JPS6321686B2 - - Google Patents

Info

Publication number
JPS6321686B2
JPS6321686B2 JP56092722A JP9272281A JPS6321686B2 JP S6321686 B2 JPS6321686 B2 JP S6321686B2 JP 56092722 A JP56092722 A JP 56092722A JP 9272281 A JP9272281 A JP 9272281A JP S6321686 B2 JPS6321686 B2 JP S6321686B2
Authority
JP
Japan
Prior art keywords
polyester resin
parts
unsaturated
unsaturated polyester
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56092722A
Other languages
Japanese (ja)
Other versions
JPS57207609A (en
Inventor
Hirohiko Kagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP9272281A priority Critical patent/JPS57207609A/en
Publication of JPS57207609A publication Critical patent/JPS57207609A/en
Publication of JPS6321686B2 publication Critical patent/JPS6321686B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気部品や電子部品を封止する樹脂モ
ールド品に主として用いられる速硬化性の不飽和
ポリエステル樹脂組成物に関するものである。 近年、電気、電子機器の部品の低コスト化と生
産性向上のため、プラスチツクによる封止がなさ
れるようになつてきた。これらの電気部品には例
えばトランジスタ、ダイオード、コンデンサー、
フイルター、整流器、抵抗体、コイルなどがあ
る。これらプラスチツクによる封止方法として
は、注型方式、圧縮成形、射出成形、トランスフ
アー成形などが用いられており、生産性を向上さ
せるため量産性、作業性に優れた射出、トランス
フアー成形法が多用されている。また一般に、こ
れらの電気部品は小型であり50〜200個取りとい
つた非常に多数個取りの成形がなされている。こ
のため、封止用材料には、非常な多数個取り成形
を満足するため溶融可塑化したときの流れ性が優
れており、かつ保存や成形作業中この流れ性が劣
化しないことが要求される。またこれら低圧封止
用材料によつて電気部品を埋め込むにあたつて
は、電線、電磁板、放熱板などと成形材料とを一
体成形することになり、従つて金属線、金属部と
の十分な密着性がなくては、封止本来の目的であ
る外部環境の変化から内部を保護することができ
ない。こうした封止に用いられる封止用材料とし
ては、エポキシ樹脂成形材料、シリコン樹脂封止
成形材料、ジアリルフタレート樹脂成形材料、不
飽和ポリエステル樹脂成形材料などが一般に使用
されているが、金属との密着に優れたエポキシ樹
脂成形材料が最も多用化されている。しかし、こ
のエポキシ樹脂成形材料は流れ性の保存安定性が
悪く、通常冷凍庫に保管することが必要であり、
成形作業などで室温に放置することによつていち
じるしく流れ性が劣化する欠点があつた。また、
不飽和ポリエステル樹脂成形材料やジアリルフタ
レート樹脂成形材料、シリコン樹脂成形材料は、
流れ性の保存安定性においてはエポキシ樹脂より
もすぐれているが、金属との密着性が劣るために
封止レベルの低いグレードの電気部品に使用が限
られているのが現状である。さらに、上記のよう
に射出、トランスフアー成形で多数個取りする場
合は、長い注入時間流動性を維持しかつ硬化速度
の速い成形材料であることが要求される。 本発明は上記の点に鑑みてなされたものであつ
て、保存性に優れていると共に、金属部品との密
着性に優れ、しかも注入時間を長くとることがで
きると共に迅速に硬化させることができる不飽和
ポリエステル樹脂組成物を提供することを目的と
するものである。 以下本発明を詳細に説明する。 本発明に係る不飽和ポリエステル樹脂組成物
は、不飽和ポリエステル樹脂に、共重合性モノマ
ー類、不飽和エポキシ樹脂、分解温度が異なる2
種以上の硬化触媒とを配合し、必要に応じて無機
充填材、離型剤、着色剤、難燃剤、無機、有機繊
維を配合し、よく混合又は混練して成る組成物で
ある。 不飽和ポリエステル樹脂としては、通常用いら
れるものを使用することができ、例えば、イソフ
タル酸、オルソフタル酸、無水フタル酸、コハク
酸、アジピン酸、セバチン酸、無水エンドメチレ
ンテトラヒドロフタル酸、クロルヂン酸などの飽
和二塩基酸と、エチレングリコール、ジプロピレ
ングリコール、1,3―ブタンジオール、水素化
ビスフエノール、ネオペンテルグリコール、イソ
ペンテルグリコール、1,6ヘキサンジオールな
どの多価アルコールと、マレイン酸、無水マレイ
ン酸、フマル酸、イタコン酸などの不飽和二塩基
酸とを常法に従つて反応させて得られるものであ
る。 また共重合性モノマー類としては、例えばスチ
レン、t―ブチルスチレン、クロロスチレン、ジ
ビニルベンゼン、ジアリルフタレート、ビニルト
ルエン、アクリル酸エステル類などの不飽和ポリ
エステル樹脂と共重合性を有しかつ不飽和基を有
するモノマー又はそのプレポリマーを用いること
ができる。 共重合性モノマー類は成形材料の流れ性や架橋
密度を向上させるために用いるものであるが、不
飽和ポリエステル樹脂100重量部に対して0.5〜
100重量部、好ましくは3〜100重量部用いるのが
よい。共重合性モノマー類が不飽和ポリエステル
樹脂100重量部に対して3重量部未満特に0.5重量
部未満では成形に十分なフローは得られず成形品
にかすれが発生し、また100重量部を超えると成
形品の機械的強度を低下させたり成形品の外観が
悪くなつたりして好ましくない。 不飽和エポキシ樹脂としては、共重合性を有す
るオレイン酸、メタクリル酸、アクリル酸などの
不飽和モノカルボン酸とビスフエノール型エポキ
シ樹脂とを反応させて得られる共重合性不飽和エ
ポキシ樹脂を用いることができる。また、かかる
不飽和エポキシ樹脂としては、ビスフエノールの
平均骨格が0〜1のものと2〜10のもの、すなわ
ち次に示す一般式のnが0〜1のものと2〜10の
ものの、分子量・反応性が異なる2種類のものを
併用して用いるのがよい。 (Rは例えばH,CH3,R′は例えばCH2
CHCH3,CH3―C―CH3) 不飽和エポキシ樹脂を用いることにより、成型
品と金属インサートとの密着性を向上させるもの
であるが、不飽和エポキシ樹脂は不飽和ポリエス
テル樹脂100重量部に対して10〜300重量部用いる
のがよい。不飽和エポキシ樹脂の配合量が不飽和
ポリエステル樹脂100重量部に対して300重量部を
超えると、成形材料の保存安定性に問題が生じる
と共に成形性が悪くなり、10重量部未満であると
成形品と金属インサートとの密着性の向上がみら
れなく、好ましくない。 また上記一般式におけるn=0〜1の不飽和エ
ポキシ樹脂は、反応性が高いため硬化速度が速
く、また架橋密度も大きいために機械的性質や寸
法安定性の向上に役立つ。またn=2〜10、好ま
しくはn=2〜4の不飽和エポキシ樹脂は、その
大きな分子量と立体障害のためにゲルタイムを遅
くして注入時間を長くとることができる効果があ
るが、硬化特性には大きな害は与えない。すなわ
ち、硬化反応開始剤の分解温度以上で不飽和基を
アタツクして活性化する硬化触媒に対する障害だ
けでなく、架橋剤としての作用を一定時間抑制す
ることができるが、系全体としては非常に活性な
ためにn=2〜10(2〜4)の不飽和エポキシ樹
脂が自由体積中を自由回転して上記成分の作用を
抑制しても自ずから限界があり、結局は架橋は進
