JPS63239989A - Manufacture of light emitting element - Google Patents

Manufacture of light emitting element

Info

Publication number
JPS63239989A
JPS63239989A JP62073138A JP7313887A JPS63239989A JP S63239989 A JPS63239989 A JP S63239989A JP 62073138 A JP62073138 A JP 62073138A JP 7313887 A JP7313887 A JP 7313887A JP S63239989 A JPS63239989 A JP S63239989A
Authority
JP
Japan
Prior art keywords
electron beam
zinc
electron
irradiated
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62073138A
Other languages
Japanese (ja)
Other versions
JP2587825B2 (en
Inventor
Kosuke Ikeda
池田 幸介
Yoshiichi Ishii
芳一 石井
Hiroshi Amano
浩 天野
Isamu Akasaki
勇 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7313887A priority Critical patent/JP2587825B2/en
Publication of JPS63239989A publication Critical patent/JPS63239989A/en
Application granted granted Critical
Publication of JP2587825B2 publication Critical patent/JP2587825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To increase blue luminous intensity without changing electrical characteristics of a material by growing a zinc-added AlxGa1-xN crystal followed by irradiation of its crystal with an electron beam. CONSTITUTION:Surface of a zinc-added AlzGa1-xN single crystal layer is irradiated with electron rays at a slanted angle. An electron ray irradiation device has an electron gun 1 and the electron rays B emitted from the electron gun 1 are deflected by an electron ray scanning unit 2 for being focused by an electron ray focusing system 3 to irradiate a sample 5 on a stage 4. Especially, when electron rays are irradiated with the accelerated voltage above 30 kv, the electron rays are desirably irradiated at a low angle. Further, when the electron rays are to be vertically irradiated on the zinc (Zn)-added AlzGa1-xN single crystal layer, the accelerated voltage is desirably to be made in the range of 9 kv-30 kv.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、亜鉛を添加したA1.Ga+−+< Nを有
する青色発光素子の作製方法に関するものであり、特に
、発光効率の優れた発光素子の製造を可能とする発光素
子の作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to zinc-added A1. The present invention relates to a method for manufacturing a blue light-emitting element having Ga+-+<N, and particularly relates to a method for manufacturing a light-emitting element that enables manufacturing of a light-emitting element with excellent luminous efficiency.

従来の技術 通常、AlXGa1−)I N (0≦x≦1)による
青色発光ダイオードの作製には、ハロゲン輸送法あるい
は有機金萬化合物気相成長法(MOCVD)が用いられ
ている。このタイプの青色発光ダイオードは、発光効率
、輝度などの発光ダイオードとしての特性に関して緑色
や赤色の発光ダイオードの特性と比較すると、まだ改善
すべき点が多く、実用化レベルに達しているものは少な
いのが現状と言える。
BACKGROUND OF THE INVENTION Generally, a halogen transport method or a metal organic chemical vapor deposition method (MOCVD) is used to fabricate a blue light emitting diode using AlXGa1-)IN (0≦x≦1). Compared to green and red light emitting diodes, this type of blue light emitting diode still has many points to improve in terms of its characteristics as a light emitting diode, such as luminous efficiency and brightness, and few have reached the level of practical use. This can be said to be the current situation.

この材料を用いて青色発光ダイオードを作製する場合に
は、一般的に、青色発光中心の形成をねらいとして結晶
中に亜鉛を添加することがおこなわれている。しかしな
がら、亜鉛の添加によって青色発光中心が形成されるほ
かに、意図しない無放射再結合中心が導入されるため、
高輝度化、高効率の障害となっていた。
When producing a blue light emitting diode using this material, zinc is generally added to the crystal with the aim of forming a blue light emitting center. However, addition of zinc not only forms blue emission centers but also introduces unintended non-radiative recombination centers.
This was an obstacle to achieving high brightness and high efficiency.

