JPS63215590A - Device for diffracting reflecting high-speed electron beam - Google Patents

Device for diffracting reflecting high-speed electron beam

Info

Publication number
JPS63215590A
JPS63215590A JP4973787A JP4973787A JPS63215590A JP S63215590 A JPS63215590 A JP S63215590A JP 4973787 A JP4973787 A JP 4973787A JP 4973787 A JP4973787 A JP 4973787A JP S63215590 A JPS63215590 A JP S63215590A
Authority
JP
Japan
Prior art keywords
electron
substrate
crystal
electron beam
diffraction pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4973787A
Other languages
Japanese (ja)
Inventor
Hideki Yao
八尾 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4973787A priority Critical patent/JPS63215590A/en
Publication of JPS63215590A publication Critical patent/JPS63215590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To observe growth surface in situ in a state of revolving substrate crystal, by strengthening diffraction pattern of electron beam, radiated upon the surface of the substrate crystal, on a second electron intensifying face and forming an image on a fluorescent screen. CONSTITUTION:Substrate crystal 3 is supported on a manipulator 2 set in a growing chamber 6 of a molecular beam epitaxial growth device and DC voltage is impressed to a second electron intensifying face 5 laid on one side wall of the growing chamber 6. Then electron beam is radiated from an electron gun 1 set on another side wall of the growing chamber 6 to the surface of the crystal 3, diffracted on the surface of the crystal 3, introduced as an incident ray into the second intensifying face 5, strengthened by a factor of 10<7>-10<8> and a diffraction pattern is formed on a rear fluorescent screen 4. Then a DC high- voltage pulse is impressed to the second electron intensifying face 5 while being accurately synchronized with pattern from an arbitrary and accurately same position on the substrate 3 is intermittently formed on the screen 4 at each revolution of the substrate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜結晶をエピタキシャル成長させる分子線
エピタキシャル成長装置の成長室に設置される反射高速
電子線回折装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a reflection high-speed electron beam diffraction apparatus installed in a growth chamber of a molecular beam epitaxial growth apparatus for epitaxially growing thin film crystals.

[従来技術] 分子線エピタキシャル(以下MBEという)成長装置に
おいて成長中にある薄膜結晶を評価するため、反射高速
電子線回折袋rI1.(以下RHEED装置という)が
用いられる。第2図はその一例を示す。
[Prior Art] In order to evaluate a thin film crystal being grown in a molecular beam epitaxial (hereinafter referred to as MBE) growth apparatus, a reflective high-speed electron beam diffraction bag rI1. (hereinafter referred to as RHEED device) is used. FIG. 2 shows an example.

、図に示すように電子銃1から放射された電子線は、マ
ニピュレータ2に保持された基板結晶3の表面で回折さ
れ、蛍光スクリーン4上に表面構造を反映した回折パタ
ーンを生じる。なお6は成長室である。
As shown in the figure, an electron beam emitted from an electron gun 1 is diffracted by the surface of a substrate crystal 3 held by a manipulator 2, producing a diffraction pattern on a fluorescent screen 4 reflecting the surface structure. Note that 6 is a growth chamber.

MBE成長は、超高真空中での成長であるため、結晶成
長中に反射電子線回折により成長表面構造をその場観察
できるという優れた特徴ををしている。
Since MBE growth is performed in an ultra-high vacuum, it has the excellent feature that the growing surface structure can be observed in situ by reflection electron diffraction during crystal growth.

一方、最近ではMBE成長装置が研究用としてだけでな
く、支度用として用いられるようになってきた。そのた
め、基板結晶の大口径化とエピタキシャル薄膜の高均一
化が要求される。そこで、結晶成長中は、基板面内で均
一な温度分布と均一な分子線強度を得るために、通常は
基板結晶を回転させる方法が採られている。
On the other hand, recently, MBE growth apparatuses have come to be used not only for research purposes but also for preparation purposes. Therefore, it is necessary to increase the diameter of the substrate crystal and to make the epitaxial thin film highly uniform. Therefore, during crystal growth, in order to obtain uniform temperature distribution and uniform molecular beam intensity within the plane of the substrate, a method is usually adopted in which the substrate crystal is rotated.