行して硬化は起ることになり、しかもこの硬化に
ついては系全体の活性化レベルが高くラジカル補
捉という現象でないため、ゲル硬化が開始したあ
とは急激に硬化が進行するものである。ゲルタイ
ムと硬化速度とは、使用する硬化触媒の分解温度
と不飽和エポキシ樹脂の分子量により調整され
る。ここで、ゲルタイムを長くするために禁止剤
を用いることが常用されるが、通常の禁止剤、例
えばフエノール誘導体、パラベンゾキノン、ハイ
ドロキノンなどは硬化触媒の分解温度以下では効
果は大きいが、分解温度付近からそれ以上になる
と、ラジカルの補捉能力が不足し、結局触媒の分
解温度以上におけるゲルタイムはほとんどゼロに
近く流動安定性を得ることはできない。また禁止
剤の使用量を増量してもゲルタイムに対する効果
の向上は見られず、あまりに多量に添加すると硬
化速度を遅くするばかりでなく成形収縮が大きく
なつたり物性面に悪影響を及ぼしたりするおそれ
があり、さらに多数個取り大型型金では金型温度
のばらつきも大きくなるが、このときに禁止剤が
多量であると成形温度条件は5〜10℃以内のごく
限られた温度幅となつてしまうために充填不良が
発生したり硬化不足のためにキヤビテイ内に成形
材料が残つてしまつたりするおそれがあるもので
ある。 次に、硬化触媒としては、ハイドロパーオキサ
イド、ジアルキルパーオキサイド、パーオキシケ
タール、パーオキシエステル、ジアシルパーオキ
サイドなど有機過酸化物を用いることができる
が、半減期10時間を得るための分解温度が10〜30
℃異なる2種以上の硬化触媒を複合して用いるの
がよい。分解温度が10〜30℃異なる2種以上の硬
化触媒を複合して用いると、幅広い温度範囲で均
一に硬化した成形品を得ることができるものであ
る。すなわち、不飽和エポキシ樹脂の平均骨格が
大きいと成形材料の反応性が乏しく収縮が大きく
なつたりするが、分解温度が100〜110℃で反応性
の高いパーオキシエステル類のパーブチルZ、パ
ーブチルAなどの硬化触媒と、分解温度がこれよ
り高い高温触媒パークミルH、パーヘキシン
2.5Bなどの硬化触媒とを併用すると、高温〜中
温領域までの成形すなわち150〜180℃付近までの
成形が可能になるものであり、大型金型で金型温
度に10〜20℃のばらつきがあつても成形が可能に
なるものである。硬化触媒として中間温度領域で
分解されるものを併用すればさらに好ましい。硬
化触媒は不飽和ポリエステル樹脂100重量部に対
して1〜3重量部用いるのが好ましい。単一の硬
化触媒を用いた場合には成形温度幅が狭く、さら
に大型金型になる金型温度のばらつきが大きいた
め、高速成形を実施しようとして高温成形をする
際に、成形材料の流動安定性が悪く充填不良やか
すれの原因となつてしまうが、複合触媒の使用に
より及び平均骨格が相違する二種の不飽和エポキ
シ樹脂の使用により、高温でのゲルタイムを長く
とつて流動可能時間を長くし、大型金型でしかも
高温での流動安定性よく長い注入時間をとること
ができ、しかも60秒程度以下という速硬化タイプ
の成形材料とすることができるものである。 上述のように本発明によれば、エポキシ樹脂組
成物成形材料の場合のような保存安定性が悪いと
いう問題がないのはもちろんのこと、共重合性モ
ノマー類により成形時のフロー性を高めることが
できてトランスフアー成形や射出成形による小型
成形品の多数個取りの成形を行なうことができ、
さらに、不飽和エポキシ樹脂により成形品と金属
インサートとの密着性をより向上させることがで
きるものであり、しかも複合硬化触媒の使用によ
り広い成形温度領域での流動安定性が向上しサイ
クルアツプが可能になるものである。 次に本発明を実施例により説明する。 〈実施例 1〉 不飽和ポリエステル樹脂(日本触媒化学製 N
―317)100重量部、ビスフエノール型エポキシ樹
脂をもとに合成された不飽和エポキシ樹脂の平均
骨格n=0.5のもの(不飽和エポキシ樹脂A)50
重量部、n=4のもの(不飽和エポキシ樹脂B)
50重量部、共重合性モノマー類としてスチレン20
重量部、硬化触媒としてパーヘキシン2.5B3重量
部、パーブチルZ3重量部をニーダーに入れ、十
分に混合した。 次に第1表の配合表に従つて添加剤を吸油量の
少ないものから順に添加して均一なペースト物が
できるまで混練し、不飽和ポリエステル樹脂成形
材料を得た。
The present invention relates to a fast-curing unsaturated polyester resin composition mainly used for resin molded products for sealing electrical and electronic parts. In recent years, in order to lower the cost and improve productivity of electrical and electronic equipment parts, plastics have been used to seal them. These electrical components include transistors, diodes, capacitors,
There are filters, rectifiers, resistors, coils, etc. These plastic sealing methods include casting, compression molding, injection molding, and transfer molding.In order to improve productivity, injection and transfer molding methods, which are superior in mass production and workability, are used. It is widely used. Generally, these electrical parts are small and are molded in a large number of molds, such as 50 to 200 molds. For this reason, sealing materials are required to have excellent flowability when melted and plasticized to satisfy extremely large number of moldings, and that this flowability does not deteriorate during storage or molding operations. . In addition, when embedding electrical parts using these low-voltage sealing materials, the electric wires, electromagnetic plates, heat sinks, etc. and the molding material must be integrally molded, so it is necessary to make sure that the metal wires and metal parts are not tightly connected. Without proper adhesion, it is impossible to protect the interior from changes in the external environment, which is the original purpose of sealing. Epoxy resin molding materials, silicone resin molding materials, diallyl phthalate resin molding materials, unsaturated polyester resin molding materials, etc. are generally used as sealing materials for such sealing, but they do not adhere well to metal. Epoxy resin molding materials with excellent properties are the most widely used. However, this epoxy resin molding material has poor flowability and storage stability, and usually needs to be stored in a freezer.