発明が解決しようとする問題点 そこで、発光効率を上げるために、亜鉛(Zn)添加A
lXGa1−X N (0≦x≦1)単結晶層を熱処理
する方法が試みられ、ジー、ジャコブス(G、 Jac
obs)他が「ジャーナル オブ クリスタル グロー
ス(Journal of Crystal Grow
th)」42巻1977年pp136−143で報告し
ている。この報告によれば、発光効率を数倍向上させる
ために、95時間もの非常に長い熱処理時間を必要とす
る。更には、熱処理中に結晶の電気的特性が変化すると
いう問題があった。
Problems to be Solved by the Invention Therefore, in order to increase luminous efficiency, zinc (Zn) addition A
A method of heat treating a single crystal layer of lXGa1-XN (0≦x≦1) was attempted, and G.
obs) et al. ``Journal of Crystal Grow''
th), Vol. 42, 1977, pp. 136-143. According to this report, a very long heat treatment time of 95 hours is required to improve the luminous efficiency several times. Furthermore, there is a problem in that the electrical properties of the crystal change during heat treatment.

そこで、本発明の第1の目的は、従来の熱処理法におけ
る欠点を解決して、亜鉛(Zn)添加A1XGa+−x
%(0≦x≦1)単結晶の特性を、その電気的特性を変
えることなく改善して、高発光効率を実現できる発光素
子の作製方法を提供せんとするものである。
Therefore, the first object of the present invention is to solve the drawbacks of the conventional heat treatment method and to improve the zinc (Zn)-added A1
% (0≦x≦1) It is an object of the present invention to provide a method for manufacturing a light emitting device that can realize high luminous efficiency by improving the characteristics of a single crystal without changing its electrical characteristics.

本発明の第2の目的は、亜鉛(Zn)を加AI、Ga、
−,N(0≦x≦1)単結晶を短時間処理するだけで高
発光効率を実現ひきる発光素子の作製方法を提供せんと
するものである。
The second object of the present invention is to add zinc (Zn) to AI, Ga,
It is an object of the present invention to provide a method for manufacturing a light emitting device that achieves high luminous efficiency by simply treating a -,N (0≦x≦1) single crystal for a short time.

問題点を解決するための手段 本発明によるならば、亜鉛(Zn)添加AlイGa、=
、IN(0≦x≦1)単結晶層を有する発光素子の作製
方法において、上記亜鉛(Zn)添加A1.Ga+−x
N単結晶層の形成後、該亜鉛(Zn)添加AlイGa、
−xN単結晶層を高真空中で電子線照射処理する。
Means for Solving the Problems According to the present invention, zinc (Zn)-added Al-Ga, =
, IN (0≦x≦1) In the method for manufacturing a light emitting device having a single crystal layer, the zinc (Zn) doped A1. Ga+-x
After forming the N single crystal layer, the zinc (Zn)-doped Al and Ga,
-xN single crystal layer is subjected to electron beam irradiation treatment in high vacuum.

本発明の好ましい実施例では、亜鉛(Zn)添加AIX
Gal−MN単結晶層の表面に対して傾斜した角度で電
子線を照射する。特に、30KV以上の加速電圧で電子
線を照射する場合には、低い角度で電子線を照射するこ
とが好ましい。また、亜鉛(Zn)添加AlXGa、−
イN単結晶層に対して電子線を垂直に照射する場合には
、加速電圧を9KV〜30にVの範囲とすることが好ま
しい。
In a preferred embodiment of the invention, zinc (Zn) added AIX
An electron beam is irradiated at an oblique angle to the surface of the Gal-MN single crystal layer. In particular, when irradiating the electron beam with an accelerating voltage of 30 KV or more, it is preferable to irradiate the electron beam at a low angle. In addition, zinc (Zn)-added AlXGa, -
When the electron beam is perpendicularly irradiated to the iN single crystal layer, it is preferable to set the accelerating voltage in the range of 9 KV to 30 V.

更に、亜鉛(Zn)m加AlxGa+−xN単結晶層の
表面の全面に電子線を照射しても、単結晶層の表面の特
定個所のみを電子線照射してもよ5イ。また、試料電流
が0.1μA以下となるように電子線を照射することか
好ましい。
Furthermore, the entire surface of the zinc (Zn)m-doped AlxGa+-xN single crystal layer may be irradiated with the electron beam, or only a specific portion of the surface of the single crystal layer may be irradiated with the electron beam. Further, it is preferable to irradiate the electron beam so that the sample current is 0.1 μA or less.