ところが、従来のRHEED装置では、基板結晶を回転
させると、基板上の電子線が照射される場所が時間とと
もに変化するため、スクリーン上に結像される電子線回
折パターンが連−統的に変化してしまう。そのため、結
晶成長中に基板を回転させた状態で反射電子線回折によ
り成長表面の構造をその場観察できないという問題が従
来の装置にはあった。
However, in conventional RHEED devices, when the substrate crystal is rotated, the location on the substrate irradiated with the electron beam changes over time, so the electron beam diffraction pattern imaged on the screen changes continuously. Resulting in. Therefore, the conventional apparatus has the problem that the structure of the growth surface cannot be observed in situ by backscattered electron diffraction while the substrate is being rotated during crystal growth.

[解決しようとする問題点コ 本発明は従来のRHEED l ifの欠点を解消し、
l&板結晶を回転させた状態で基板表面の任意の場所か
らの電子線回折パターンを連続的に得る手段を提供し、
成長中の成長表面構造のその場観察を可能とするもので
ある。
[Problems to be Solved] The present invention solves the drawbacks of the conventional RHEED lif,
Provides a means for continuously obtaining an electron beam diffraction pattern from any location on the substrate surface while the l&plate crystal is rotated,
This allows in-situ observation of the growing surface structure during growth.

以下、第1図に示す実施例により本発明を説明する。第
2図と同一部分は同一符号で示す。
The present invention will be explained below with reference to an embodiment shown in FIG. The same parts as in FIG. 2 are indicated by the same reference numerals.

成長室θには、図示していないが回転軸によってマニピ
ュレータ2が保持され、図示していないがマニピュレー
タ2の下方に分子線源が置かれる。
In the growth chamber θ, a manipulator 2 is held by a rotating shaft (not shown), and a molecular beam source is placed below the manipulator 2 (not shown).

成長室6の側壁面に電子銃1が取り付けられる。An electron gun 1 is attached to the side wall surface of the growth chamber 6.

電子銃1より放射される電子線は、マニピュレータ2の
表面に保持された基板結晶3の表面に1度位のわずかの
角度で入射するように取付けられている。
The electron gun 1 is attached so that the electron beam emitted from the electron gun 1 is incident on the surface of a substrate crystal 3 held on the surface of a manipulator 2 at a slight angle of about 1 degree.

基板結晶3よりの回折電子線が成長室6の側壁に達する
位にで2次電子増倍而5が保持され、その背後に蛍光ス
クリーン4が配置される。2次電子増倍而5には成長室
外の電源から直流高電圧または直流高電圧パルスが印加
される。
A secondary electron multiplier 5 is held at a position where the diffracted electron beam from the substrate crystal 3 reaches the side wall of the growth chamber 6, and a fluorescent screen 4 is placed behind it. A DC high voltage or a DC high voltage pulse is applied to the secondary electron multiplier 5 from a power source outside the growth chamber.

[動作] 本発明装置は上述のような構成をとっており、2次電子
増倍面5に直流高電−圧が印加されているときに、電子
銃1から放射され、基板結晶表面で回折された電子線が
2次電子増倍面5に入射すると、入射した電子は2次電
子放射のくり返しによって、ねずみ算式に増倍され、単
一電子に対して10’〜10@倍にも電子数が増倍され
る。したがって、2次電子増倍而5の後方の蛍光スクリ
ーン4上に非常に明るい電子線回折パターンが結像され
る。
[Operation] The device of the present invention has the above-described configuration, and when a high DC voltage is applied to the secondary electron multiplier surface 5, electrons are emitted from the electron gun 1 and diffracted at the substrate crystal surface. When the emitted electron beam enters the secondary electron multiplier surface 5, the incident electrons are multiplied in a mouse formula by repeated secondary electron emission, and the number of electrons increases by 10' to 10@ times compared to a single electron. The number is multiplied. Therefore, a very bright electron diffraction pattern is imaged on the fluorescent screen 4 behind the secondary electron multiplier 5.

このような画像増幅効果−は2次電子増倍而5に直流高
電圧が印加されたときのみに生じる。
Such an image amplification effect occurs only when a DC high voltage is applied to the secondary electron multiplier 5.

そこで、基板結晶の回転に正確に同調させて、2次電子
増倍而5に直流高電圧パルスを印加すると、基板3上の
任Δの正確に同一の場所からの電子線回折パターンのみ
が1回転ごとに断続して得られる。ここでは、基板3の
1回転に要する時間は、2秒程度であり、2次電子増倍
面5の使用によって蛍光スクリーン4上に得られる回折
パターンは非常に明るいので、肉眼では残像現像のため
、はとんど連続して同一場所からの回折パターンが観察
できることになる。
Therefore, when a DC high voltage pulse is applied to the secondary electron multiplier 5 in precise synchronization with the rotation of the substrate crystal, only the electron beam diffraction pattern from exactly the same location for a given Δ on the substrate 3 becomes 1. Obtained intermittently with each rotation. Here, the time required for one rotation of the substrate 3 is about 2 seconds, and the diffraction pattern obtained on the fluorescent screen 4 by using the secondary electron multiplier surface 5 is so bright that it is visible to the naked eye due to afterimage development. , the diffraction patterns from the same location can be observed almost continuously.