The drawback was that the flowability deteriorated significantly when left at room temperature during molding operations. Also,
Unsaturated polyester resin molding materials, diallyl phthalate resin molding materials, and silicone resin molding materials are
Although it is superior to epoxy resin in terms of flowability and storage stability, its use is currently limited to low-grade electrical parts with a low sealing level because of its poor adhesion to metals. Furthermore, when molding a large number of pieces by injection or transfer molding as described above, a molding material that maintains fluidity for a long injection time and has a fast curing rate is required. The present invention has been made in view of the above points, and has excellent preservability, excellent adhesion to metal parts, and can take a long injection time and can be cured quickly. The object of the present invention is to provide an unsaturated polyester resin composition. The present invention will be explained in detail below. The unsaturated polyester resin composition according to the present invention includes an unsaturated polyester resin, copolymerizable monomers, an unsaturated epoxy resin, and two different decomposition temperatures.
It is a composition obtained by blending inorganic fillers, mold release agents, colorants, flame retardants, inorganic and organic fibers, and thoroughly mixing or kneading the composition with at least one curing catalyst. As the unsaturated polyester resin, commonly used ones can be used, such as isophthalic acid, orthophthalic acid, phthalic anhydride, succinic acid, adipic acid, sebacic acid, endomethylenetetrahydrophthalic anhydride, chlordic acid, etc. Saturated dibasic acid, polyhydric alcohol such as ethylene glycol, dipropylene glycol, 1,3-butanediol, hydrogenated bisphenol, neopentyl glycol, isopentyl glycol, 1,6 hexanediol, maleic acid, maleic anhydride It is obtained by reacting an acid, an unsaturated dibasic acid such as fumaric acid, itaconic acid, etc. according to a conventional method. Examples of copolymerizable monomers include those having copolymerizability with unsaturated polyester resins such as styrene, t-butylstyrene, chlorostyrene, divinylbenzene, diallyl phthalate, vinyltoluene, and acrylic esters, and having unsaturated groups. or a prepolymer thereof can be used. Copolymerizable monomers are used to improve the flowability and crosslinking density of the molding material, and are used in amounts of 0.5 to 100 parts by weight of the unsaturated polyester resin.
It is recommended to use 100 parts by weight, preferably 3 to 100 parts by weight. If the copolymerizable monomer is less than 3 parts by weight, especially less than 0.5 parts by weight, based on 100 parts by weight of the unsaturated polyester resin, sufficient flow for molding will not be obtained and the molded product will become blurred, and if it exceeds 100 parts by weight, This is undesirable because it lowers the mechanical strength of the molded product and deteriorates the appearance of the molded product. As the unsaturated epoxy resin, use a copolymerizable unsaturated epoxy resin obtained by reacting a copolymerizable unsaturated monocarboxylic acid such as oleic acid, methacrylic acid, or acrylic acid with a bisphenol type epoxy resin. Can be done. In addition, as such unsaturated epoxy resins, those having an average bisphenol skeleton of 0 to 1 and those having a molecular weight of 2 to 10, that is, those having n of 0 to 1 and those having a molecular weight of 2 to 10 in the general formula shown below. - It is best to use two types of agents with different reactivities in combination. (R is, for example, H, CH 3 , R' is, for example, CH 2 ,