作用 本発明の発明者らは、亜鉛(Zn)添加AlやGa+−
11N単結晶内に、無放射再結合中心の数を増大するこ
となく、青色発光中心の数を増大する処理方法を種々研
究して、上記した本発明を完成した。本発明の方法のよ
うに、亜鉛(Zn)添加AlXGa+−x N単結晶層
を高真空中で電子線照射処理すると、電子線照射処理し
ない場合に比較して、同一電流での発光強度が増大した
。これは、無放射再結合中心の数を増大することな(、
青色発光中心の数を増大することができたためと考えら
れる。従って、本発明の方法により作製した青色発光素
子は、従来と比較して、高輝度化、高効率化が実現でき
る。
Effect The inventors of the present invention have discovered that zinc (Zn)-added Al and Ga+-
The present invention described above was completed by researching various processing methods for increasing the number of blue emission centers within a 11N single crystal without increasing the number of nonradiative recombination centers. When a zinc (Zn)-doped Al did. This is done without increasing the number of non-radiative recombination centers (,
This is thought to be due to the fact that the number of blue-emitting centers could be increased. Therefore, the blue light emitting device produced by the method of the present invention can achieve higher brightness and higher efficiency than conventional devices.

実施例 以下、添付図面を参照して本発明による発光ダイオード
の作製方法の実施例を説明する。しかし、図示し且つ以
下に説明する実施例は、本発明の方法を例示するもので
に過ぎず、本発明を限定するものではない。
EXAMPLES Hereinafter, examples of the method for manufacturing a light emitting diode according to the present invention will be described with reference to the accompanying drawings. However, the embodiments shown and described below are merely illustrative of the method of the invention and are not intended to limit the invention.

第1図は、本発明により発光ダイオードを作製するため
に使用する電子線照射装置の概略構成図である。図示の
電子線照射装置は、電子銃1を有し、その電子銃1から
射出された電子線Bは、電子線スキャンユニット2で偏
向され、電子線集束系3で集束されて、ステージ4上の
試料5に照射される。電子線Bは、電子線スキャンユニ
ット2により所与の方向に偏向され、更に、電子線集束
系3により、0.01μmφから200μmφまでの間
の所望のビーム径に集束される。ステージ4は、xYz
移動・面内回転および傾斜機構が付設され、保持した試
料を任意の位置及び角度に置くことができ且つ任意に移
動及び回転させることができる。
FIG. 1 is a schematic configuration diagram of an electron beam irradiation device used for manufacturing a light emitting diode according to the present invention. The illustrated electron beam irradiation device has an electron gun 1, and an electron beam B emitted from the electron gun 1 is deflected by an electron beam scanning unit 2, focused by an electron beam focusing system 3, and placed on a stage 4. sample 5 is irradiated. The electron beam B is deflected in a given direction by the electron beam scanning unit 2, and further focused by the electron beam focusing system 3 to a desired beam diameter between 0.01 μmφ and 200 μmφ. Stage 4 is xYz
A moving/in-plane rotation and tilting mechanism is attached, so that the sample held can be placed at any position and angle, and can be moved and rotated as desired.

従って、電子線スキャンユニット2またはステージ4に
より、大面積の試料に電子線を容易に照射することがで
きるとともに、試料の特定な場所に選択的に電子線を照
射することができる。
Therefore, the electron beam scanning unit 2 or the stage 4 can easily irradiate a large-area sample with an electron beam, and can selectively irradiate specific locations on the sample with the electron beam.

かかる電子線照射装置において、試料5は、XYZ移動
・面内回転および傾斜機構材のステージに配置する。こ
の試料は、例えばサファイア基板上に成長させた亜鉛添
加AI、Ga、−xN (Q≦x≦1)であり、その成
長層の厚さは1μmである。一方、ステージ4を調整し
て、試料5の電子線を照射すべき所望の位置に、所望の
入射角で電子線が照射されるように、試料を位置つける
In such an electron beam irradiation apparatus, the sample 5 is placed on a stage with an XYZ movement, in-plane rotation, and tilting mechanism. This sample is, for example, zinc-added AI, Ga, -xN (Q≦x≦1) grown on a sapphire substrate, and the thickness of the grown layer is 1 μm. On the other hand, the stage 4 is adjusted to position the sample 5 so that the sample 5 is irradiated with the electron beam at a desired position and at a desired angle of incidence.

第2図は、第1図に電子線照射装置内に、集光ミラー、
分光器および検出器からなる陰極線発光測定ユニットを
付加して、いわゆる陰極線発光により試料から発光され
る青色発光(4300m)の強度の時間変化を観測した
結果を示すグラフである。
Fig. 2 shows a condensing mirror,
It is a graph showing the result of observing the time change in the intensity of blue light emission (4300 m) emitted from a sample by so-called cathode ray emission by adding a cathodo ray emission measurement unit consisting of a spectrometer and a detector.