[実施例] 直径3インチ(7,62cm )のGaAs (100
)基板上に厚さ1μmのGaAs薄膜を分子線エピタキ
シ中ル成長させ、成長開始後の約5分間成長表面の構造
を本発明の反射高速電子線回折により観察した。成長中
は基板を30rp−で回転させた。
[Example] GaAs (100
) A GaAs thin film with a thickness of 1 μm was grown on a substrate by molecular beam epitaxy, and the structure of the grown surface was observed for about 5 minutes after the start of growth using reflection high-speed electron diffraction according to the present invention. The substrate was rotated at 30 rpm during growth.

電子の加速電圧は15kVとし、2次電子増倍而は直径
3インチ(7,G2c■)′の2枚の独立の増倍面を重
ねたシェブロン型のものを用いた。成長中ば基板の回転
に正確に同調させ、前段の2次電子増倍而には900V
N後段の2次電子増倍而には1500Vの直流高電圧パ
ルスを正確に2秒間隔で繰り返し印加した。直流高電圧
パルスは、2次電子増倍而の電子線が入射してくる前面
側が後面側に対して負の電位になるように、それぞれに
印加し、前段の後面側と後段の前面側が同電位となるよ
うにした。
The electron accelerating voltage was 15 kV, and the secondary electron multiplier used was a chevron type multiplier consisting of two independent multiplier surfaces with a diameter of 3 inches (7, G2c)' stacked one on top of the other. Accurately synchronize with the rotation of the substrate during growth, and apply 900V to the secondary electron multiplier in the first stage.
A DC high voltage pulse of 1500 V was repeatedly applied at exactly 2 second intervals to the secondary electron multiplier in the second stage. DC high voltage pulses are applied to each secondary electron multiplier so that the front side, where the electron beam is incident, has a negative potential with respect to the rear side, and the rear side of the former stage and the front side of the latter stage are at the same potential. potential.

成長中の2次電子増倍而付近の真空度は約1×重o” 
torrであった・ このようにすることにより、成長中の成長表面の構造を
反映した電子線回折パターンを連続して観察することが
できた。基板の[1103方向と[TIO]方向からそ
れぞれ回折パターンを連続して観察して、成長中の表面
構造がC(2X8)超構造であることを確認できた。
The degree of vacuum near the secondary electron multiplier during growth is approximately 1 × heavy o”
torr. By doing this, it was possible to continuously observe an electron beam diffraction pattern that reflected the structure of the growth surface during growth. By continuously observing the diffraction patterns from the [1103 direction and the [TIO] direction of the substrate, it was confirmed that the surface structure during growth was a C(2×8) superstructure.

また、成長中の回折パターンは、スFリータtxのパタ
ーンであり、表面が2次元的に非常に平坦であり、層成
長が起っていることが確認された。
Furthermore, the diffraction pattern during growth was that of a sliver tx, and the surface was two-dimensionally very flat, confirming that layer growth was occurring.

更に、マニピュレータを回転させて成長させたGaAs
薄膜の膜厚の基板面内均一性は、±1.2%であった。
Furthermore, GaAs grown by rotating the manipulator
The uniformity of the thickness of the thin film within the substrate surface was ±1.2%.

一方マニピュレータを回転させることなく 、GaAs
薄膜を前記と同様条件で成長させたものでは、基板市内
均一性が±18.6%であることが確認できた。
On the other hand, without rotating the manipulator, GaAs
When the thin film was grown under the same conditions as above, it was confirmed that the uniformity within the substrate was ±18.6%.

[発明の効果コ ・、′以上説明のように、本発明装置によれば、結晶成
長中に、基板結晶を回転させた状聾で反射高速電子線回
折による成長表面の構造のその場観察が可能となる。し
たがって、成長表面の構造をモニターしながら、大口径
基板結晶上に高均一なエピタキシャル薄膜を成長させる
ことができる。
[Effects of the Invention] As explained above, according to the apparatus of the present invention, during crystal growth, the structure of the growing surface can be observed in-situ using reflective high-speed electron diffraction while the substrate crystal is being rotated. It becomes possible. Therefore, a highly uniform epitaxial thin film can be grown on a large diameter substrate crystal while monitoring the structure of the growth surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を断面図で示す。 第2図は、従来装置の一例を断面図で示す。 1・・・電子銃、2・・・マニピュレータ、3・・・結
晶基板、4・・・蛍光スクリーン、5・・・2次電子増
倍而、6・・・成長室。 賽 1 図 算 2 図
FIG. 1 shows an embodiment of the invention in cross-section. FIG. 2 shows a cross-sectional view of an example of a conventional device. DESCRIPTION OF SYMBOLS 1... Electron gun, 2... Manipulator, 3... Crystal substrate, 4... Fluorescent screen, 5... Secondary electron multiplier, 6... Growth chamber. Dice 1 Calculation 2 Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)分子線エピタキシャル成長装置の成長室に設置さ
れる反射高速電子線回折装置において、基板結晶表面に
電子線を放射する電子銃と、基板結晶表面で回折された
電子線による回折パターンを結像する蛍光スクリーンと
、回折パターンの明るさを増強する機能と前記蛍光スク
リーン上に回折パターンが得られる時間を制限するゲー
ト機能とを有する2次電子増倍面を備えたことを特徴と
する反射高速電子線回折装置。
(1) In a reflection high-speed electron diffraction device installed in the growth chamber of a molecular beam epitaxial growth device, an electron gun emits an electron beam onto the substrate crystal surface and images the diffraction pattern of the electron beam diffracted by the substrate crystal surface. and a secondary electron multiplication surface having a function of enhancing the brightness of the diffraction pattern and a gate function of limiting the time during which the diffraction pattern is obtained on the fluorescent screen. Electron beam diffraction device.
JP4973787A 1987-03-03 1987-03-03 Device for diffracting reflecting high-speed electron beam Pending JPS63215590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4973787A JPS63215590A (en) 1987-03-03 1987-03-03 Device for diffracting reflecting high-speed electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4973787A JPS63215590A (en) 1987-03-03 1987-03-03 Device for diffracting reflecting high-speed electron beam

Publications (1)

Publication Number Publication Date
JPS63215590A true JPS63215590A (en) 1988-09-08

Family

ID=12839502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4973787A Pending JPS63215590A (en) 1987-03-03 1987-03-03 Device for diffracting reflecting high-speed electron beam

Country Status (1)

Country Link
JP (1) JPS63215590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038841A1 (en) * 2017-08-23 2019-02-28 株式会社日立ハイテクノロジーズ Image processing device, method, and charged particle microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038841A1 (en) * 2017-08-23 2019-02-28 株式会社日立ハイテクノロジーズ Image processing device, method, and charged particle microscope

Similar Documents

Publication Publication Date Title
Krivanek et al. A high resolution electron microscopy study of the Si-SiO2 interface
US2449558A (en) Cathode-ray tube
US3772520A (en) Method for the investigation of thin films on a semiconductor substrate in a scanning electron microscope
JPS63215590A (en) Device for diffracting reflecting high-speed electron beam
US3013170A (en) Device for reproducing acoustic images
Rosenthal A system of large-screen television reception based on certain electron phenomena in crystals
Soffer et al. An optical imaging method for direct observation and study of acoustic surface waves
JPH01131440A (en) Reflected fast electron beam diffracting device
JPS63222092A (en) Diffraction device for reflected fast electron beam
JPH0414296B2 (en)
JPH0633231B2 (en) Molecular beam epitaxial growth method
US2724771A (en) Pulse generator utilizing bombardment induced conductivity
Goddard et al. Stroboscopic synchrotron-X-radiation topography and its application to the imaging of travelling surface acoustic waves
JPS63215591A (en) Crystal surface evaluating device by electron beam diffraction in molecular beam epitaxial device
Gulyaev et al. Acousto-optical laser systems for the formation of television images
JPH01149426A (en) Manufacture of semiconductor device
US3800081A (en) Device for recording diffraction images
JPS61186284A (en) Apparatus for molecular beam epitaxy
US3115590A (en) Electron tube device
JPH0244638A (en) Electron beam scanning device
JPH04269437A (en) Scanning electron microscope
Casasent An on-line electro-optical video processing system
JPS63239989A (en) Manufacture of light emitting element
JPH03273199A (en) Fine x-ray generating device
JPH0620635A (en) Scanning electron microscope