CHCH 3 , CH 3 -C-CH 3 ) By using an unsaturated epoxy resin, the adhesion between the molded product and the metal insert is improved. It is preferable to use 10 to 300 parts by weight. If the amount of the unsaturated epoxy resin exceeds 300 parts by weight per 100 parts by weight of the unsaturated polyester resin, problems will arise in the storage stability of the molding material and the moldability will deteriorate; if it is less than 10 parts by weight, the molding will be difficult. There is no improvement in the adhesion between the product and the metal insert, which is not desirable. Further, the unsaturated epoxy resin in which n=0 to 1 in the above general formula has high reactivity, so the curing speed is fast, and the crosslinking density is also high, so it is useful for improving mechanical properties and dimensional stability. In addition, unsaturated epoxy resins with n = 2 to 10, preferably n = 2 to 4, have the effect of slowing down the gel time and lengthening the injection time due to their large molecular weight and steric hindrance, but their curing properties does not cause any major harm. In other words, it not only hinders the curing catalyst, which attacks and activates unsaturated groups above the decomposition temperature of the curing reaction initiator, but also suppresses its action as a crosslinking agent for a certain period of time, but the system as a whole is extremely Because it is active, there is a limit even if the unsaturated epoxy resin with n = 2 to 10 (2 to 4) rotates freely in the free volume and suppresses the effects of the above components, and eventually crosslinking progresses and hardening occurs. However, since the activation level of the entire system is high and the phenomenon of radical scavenging is not a phenomenon, the curing progresses rapidly after gel curing has started. Gel time and curing rate are adjusted by the decomposition temperature of the curing catalyst used and the molecular weight of the unsaturated epoxy resin. In this case, inhibitors are commonly used to lengthen the gel time, but ordinary inhibitors, such as phenol derivatives, parabenzoquinone, and hydroquinone, are highly effective below the decomposition temperature of the curing catalyst; If the temperature exceeds that range, the radical scavenging ability becomes insufficient, and as a result, the gel time at or above the decomposition temperature of the catalyst is close to zero, making it impossible to obtain fluid stability. Furthermore, even if the amount of inhibitor used is increased, no improvement in the effect on gel time is observed, and adding too much may not only slow down the curing speed but also increase mold shrinkage and adversely affect physical properties. Furthermore, when using a large multi-cavity mold, the variation in mold temperature increases, but if a large amount of inhibitor is used at this time, the molding temperature condition will be within a very limited temperature range of 5 to 10 degrees Celsius. Therefore, there is a risk that filling defects may occur or that molding material may remain in the cavity due to insufficient curing. Next, as a curing catalyst, organic peroxides such as hydroperoxide, dialkyl peroxide, peroxyketal, peroxyester, and diacyl peroxide can be used, but the decomposition temperature to obtain a half-life of 10 hours is 10~30