なお、例えば、集光ミラーとして回転楕円ミラーを使用
する場合には、その楕円の一方の中心に、試料5を位置
つけ、他方の中心に分光器を配置する。
Note that, for example, when using a spheroidal mirror as a condensing mirror, the sample 5 is positioned at the center of one of the ellipses, and the spectroscope is placed at the center of the other.

試料は、サファイア基板上に成長させた亜鉛添加へl。The sample was grown on a sapphire substrate with zinc addition.

、、Ga0.9Nであり、その成長層の厚さは約1μm
である。電子線の試料への入射角は45度で1μmφの
電子線を約100μm角の範囲を走査して照射した。そ
の走査速度は、約100μm角の範囲全体を5秒で1回
走査する程度の速度である。また、試料電流(照射した
電子線の電流値から反射された電子線の電流値を引いた
値)は、25nAであった0 第2図より、発光強度が約10分程度の短い時間で1桁
程度増大するのが分かる。
,,Ga0.9N, and the thickness of the grown layer is about 1 μm.
It is. The incident angle of the electron beam on the sample was 45 degrees, and the electron beam with a diameter of 1 μm was scanned over a range of about 100 μm square. The scanning speed is such that the entire area of approximately 100 μm square is scanned once every 5 seconds. In addition, the sample current (the value obtained by subtracting the current value of the reflected electron beam from the current value of the irradiated electron beam) was 25 nA.0 From Figure 2, the emission intensity increased to 1 in a short period of about 10 minutes. It can be seen that the value increases by an order of magnitude.

なお、試料が非可逆的に変化していることは、電子線を
照射していない領域と電子線を照射した領域とにそれぞ
れフォトルミネッセンス法を適用し、電子線を照射して
いない領域より電子線を照射した領域の方が青色発光強
度が強いことより、確認した。
Note that the irreversible change in the sample can be confirmed by applying the photoluminescence method to the area not irradiated with the electron beam and the area irradiated with the electron beam. This was confirmed by the fact that the blue light emission intensity was stronger in the irradiated area.

電子線の加速電圧に関しては高すぎると結晶欠陥を生成
し、好ましくない。垂直入射の場合、9kVから30k
Vまでの加速電圧範囲の低加速電圧の方が青色発光強度
増大が顕著である。これは、試料の厚さが約1μmと薄
いためと考えられる。30KVの加速電圧では、低角入
射にすると青色発光強度が増大した。従って、電子線の
試料への入射角を浅くすることにより、試料へ電子線照
射のダメージを軽減できるとともに、1μm程度の薄い
試料への電子線照射効率を向上できる。その照射角度(
法線に対する角度)は、0〜70°の範囲が好ましい。
Regarding the accelerating voltage of the electron beam, if it is too high, crystal defects will be generated, which is not preferable. For normal incidence, 9kV to 30k
The blue light emission intensity increases more significantly at low acceleration voltages in the acceleration voltage range up to V. This is thought to be due to the thinness of the sample, which is about 1 μm. At an accelerating voltage of 30 KV, the blue emission intensity increased with a low angle of incidence. Therefore, by making the angle of incidence of the electron beam on the sample shallow, it is possible to reduce the damage caused by electron beam irradiation to the sample, and to improve the efficiency of electron beam irradiation on a sample as thin as about 1 μm. Its irradiation angle (
The angle (with respect to the normal) is preferably in the range of 0 to 70 degrees.

また、試料電流に関しては0.1μA以下では電流量に
比例して青色発光強度が増加した。
Furthermore, with respect to the sample current, when the sample current was 0.1 μA or less, the blue light emission intensity increased in proportion to the amount of current.

電子線照射による結晶の電気的特性の有無を調べるため
、電子線照射前後において不純物分析を実施した。参考
のため熱処理後についても不純物分析を実施した。それ
ぞれの場合の亜鉛濃度をGaとの比で以下の第1表にま
とめて示す。
In order to investigate the presence or absence of electrical properties of the crystals due to electron beam irradiation, impurity analysis was performed before and after electron beam irradiation. For reference, impurity analysis was also conducted after heat treatment. The zinc concentration in each case is summarized in Table 1 below as a ratio to Ga.

