れかに記載の快削性複合鋼粉末
(4) Free machinability according to any one of claims 1 to 3, wherein the Fe-based or Ni-based fine powder contains twice or more free-machining elements than the steel base powder. Composite steel powder.
(5)前記Fe基若しくはNi基微粉末が、前記鋼母粉
末の1/2以下の粒径を有している特許請求の範囲第1
項乃至第4項の何れかに記載の快削性複合鋼粉末。
(5) The Fe-based or Ni-based fine powder has a particle size of 1/2 or less of the steel base powder.
Free-cutting composite steel powder according to any one of items 1 to 4.
(6)前記Fe基若しくはNi基微粉末が、複合鋼粉末
の30重量%を越えない割合において配合せしめられて
いる特許請求の範囲第1項乃至第5項の何れかに記載の
快削性複合鋼粉末。
(6) Free machinability according to any one of claims 1 to 5, wherein the Fe-based or Ni-based fine powder is blended in a proportion not exceeding 30% by weight of the composite steel powder. Composite steel powder.
(7)前記快削元素が、S、Ca、Pb、Te、Se及
びBiからなる群より選ばれた少なくとも1種の元素で
ある特許請求の範囲第1項乃至第6項の何れかに記載の
快削性複合鋼粉末。
(7) The free-cutting element is at least one element selected from the group consisting of S, Ca, Pb, Te, Se, and Bi. Free-cutting composite steel powder.
JP62048246A 1987-03-03 1987-03-03 Free-cutting composite steel powder Expired - Lifetime JPH0830201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62048246A JPH0830201B2 (en) 1987-03-03 1987-03-03 Free-cutting composite steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62048246A JPH0830201B2 (en) 1987-03-03 1987-03-03 Free-cutting composite steel powder

Publications (2)

Publication Number Publication Date
JPS63216902A true JPS63216902A (en) 1988-09-09
JPH0830201B2 JPH0830201B2 (en) 1996-03-27

Family

ID=12798083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62048246A Expired - Lifetime JPH0830201B2 (en) 1987-03-03 1987-03-03 Free-cutting composite steel powder

Country Status (1)

Country Link
JP (1) JPH0830201B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225023A (en) * 1988-11-02 1990-05-23 Quebec Metal Powders Ltd Machineable-grade ferrous powder blend containing boron nitride
SG83757A1 (en) * 1999-12-09 2001-10-16 Wing Thye Lum Powder composition and method for polishing stone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225023A (en) * 1988-11-02 1990-05-23 Quebec Metal Powders Ltd Machineable-grade ferrous powder blend containing boron nitride
GB2225023B (en) * 1988-11-02 1992-08-12 Quebec Metal Powders Ltd Machinable-grade ferrous powder blend containing boron nitride
SG83757A1 (en) * 1999-12-09 2001-10-16 Wing Thye Lum Powder composition and method for polishing stone
US6409782B2 (en) 1999-12-09 2002-06-25 Wing Thye Lum Powder composition and method for polishing stone

Also Published As

Publication number Publication date
JPH0830201B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
CN101124058B (en) Stainless steel powder
JPH01159301A (en) Conjugate steel powder having excellent compressibility and homogeneity
JPS63216902A (en) Free-cutting composite steel powder
EP3321000B1 (en) Mixed powder for iron-based powder metallurgy, and method for producing same
EP3305439A1 (en) Mixed powder for iron-based powder metallurgy, method for producing same, and sintered body produced using same
TW200426226A (en) Powder metal composition and method for producing components thereof
US4015947A (en) Production of sintered aluminum alloy articles from particulate premixes
KR20050067422A (en) Iron-based powder composition including a silane lubricant
EP0760724B1 (en) IRON BASED POWDER CONTAINING Mo, P AND C
WO1994029489A1 (en) Aluminium alloys
US5256184A (en) Machinable and wear resistant valve seat insert alloy
CA2319830A1 (en) Iron-based powder blend for use in powder metallurgy
JP3537126B2 (en) Free-cutting iron-based sintered alloy and method for producing the same
CA1212562A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
JPH01123001A (en) High strength ferrous powder having excellent machinability and its manufacture
JPH01212737A (en) Wear-resistant ferrous sintered alloy
US5864071A (en) Powder ferrous metal compositions containing aluminum
JP2786303B2 (en) Method for producing sintered alloy with excellent corrosion resistance and machinability
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JP3694968B2 (en) Mixed powder for powder metallurgy
JPH03247743A (en) Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture
JPS5815522B2 (en) infiltrant powder
JP3250132B2 (en) Free graphite precipitated iron-based sintered material with high strength and toughness
JPH02133538A (en) Free cutting and wear resistant alloy having excellent corrosion resistance to halogen gas
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same