It is preferable to use a combination of two or more types of curing catalysts having different degrees Celsius. When two or more types of curing catalysts having decomposition temperatures different by 10 to 30°C are used in combination, it is possible to obtain a molded article that is uniformly cured over a wide temperature range. In other words, if the average skeleton of unsaturated epoxy resin is large, the reactivity of the molding material will be poor and shrinkage will be large. curing catalyst, and high-temperature catalysts with higher decomposition temperatures, such as Percyl H and Perhexine.
When used in conjunction with a curing catalyst such as 2.5B, it is possible to perform molding at high to medium temperature ranges, that is, around 150 to 180°C, and mold temperatures can vary by 10 to 20°C in large molds. Even if there is a problem, molding is possible. It is more preferable to use a curing catalyst that decomposes in an intermediate temperature range. The curing catalyst is preferably used in an amount of 1 to 3 parts by weight per 100 parts by weight of the unsaturated polyester resin. When a single curing catalyst is used, the molding temperature range is narrow, and the mold temperature for large molds varies widely, so when performing high-temperature molding to perform high-speed molding, it is difficult to stabilize the flow of the molding material. However, by using a composite catalyst and using two types of unsaturated epoxy resins with different average skeletons, the gel time at high temperatures can be extended and the fluidity time can be extended. Moreover, it can be used in large molds, has good flow stability at high temperatures, and can be poured for a long time, and can be made into a molding material that cures quickly in about 60 seconds or less. As described above, according to the present invention, not only is there no problem of poor storage stability as in the case of epoxy resin composition molding materials, but also the copolymerizable monomers improve flowability during molding. It is possible to perform multi-cavity molding of small molded products by transfer molding and injection molding.
Furthermore, the unsaturated epoxy resin can further improve the adhesion between the molded product and the metal insert, and the use of a composite curing catalyst improves flow stability over a wide molding temperature range, making it possible to cycle up. It is something that becomes. Next, the present invention will be explained by examples. <Example 1> Unsaturated polyester resin (Nippon Shokubai Kagaku N
-317) 100 parts by weight, unsaturated epoxy resin synthesized based on bisphenol type epoxy resin with average skeleton n=0.5 (unsaturated epoxy resin A) 50
Parts by weight, n=4 (unsaturated epoxy resin B)
50 parts by weight, styrene 20 as copolymerizable monomers
Parts by weight, 3 parts by weight of Perhexine 2.5B as a curing catalyst, and 3 parts by weight of Perbutyl Z were placed in a kneader and thoroughly mixed. Next, additives were added in the order of decreasing oil absorption according to the formulation shown in Table 1, and the mixture was kneaded until a uniform paste was formed to obtain an unsaturated polyester resin molding material.

【表】 〈実施例 2〉 硬化触媒としてパーヘキシン2.5Bとパークミ
ルD、パーブチルZを2重量部づつ用いた他は実
施例1と同様にして不飽和ポリエステル樹脂成形
材料を得た。 〈実施例 3〉 不飽和エポキシ樹脂Aを30重量部、不飽和エポ
キシ樹脂Bを70重量部用いた他は実施例1と同様
にして不飽和ポリエステル樹脂成形材料を得た。 〈比較例 1〉 不飽和エポキシ樹脂A,Bを用いず不飽和ポリ
エステル樹脂を200重量部用いた他は実施例1と
同様にして不飽和ポリエステル樹脂成形材料を得
た。 〈比較例 2〉 不飽和エポキシ樹脂Bを用いず不飽和ポリエス
テル樹脂150重量部用いた他は実施例1と同様に
して不飽和ポリエステル樹脂成形材料を得た。 〈比較例 3〉 硬化触媒としてパークミルD6重量部のみを用
いた他は実施例1と同様にして不飽和ポリエステ
ル樹脂成形材料を得た。 上記のようにして実施例1〜3、比較例1〜3
で得られた成形材料によつて、低圧トランスフア
ー成形機を用いポツト内圧力70Kg/cm2、成形品
240個取りの条件にて金属インサートを持つ成形
品を成形した。成形品は第1図a,bに示すよう
にa=10,b=8,c=5の樹脂1にd=5,e
=1(単位はmm)の金属片2がインサートされた
ものとして得た。この金属片2は第2図に示すよ
うに樹脂1内にインサートされる部分を4つの部
分に分割し各部分にA,Bの表示が付してある。 成形品にかすれや未充填がない状態に最適の条
件で成形した成形品について、金属片2と樹脂1
との密着性を測定するためにレツドインクテスト
を行なつた。すなわち、0.5重量%のローダミン
溶液を3ιの3つ口フラスコに入れてこの3つ口フ
ラスコにコンデンサーと温度計を取付けて加熱
し、沸とうが始れば成形品をこの中に吊り下げて
第2表に示す時間煮沸を続けたのち、成形品を取
り出して常温で1時間放置し、成形品を破壊し、
インサート金属片2と樹脂1との接着面を観察し
た。評価は独特の鮮紅色を有するローダミン溶液
がインサート金属片2と樹脂1との間に浸入する
具合で行ない、金属片2のBの部分に全くローダ
ミンが確認できないときは○、Aの部分にはロー
ダミンは確認できないがBの部分に確認できると
きは△、Aの部分にローダミンが確認できるとき
は×とし、結果は第2表のとうりであつた。
[Table] <Example 2> An unsaturated polyester resin molding material was obtained in the same manner as in Example 1, except that 2 parts by weight of each of Perhexin 2.5B, Percyl D, and Perbutyl Z were used as curing catalysts. <Example 3> An unsaturated polyester resin molding material was obtained in the same manner as in Example 1, except that 30 parts by weight of unsaturated epoxy resin A and 70 parts by weight of unsaturated epoxy resin B were used. <Comparative Example 1> An unsaturated polyester resin molding material was obtained in the same manner as in Example 1, except that 200 parts by weight of unsaturated polyester resin was used instead of unsaturated epoxy resins A and B. <Comparative Example 2> An unsaturated polyester resin molding material was obtained in the same manner as in Example 1, except that 150 parts by weight of the unsaturated polyester resin was used instead of the unsaturated epoxy resin B. <Comparative Example 3> An unsaturated polyester resin molding material was obtained in the same manner as in Example 1, except that only 6 parts by weight of Percmill D was used as a curing catalyst. Examples 1 to 3 and Comparative Examples 1 to 3 as described above
With the molding material obtained in
A molded product with metal inserts was molded under the conditions of 240 pieces. The molded product is made of resin 1 with a=10, b=8, c=5 and d=5, e as shown in Figure 1 a and b.
= 1 (unit: mm) metal piece 2 was obtained as an insert. As shown in FIG. 2, this metal piece 2 is inserted into the resin 1 and is divided into four parts, each of which is labeled A and B. Metal piece 2 and resin 1
A red ink test was conducted to measure the adhesion with the paper. In other words, a 0.5% by weight rhodamine solution is placed in a 3ι three-necked flask, a condenser and a thermometer are attached to the three-necked flask, and the flask is heated. Once boiling begins, the molded product is suspended in the flask and heated. After continuing boiling for the time shown in Table 2, the molded product was taken out and left at room temperature for 1 hour to destroy the molded product.
The adhesive surface between the insert metal piece 2 and the resin 1 was observed. The evaluation is carried out in such a way that a rhodamine solution with a unique bright red color infiltrates between the insert metal piece 2 and the resin 1. If no rhodamine is observed in the part B of the metal piece 2, it is marked as ○, and in the part A. When rhodamine could not be confirmed but was confirmed in part B, it was marked as △, and when rhodamine was confirmed in part A, it was marked as ×, and the results were as shown in Table 2.

【表】【table】

【表】 また上記成形品を成形するにあたつて、ヒータ
を部分的に断線したりして金型温度に意識的なば
らつきを持たせ、注入時間は5〜30″の範囲で実
験し、成形性を判定した。成形性の判定は第2表
に、成形品にかすれ、ピンホール、未充填、金型
上への成形品の残りなどが発生しなかつた際の全
体の金型温度、注入時間、硬化時間で示す。硬化
時間については成形品が金型上に残らなかつても
取出しの際にランナーが折れた時点を最小硬化時
間とした。
[Table] In addition, when molding the above molded product, we intentionally varied the mold temperature by partially disconnecting the heater, and experimented with injection times ranging from 5 to 30". The moldability was determined. Table 2 shows the moldability based on the overall mold temperature when no scratches, pinholes, unfilling, or molded product remained on the mold occurred in the molded product, Injection time and curing time are shown.The minimum curing time is defined as the time when the molded product does not remain on the mold and the runner breaks during removal.

【表】 第2,3表の結果より、実施例1〜3のもの
は、金属との密着性、成形性ともに比較例のもの
より優れていることが確認される。
[Table] From the results in Tables 2 and 3, it is confirmed that Examples 1 to 3 are superior to Comparative Examples in both adhesion to metal and moldability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは成形品の正面図と側面図、第2
図は金属片の正面図である。 1は樹脂、2は金属片である。
Figures 1 a and b are front and side views of the molded product, Figure 2
The figure is a front view of the metal piece. 1 is a resin, and 2 is a metal piece.

Claims (1)

【特許請求の範囲】 1 不飽和ポリエステル樹脂に、不飽和ポリエス
テル樹脂と反応性を有しかつ不飽和基を有する共
重合性モノマー類、不飽和エポキシ樹脂、分解温
度が異なる2種以上の硬化触媒を配合して成るこ
とを特徴とする不飽和ポリエステル樹脂組成物。 2 不飽和ポリエステル樹脂100重量部に対して
共重合性モノマー類を0.5〜100重量部配合して成
ることを特徴とする特許請求の範囲第1項記載の
不飽和ポリエステル樹脂組成物。 3 不飽和ポリエステル樹脂100重量部に対して
不飽和エポキシ樹脂を10〜300重量部配合して成
ることを特徴とする特許請求の範囲第1項又は第
2項記載の不飽和ポリエステル樹脂組成物。 4 不飽和エポキシ樹脂がビスフエノール型であ
つて、平均骨格数が0〜1のものと2〜10のもの
との2種類の不飽和エポキシ樹脂を用いて成るこ
とを特徴とする特許請求の範囲第1項又は第2項
又は第3項記載の不飽和ポリエステル樹脂組成
物。 5 硬化触媒が有機過酸化物であつて、分解温度
が10〜30℃異なる2種以上の硬化触媒を複合して
用いて成ることを特徴とする特許請求の範囲第1
項又は第2項又は第3項又は第4項記載の不飽和
ポリエステル樹脂組成物。
[Scope of Claims] 1. An unsaturated polyester resin, copolymerizable monomers that are reactive with the unsaturated polyester resin and have an unsaturated group, an unsaturated epoxy resin, and two or more types of curing catalysts with different decomposition temperatures. An unsaturated polyester resin composition comprising: 2. The unsaturated polyester resin composition according to claim 1, which comprises 0.5 to 100 parts by weight of copolymerizable monomers based on 100 parts by weight of the unsaturated polyester resin. 3. The unsaturated polyester resin composition according to claim 1 or 2, characterized in that 10 to 300 parts by weight of an unsaturated epoxy resin is blended with 100 parts by weight of the unsaturated polyester resin. 4. Claims characterized in that the unsaturated epoxy resin is a bisphenol type, and is made by using two types of unsaturated epoxy resins, one with an average skeleton number of 0 to 1 and one with an average skeleton number of 2 to 10. The unsaturated polyester resin composition according to item 1, item 2, or item 3. 5. Claim 1, characterized in that the curing catalyst is an organic peroxide, and is a composite of two or more curing catalysts with decomposition temperatures different from 10 to 30°C.
The unsaturated polyester resin composition according to item 1 or 2 or 3 or 4.
JP9272281A 1981-06-15 1981-06-15 Unsaturated polyester resin composition Granted JPS57207609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9272281A JPS57207609A (en) 1981-06-15 1981-06-15 Unsaturated polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9272281A JPS57207609A (en) 1981-06-15 1981-06-15 Unsaturated polyester resin composition

Publications (2)

Publication Number Publication Date
JPS57207609A JPS57207609A (en) 1982-12-20
JPS6321686B2 true JPS6321686B2 (en) 1988-05-09

Family

ID=14062334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9272281A Granted JPS57207609A (en) 1981-06-15 1981-06-15 Unsaturated polyester resin composition

Country Status (1)

Country Link
JP (1) JPS57207609A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143917A (en) * 1985-12-17 1987-06-27 Nippon Retsuku Kk Resin composition for use in electronic parts sealing
DE3638750A1 (en) * 1986-11-13 1988-05-26 Upat Max Langensiepen Kg REACTION KIT AND MULTI-CHAMBER CARTRIDGE FOR THE ADHESIVE ANCHORING OF FASTENERS
JPH0745556B2 (en) * 1987-06-08 1995-05-17 昭和高分子株式会社 Curable resin composition
WO1997023524A1 (en) * 1995-12-22 1997-07-03 Alliedsignal Inc. Thermosetting acrylic materials of high glass transition temperature
JP2012224775A (en) * 2011-04-21 2012-11-15 Panasonic Corp Radically curable resin composition for molding, and resin-molded article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931787A (en) * 1972-05-25 1974-03-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931787A (en) * 1972-05-25 1974-03-22

Also Published As

Publication number Publication date
JPS57207609A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
JPH0615677B2 (en) Powder coating agent for in-mold coating
US5089544A (en) Unsaturated polyester resin compositions containing compatible compounds
JPS628444B2 (en)
JPS6321686B2 (en)
US4246165A (en) Preparation of coated casting sand using unsaturated polyester resin as binder
US5084494A (en) Polyester resin and reinforcement composite materials
JP2001261954A (en) Flame-retardant low-specific gravity unsaturated polyester resin composition
US6228918B1 (en) Low-temperature and low pressure unsaturated polyester resin composition
JPH0233724B2 (en)
JP2006328211A (en) Thermosetting resin composition, its molding method and molded article
KR100549369B1 (en) Bulk molding compound for mold motor
JPH0559662B2 (en)
JP3765346B2 (en) Thermosetting resin composition, molding material containing the same, and artificial marble
JP2906467B2 (en) Molded product and high-speed manufacturing method of the molded product
JPS6018507A (en) Improved low shrinkage curable poly(acrylate) forming composition
JPH06100633A (en) Thermosetting resin composition
JPS5991113A (en) One-component low-shrinking resin composition
GB2153368A (en) Liquid moulding compositions
JPH10265637A (en) Resin composition and molded resin item
JPH047353A (en) Unsaturated polyester resin molding material
JPH07156168A (en) Molding of thermosetting resin molding material
JPH0714831B2 (en) Resin composition for resin concrete and resin concrete molded product
JPH02145615A (en) Modified vinyl ester resin
JPS6252763B2 (en)
JPS5812289B2 (en) Low shrinkage resin composition