第1表 第1表より電子線照射前と10分の照射後では亜鉛の濃
度が殆ど変化していないことがわかる。前述したジー、
ジャコブス(G、 Jacobs)他「ジャーナル オ
ブ クリスタル グロース(Journal ofCr
ystal Growth) J 42巻1977年p
p 136−143で述べられた熱処理の場合には、亜
鉛濃度のGaに対する比が低下し、電気的特性が変化す
るという報告を考慮すると、電子線照射の場合、電気的
特性の変化はないといえる。
From Table 1, it can be seen that the concentration of zinc before electron beam irradiation and after 10 minutes of irradiation hardly changed. The aforementioned G,
Jacobs (G) et al. “Journal of Crystal Growth”
ystal Growth) J vol. 42 1977 p.
Considering the report that in the case of heat treatment mentioned in p. 136-143, the ratio of zinc concentration to Ga decreases and the electrical properties change, it is assumed that there is no change in the electrical properties in the case of electron beam irradiation. I can say that.

第3図を参照して発光ダイオードの具体例を説明する。A specific example of the light emitting diode will be explained with reference to FIG.

第3図に示すように、サファイア基板6上に、亜鉛を添
加しなイA1.Ga+−)、 N (0≦x≦1)単結
晶層(n型)7を形成し、次いで、結晶層7の一部に亜
鉛(Zn)を選択的にドープして半絶縁性の^1.Ga
、−xN層(1型)8を形成する。そして、その亜鉛添
加ALGa+−xN層8に対して本発明により電子線照
射した後、結晶層7及び8の各々の露出部分に金属電極
を形成し、それら金属電極の各々リード線9A及び9B
を接続して、発光ダイオードを形成した。かかる発光ダ
イオードの両リード線9A及び9B間に電流を流したと
ころ、従来のAIGaN発光ダイオードに比較して高い
効率で発光した。
As shown in FIG. 3, A1. Ga+-), N (0≦x≦1) single crystal layer (n-type) 7 is formed, and then a part of the crystal layer 7 is selectively doped with zinc (Zn) to form a semi-insulating ^1 .. Ga
, -xN layer (type 1) 8 is formed. After the zinc-added ALGa+-xN layer 8 is irradiated with an electron beam according to the present invention, metal electrodes are formed on the exposed portions of each of the crystal layers 7 and 8, and lead wires 9A and 9B are formed on each of the metal electrodes.
were connected to form a light emitting diode. When a current was passed between both lead wires 9A and 9B of such a light emitting diode, it emitted light with higher efficiency than a conventional AIGaN light emitting diode.

発明の詳細 な説明したように、本発明の発光素子の作製方法では、
亜鉛添加A1.Ga+−xN結晶(青色発光材料)成長
後にその結晶に電子線を照射する。従って、通常の市販
の走査電子顕微鏡あるいは陰極線発光測定装置における
加速電圧および試料電流を用いて、材料の電気的特性を
変化させることなく、短時間でかつ容易に青色発光強度
の増大を図れる。
As described in detail of the invention, in the method for manufacturing a light emitting device of the present invention,
Zinc addition A1. After the Ga+-xN crystal (blue light emitting material) has grown, the crystal is irradiated with an electron beam. Therefore, the blue light emission intensity can be easily increased in a short time without changing the electrical properties of the material using the accelerating voltage and sample current in a normal commercially available scanning electron microscope or cathodoluminescence measuring device.

更に、試料の厚さの薄い厚いにかかわらず、効率的に青
色発光強度の増大を図れる。
Furthermore, regardless of whether the sample is thin or thick, the blue light emission intensity can be efficiently increased.

また、電子線の入射角度及び集束径を調整することによ
り、照射面積を大きく取れ、かつ電流容量の大きい電子
銃を用いれば、より短時間にかつ大面積の発光強度を増
大することが、容易であることはいうまでもない。
In addition, by adjusting the incident angle and focusing diameter of the electron beam, a large irradiation area can be obtained, and by using an electron gun with a large current capacity, it is easy to increase the emission intensity over a large area in a shorter time. Needless to say, it is.

従って、緑色や赤色の発光素子に比較で高輝度化、高効
率化が遅れているAlxGa、−xN結晶を使用した青
色発光素子の特性の改善が図られ、工業的価値は高い。
Therefore, it is possible to improve the characteristics of blue light-emitting elements using AlxGa and -xN crystals, which have lagged behind green and red light-emitting elements in achieving high brightness and efficiency, and are of high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実施するために使用される電
子線照射装置の概略構成図、 第2図は、本発明の実施例で、試料より発光される青色
発光(430nm)の強度の時間依存性を示すグラフ、 第3図は、本発明による方法で作製される発光ダイオー
ドの概略構成図である。 〔主な参照番号〕 1・・電子銃 2・・電子線スキャンユニット 3・・電子線集束系 4・・ステージ 5・・試料 6・・サファイア基板 7・・亜鉛無添加AIGaNの結晶層 8・・亜鉛添加^IGa Nの結晶層 9A、9B・・リード線
Figure 1 is a schematic configuration diagram of an electron beam irradiation device used to carry out the method of the present invention. Figure 2 is an example of the present invention, showing the intensity of blue light emission (430 nm) emitted from a sample. FIG. 3 is a schematic diagram of a light emitting diode manufactured by the method according to the present invention. [Main reference numbers] 1. Electron gun 2. Electron beam scanning unit 3. Electron beam focusing system 4. Stage 5. Sample 6. Sapphire substrate 7. Zinc-free AIGaN crystal layer 8.・Zinc-added IGa N crystal layers 9A, 9B... Lead wire

Claims (6)

【特許請求の範囲】[Claims] (1)亜鉛(Zn)添加Al_xGa_1_−_xN(
0≦x≦1)単結晶層を有する発光素子の作製方法にお
いて、上記亜鉛(Zn)添加Al_xGa_1_−_x
N単結晶層の形成後、該亜鉛(Zn)添加Al_xGa
_1_−_xN単結晶層を高真空中で電子線照射処理す
ることを特徴とした発光素子の作製方法。
(1) Zinc (Zn) added Al_xGa_1_-_xN(
0≦x≦1) In the method for manufacturing a light emitting device having a single crystal layer, the above zinc (Zn)-doped Al_xGa_1_-_x
After forming the N single crystal layer, the zinc (Zn) added Al_xGa
A method for manufacturing a light-emitting device, comprising subjecting a _1_-_xN single crystal layer to electron beam irradiation treatment in a high vacuum.
(2)上記亜鉛(Zn)添加Al_xGa_1_−_x
N単結晶層の表面に対して傾斜した角度で電子線を照射
することを特徴とする特許請求の範囲第(1)項記載の
発光素子の作製方法。
(2) The above zinc (Zn) addition Al_xGa_1_-_x
The method for manufacturing a light emitting device according to claim (1), characterized in that the electron beam is irradiated at an angle oblique to the surface of the N single crystal layer.
(3)30KV以上の加速電圧で上記亜鉛(Zn)添加
Al_xGa_1_−_xN単結晶層に対して上記電子
線を照射することを特徴とする特許請求の範囲第2項記
載の発光素子の作製方法。
(3) The method for manufacturing a light emitting device according to claim 2, wherein the electron beam is irradiated onto the zinc (Zn)-doped Al_xGa_1_-_xN single crystal layer at an accelerating voltage of 30 KV or more.
(4)9KV〜30KVの範囲の加速電圧で上記亜鉛(
Zn)添加Al_xGa_1_−_xN単結晶層に対し
て上記電子線を垂直に照射することを特徴とする特許請
求の範囲第(1)項記載の発光素子の作製方法。
(4) The above zinc (
The method for manufacturing a light emitting device according to claim (1), characterized in that the electron beam is perpendicularly irradiated onto the Zn)-doped Al_xGa_1_-_xN single crystal layer.
(5)上記亜鉛(Zn)添加Al_xGa_1_−_x
N単結晶層の表面の特定個所のみを電子線照射すること
を特徴とした特許請求の範囲第(1)項から第(3)項
までのいずれか1項に記載の発光素子の作製方法。
(5) The above zinc (Zn) addition Al_xGa_1_-_x
The method for manufacturing a light emitting device according to any one of claims (1) to (3), characterized in that only a specific location on the surface of the N single crystal layer is irradiated with an electron beam.
(6)試料電流が0.1μA以下となるように上記電子
線を照射することを特徴とする特許請求の範囲第第(1
)項から第(5)項までのいずれか1項に記載の発光素
子の作製方法。
(6) Claim No. 1 (1) characterized in that the electron beam is irradiated so that the sample current is 0.1 μA or less.
) to (5).
JP7313887A 1987-03-27 1987-03-27 Method for manufacturing light-emitting element Expired - Fee Related JP2587825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7313887A JP2587825B2 (en) 1987-03-27 1987-03-27 Method for manufacturing light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7313887A JP2587825B2 (en) 1987-03-27 1987-03-27 Method for manufacturing light-emitting element

Publications (2)

Publication Number Publication Date
JPS63239989A true JPS63239989A (en) 1988-10-05
JP2587825B2 JP2587825B2 (en) 1997-03-05

Family

ID=13509543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7313887A Expired - Fee Related JP2587825B2 (en) 1987-03-27 1987-03-27 Method for manufacturing light-emitting element

Country Status (1)

Country Link
JP (1) JP2587825B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218625A (en) * 1990-01-11 1991-09-26 Univ Nagoya Formation of p-type gallium nitride based compound semiconductor crystal
US6897138B2 (en) 2001-06-25 2005-05-24 Toyoda Gosei Co., Ltd. Method and apparatus for producing group III nitride compound semiconductor
US7029939B2 (en) 2001-06-18 2006-04-18 Toyoda Gosei Co., Ltd. P-type semiconductor manufacturing method and semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126180A (en) * 1974-03-23 1975-10-03
JPS6118184A (en) * 1984-07-04 1986-01-27 Agency Of Ind Science & Technol Light-emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126180A (en) * 1974-03-23 1975-10-03
JPS6118184A (en) * 1984-07-04 1986-01-27 Agency Of Ind Science & Technol Light-emitting element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218625A (en) * 1990-01-11 1991-09-26 Univ Nagoya Formation of p-type gallium nitride based compound semiconductor crystal
US7029939B2 (en) 2001-06-18 2006-04-18 Toyoda Gosei Co., Ltd. P-type semiconductor manufacturing method and semiconductor device
US6897138B2 (en) 2001-06-25 2005-05-24 Toyoda Gosei Co., Ltd. Method and apparatus for producing group III nitride compound semiconductor

Also Published As

Publication number Publication date
JP2587825B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US6475923B1 (en) Group III nitride compound semiconductor thin film and deposition method thereof, and semiconductor device and manufacturing method thereof
Pierce et al. Depth‐resolved cathodoluminescence of ion‐implanted layers in zinc oxide
US6342313B1 (en) Oxide films and process for preparing same
US5998232A (en) Planar technology for producing light-emitting devices
US6139760A (en) Short-wavelength optoelectronic device including field emission device and its fabricating method
US7341628B2 (en) Method to reduce crystal defects particularly in group III-nitride layers and substrates
JP2829311B2 (en) Light emitting device manufacturing method
JPH0152910B2 (en)
JPS63239989A (en) Manufacture of light emitting element
KR100469112B1 (en) Ⅲ-ⅴ/ⅱ-ⅵ semiconductor interface fabrication method
JP2000058919A (en) Semiconductor element and its manufacture
US20040021417A1 (en) Semiconductor photocathode
Clarke et al. An anomalous contrast effect in the scanning electron microscope
JPH08180824A (en) Electron beam source, manufacture thereof, electron beam source apparatus and electron beam apparatus using thereof
JP2019029536A (en) Group iii nitride epitaxial substrate, electron beam excitation type light-emitting epitaxial substrate, method of manufacturing them, and electron beam excitation type light-emitting device
JP2984114B2 (en) Method for manufacturing CuInSe2-based thin-film solar cell
US6124147A (en) Method for fabricating optoelectronic device in low-temperature deposition and thermal treatment
JPS62502086A (en) Method and apparatus for epitaxial deposition of doped materials
JPWO2006104064A1 (en) Gallium nitride growth substrate and manufacturing method thereof
JPS5992997A (en) Method for forming thin film using molecular beam epitaxial growth method
JP2013026374A (en) Semiconductor device and method of manufacturing semiconductor device
JPH0216726A (en) Method and apparatus for measurement of ion implantation rate
Oleshko et al. Luminescence of thin-film light-emitting diode structures upon excitation by a high-current electron beam
Allegrini et al. Photoluminescence from ion-beam cosputtered SiSiO2 thin films
JPH01278410A (en) Light-emitting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees