JPS63215391A - Welding method for gas turbine combustion cylinder - Google Patents

Welding method for gas turbine combustion cylinder

Info

Publication number
JPS63215391A
JPS63215391A JP62046876A JP4687687A JPS63215391A JP S63215391 A JPS63215391 A JP S63215391A JP 62046876 A JP62046876 A JP 62046876A JP 4687687 A JP4687687 A JP 4687687A JP S63215391 A JPS63215391 A JP S63215391A
Authority
JP
Japan
Prior art keywords
welding
shell
corrugated plate
gas turbine
corrugated sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62046876A
Other languages
Japanese (ja)
Inventor
Kisaburo Tanaka
田中 喜三郎
Takao Ikeda
孝夫 池田
Yasuo Tono
東野 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62046876A priority Critical patent/JPS63215391A/en
Publication of JPS63215391A publication Critical patent/JPS63215391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain the weld zone high in its high temp. strength and good in heat transfer by interposing a corrugated sheet between the adjacent end parts of each side shell of the main body of a combustion cylinder by superposing them and effecting a brazing after welding the contact part of the side shell and corrugated sheet by laser beam. CONSTITUTION:In welding the adjacent end parts of each side shell composing the main body of a gas turbine combustion cylinder the adjacent end parts of an outside shell 21 and inside shell 23 are superposed to interpose a corrugated sheet 22 in the gap 20 formed between each other. The outside shell 21 and corrugated sheet 22 are assembled by effecting tack welding 26 adequately. Thereafter this assembly body and laser beam are relatively moved in the circumferential direction to subject the contact part 28 of each side shell 21, 23 and corrugated sheet 22 to spot welding 24. The gap of the weld zone is thereafter subjected to vacuum brazing by coating a brazing filler metal 29 in the gap 27 of the contact part 28. The weld zone high in the high temp. strength, large in the joining area and good in the heat transfer is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガスタービン燃焼筒の溶接方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for welding a gas turbine combustion tube.

(従来の技術) 従来のガスタービン燃焼筒を第6図により説明すると、
(1)が燃焼筒本体で、同燃焼筒本体(1)は、軸方向
に望遠鏡状に並んで隣接端部が互いに重合する複数個の
側殻により構成されている。また(2)が各側殻の重ね
部で、同重ね部(2)を抵抗スポット溶接法により順次
溶接して、燃焼筒本体(1)を形成するようにしている
(Prior art) A conventional gas turbine combustion tube will be explained with reference to FIG.
(1) is a combustion cylinder main body, and the combustion cylinder main body (1) is composed of a plurality of side shells that are arranged telescopically in the axial direction and have adjacent ends overlapped with each other. Further, (2) is the overlapping portion of each side shell, and the overlapping portion (2) is sequentially welded by resistance spot welding to form the combustion cylinder main body (1).

(発明が解決しようとする問題点) 従来は前記のように燃焼筒本体(1)の空気通路部の重
ね部(2)を抵抗スポット溶接法により順次溶接してい
たので、 (I)高温強度の高い。(■)接合面積の大
きい。(In)熱伝導の良好な溶接部を得られないとい
う問題があった。
(Problems to be Solved by the Invention) Conventionally, as described above, the overlapping portions (2) of the air passage portions of the combustion tube body (1) were sequentially welded by resistance spot welding, so (I) high temperature strength was High. (■) Large bonding area. (In) There was a problem in that it was not possible to obtain a welded part with good heat conduction.

(問題点を解決するための手段) 本発明は前記の問題点に対処するもので、ガスタービン
燃焼筒の燃焼筒本体を構成する各側殻の隣接端部を溶接
するに当たり、同各側殼の隣接端部を重ね合わせて、そ
の間に波板を介装し1次いで同各側殼及び波板とレーザ
ビームとを円周方向に相対移動させて、同各側殼と同波
板との接触部を溶接し1次いで同溶接部の隙間をろう付
けしたことを特徴としている。
(Means for Solving the Problems) The present invention addresses the above-mentioned problems, and when welding the adjacent ends of each side shell constituting the combustion tube main body of a gas turbine combustion tube, The adjacent end portions of the two are overlapped, a corrugated plate is interposed between them, and each of the side shells, the corrugated plate, and the laser beam are then moved relative to each other in the circumferential direction, so that the relationship between each side shell and the corrugated plate is It is characterized by first welding the contact part and then brazing the gap between the weld parts.

本発明の目的とする処は、高温強度の高い。接合面積の
大きい。熱伝導の良好な溶接部を得られるガスタービン
燃焼筒の溶接方法を供する点にある。
The object of the present invention is high temperature strength. Large joint area. An object of the present invention is to provide a welding method for a gas turbine combustion tube that can obtain a welded portion with good heat conduction.

(作用) 本発明のガスタービン燃焼筒の溶接方法は前記のように
ガスタービン燃焼筒の燃焼筒本体を構成する各側殻の隣
接端部を溶接するに当たり、同各側殻の隣接端部を重ね
合わせて、その間に波板を介装し2次いで同各側殻及び
波板とレーザビームとを円周方向に相対移動させて、同
各側殻と同波板との接触部を溶接し2次いで同溶接部の
隙間をろう付けして、燃焼筒本体を得る。
(Function) As described above, the welding method for a gas turbine combustion tube of the present invention involves welding the adjacent ends of the respective side shells constituting the combustion tube body of the gas turbine combustion tube. They are stacked one on top of the other, a corrugated plate is interposed between them, and each of the side shells, the corrugated plate, and the laser beam are then moved relative to each other in the circumferential direction to weld the contact portions between each of the side shells and the corrugated plate. 2. Next, the gap between the welded parts is brazed to obtain the combustion cylinder body.

(実施例) 次に本発明のガスタービン燃焼筒の溶接方法を第1.2
.3図に示す一実施例により説明すると。
(Example) Next, the welding method of the gas turbine combustion tube of the present invention will be described in Section 1.2.
.. This will be explained using an example shown in FIG.

(21)が外側殻、 (23)が内側殻、 (20)か
同外側殻(21)と同内側殻(23)との間の隙間、 
(22)が同隙間(20)に介装した波板、 (24)
がスポット溶接部、 (25)が外側殻(21)の縦継
手部、 (28)が波板(22)と外側殻(2工)及び
内側殻(23)との接触部、 (29)がろう材で、外
側殻(21)と内側殻(23)との隣接端部を重ね合わ
せて、互いの間に3.6mmの隙間(20)を形成し1
次いで同隙間(20)に波板(22) 、即ち、厚さが
1. 2mm、幅が25mm、接触部(28)の円′周
方向長さが8.1mm、  ピッチが1/48周長さの
波板(22)を上記隙間(20)に介装し、外側殻(2
1)と波板(22)との円周方向6力所程度を仮溶接し
て((26)参照)、互いの組付は状態を確保する一方
(21) is the outer shell, (23) is the inner shell, (20) is the gap between the outer shell (21) and the inner shell (23),
(22) is a corrugated plate inserted in the same gap (20), (24)
(25) is the vertical joint of the outer shell (21), (28) is the contact area between the corrugated plate (22), the outer shell (2 parts) and the inner shell (23), (29) is the spot weld part, Using brazing filler metal, overlap the adjacent ends of the outer shell (21) and the inner shell (23) to form a gap (20) of 3.6 mm between each other.
Next, in the same gap (20), a corrugated plate (22), that is, a thickness of 1. A corrugated plate (22) having a diameter of 2 mm, a width of 25 mm, a circumferential length of the contact portion (28) of 8.1 mm, and a pitch of 1/48 of the circumferential length is inserted into the gap (20), and the outer shell is (2
1) and the corrugated plate (22) are temporarily welded at about 6 force points in the circumferential direction (see (26)) to ensure that they are assembled together.

保持治具(図示せず)により内側殻(23)の中心部か
ら内側殻(23)及び波板(22)へ放射状に力を作用
して、波板(22)と外側殻(21)及び内側殻(23
)との接触部(28)の隙間(27)を0.3mm以下
に保持し。
A holding jig (not shown) applies force radially from the center of the inner shell (23) to the inner shell (23) and the corrugated plate (22), so that the corrugated plate (22), the outer shell (21) and Inner shell (23
) The gap (27) between the contact portion (28) and the contact portion (28) is maintained at 0.3 mm or less.

次いでこれらの外側殻(21)と波板(22)と内側殻
(23)とをCO2レーザビーム(平均出力800W。
Next, these outer shell (21), corrugated plate (22), and inner shell (23) were exposed to a CO2 laser beam (average output: 800 W).

ピーク出力1500W、  レンズ焦点距離7.5イン
チ(190,5mm、)のCOt レーザビーム)の焦
点位置から1mmレンズ側に設置し、スポット溶接部(
24)の内側をアルゴンガスにより保護し。
A COt laser beam with a peak output of 1500 W and a lens focal length of 7.5 inches (190.5 mm) is installed 1 mm from the focal point of the lens, and the spot welded part (
24) Protect the inside of the tube with argon gas.

CO2レーザビーム側をヘリウムガスにより保護し1次
いでCOZ レーザビームと、波板(22)と外側殻(
21)及び内側殻(23)とを円周方向に相対移動させ
ながら、各スポット溶接部(24)を第5図(I)の円
形溶接ビートパターン、または第5図(n)の渦巻き状
溶接ビートパターンにより溶接する。次に第5図(I[
I)のCライン状溶接ビートパターンにより第4図の周
回溶接(24a)を行う場合について説明する。この場
合には、外側殻(21)と波板(22)とを重ね継手溶
接し1次いで波板(22)と内側殻(23)とを重ね継
手溶接する。1個所の重ね継手溶接が終了すれば2次の
重ね継手溶接をというように合計8箇所の重ね継手溶接
を行う。同各個所の重ね継手溶接は、前記CO2レーザ
ビームにより行い、1周回の溶接が終わったときに。
The CO2 laser beam side is protected by helium gas, and then the COZ laser beam, the corrugated plate (22) and the outer shell (
21) and the inner shell (23) in the circumferential direction, each spot weld (24) is welded in a circular welding beat pattern as shown in FIG. 5(I) or in a spiral welding pattern as shown in FIG. 5(n). Weld by beat pattern. Next, Figure 5 (I[
The case where circular welding (24a) in FIG. 4 is performed using the C-line welding beat pattern of I) will be described. In this case, the outer shell (21) and the corrugated plate (22) are lap-welded, and then the corrugated plate (22) and the inner shell (23) are lap-welded. Once the lap joint welding at one location is completed, a second lap joint welding is performed, and thus a total of eight lap joint welds are performed. Lap joint welding at each location was performed using the CO2 laser beam, and when one round of welding was completed.

出力を300Wまで落として、クレータ処理を行う。ま
た同第4図の場合にも、前記第1図乃至第3図の場合に
も、溶接完了後は、燃焼筒本体(第6図の(1)参照)
を保持治具から外し、酸洗い後2乾燥して、粉末NIろ
うとフラックスとを混合してペースト状にしたろう材(
29)を脚長が約2mmになるように波板(22)と外
側殻(21)及び内側殻(23)との接触部(2日)の
隙間(27)に塗布して、真空ろう付けを行う。このと
き、同ろう材(29)は、フラックスのクリーニング作
用とろう材の毛細現象とにより上記隙間(21)内に浸
透し、またハステロイXとの合金を形成しながら凝固す
る。
Reduce the output to 300W and perform crater treatment. Also, in the case of the same Figure 4 and the cases of the above-mentioned Figures 1 to 3, after welding is completed, the combustion cylinder body (see (1) in Figure 6)
Remove from the holding jig, pickle, dry, and mix powdered NI solder and flux to form a paste (brazing filler metal).
29) to the gap (27) at the contact area (2nd day) between the corrugated plate (22) and the outer shell (21) and inner shell (23) so that the leg length is about 2 mm, and then vacuum braze it. conduct. At this time, the brazing filler metal (29) penetrates into the gap (21) due to the cleaning action of the flux and the capillary phenomenon of the brazing filler metal, and solidifies while forming an alloy with Hastelloy X.

前記CO2レーザビームによる溶接時、集光された00
gレーザビームは、上側殻(21)を貫通して、波板(
22)と上側殻(21)及び内側殻(23)との接触部
(28)を溶融し、溶融した金属がレーザビームのエネ
ルギーにより攪拌されて、波板(22)が上側殻(21
)及び内側殻(23)に溶接される。この状態で。
During welding with the CO2 laser beam, the focused 00
The g laser beam penetrates the upper shell (21) and passes through the corrugated plate (
22) and the upper shell (21) and the inner shell (23), the molten metal is stirred by the energy of the laser beam, and the corrugated plate (22) is connected to the upper shell (21).
) and welded to the inner shell (23). In this condition.

CO2レーザビームを円周方向に移動すると、波板(2
2)と上側殻(21)及び内側殻(23)との溶接面積
が増加して、互いが強固に溶接される。このときの溶接
パターンは、第5図(I)  (II)に示す通りで2
重ね継手溶接部では、熱エネルギーが局部的に集積され
ることがなくて、CO,レーザビームが通過した個所で
は、略同等の溶接深さが得られる。
When the CO2 laser beam is moved in the circumferential direction, the corrugated plate (2
2), the upper shell (21), and the inner shell (23) have an increased welding area and are firmly welded to each other. The welding pattern at this time is as shown in Fig. 5 (I) (II).
In the lap joint weld, thermal energy is not locally accumulated, and approximately the same weld depth can be obtained at the locations where the CO and laser beams have passed.

また第5図(I[I)のCライン状溶接ビートバタ−ン
により第4図の周回溶接(24a)を行う場合には、外
側殻及び内側殻と波板とを1回転することにより2周回
溶接(24a)が完了する。即ち、集光されたC Oz
 レーザビームが上側殻(21)を貫通し。
In addition, when performing circular welding (24a) in Figure 4 using the C-line welding beat pattern in Figure 5 (I[I), two revolutions are made by rotating the outer shell, inner shell, and corrugated plate once. Welding (24a) is completed. That is, the focused C Oz
A laser beam penetrates the upper shell (21).

波板(22)と上側殻(21)及び内側殻(23)との
接触部(28)が溶融されて、溶接ビードが形成され、
CO2レーザビームが接触部(28)の端部に達すると
The contact portion (28) between the corrugated plate (22) and the upper shell (21) and inner shell (23) is melted to form a weld bead;
Once the CO2 laser beam reaches the end of the contact (28).

波板(22)と上側殻(21)及び内側殻(23)とが
離れるので2重ね継手溶接が終わり、それからは外側殻
(21)のみが溶融されて、ビードが形成されてゆく。
Since the corrugated plate (22) is separated from the upper shell (21) and the inner shell (23), the double joint welding is completed, and from then on, only the outer shell (21) is melted and a bead is formed.

また次の接触部(28)”に達すると、再び波板(22
)と上側殻(21)及び内側殻(23)との接触部(2
8)が溶融されて、溶接ビードが形成される。これを繰
り返し行いながら周回溶接(24a)が完了する。また
これが終わると、ビームエネルギーを低くして、1回転
させることにより、クレータ部を小さくする。
When the next contact part (28) is reached, the corrugated plate (22) is reached again.
) and the contact portion (2) with the upper shell (21) and the inner shell (23)
8) is melted to form a weld bead. By repeating this process, the circular welding (24a) is completed. When this is completed, the beam energy is lowered and the beam is rotated once, thereby reducing the size of the crater.

なおレーザビームによる溶は込み深さは、焦点位置とワ
ーク位置とより大きく変化するので、燃焼筒本体の高さ
位置をセンサ等により検知し、ワークを昇降させて、溶
は込み深さを略一定に保ようにしている。またレーザビ
ームによる重ね継手溶接では、大きな接合面積を得られ
ないので、ろう付けにより接合面積を大きくしている。
Note that the depth of penetration by the laser beam changes more greatly depending on the focus position and the workpiece position, so the height position of the combustion tube body is detected by a sensor, etc., and the workpiece is raised and lowered to approximate the penetration depth. I try to keep it constant. Furthermore, since lap joint welding using a laser beam does not allow a large joint area to be obtained, the joint area is increased by brazing.

またろう付は法を採用して、溶接変形を小さくするよう
′にしている。ろう付けは、置きろうによりフラックス
と混合した粉末状ろう材を重ね継手溶接部に置き、10
  ’to’rr雰囲気で1時間、1050’Cに加熱
することにより実施した。
In addition, a special brazing method is used to minimize welding deformation. For brazing, a powdered brazing filler metal mixed with flux is placed on the lap joint welding area using a brazing process for 10 minutes.
This was done by heating to 1050'C for 1 hour in a 'to'rr atmosphere.

(発明の効果) 本発明のガスタービン燃焼筒の溶接方法は前記のように
ガスタービン燃焼筒の燃焼筒本体を構成する各側殻の隣
接端部を溶接するに当たり、同各側殻の隣接端部を重ね
合わせて、その間に波板を介装し1次いで同各側殻及び
波板とレーザビームとを円周方向に相対移動させて、同
各側殻と同波板との接触部を溶接し1次いで同溶接部の
隙間をろう付けして、燃焼筒本体を得るので、高温強度
の高い。接合面積の大きい。さらに熱伝導の良好な溶接
部を得られる効果がある。
(Effects of the Invention) As described above, the welding method for a gas turbine combustion tube of the present invention involves welding adjacent ends of each side shell that constitutes the combustion tube body of a gas turbine combustion tube. The parts are overlapped, a corrugated plate is interposed between them, and each of the side shells, the corrugated plate, and the laser beam are moved relative to each other in the circumferential direction, so that the contact portion between each of the side shells and the corrugated plate is Since the combustion cylinder body is obtained by welding and then brazing the gaps between the welds, it has high high-temperature strength. Large joint area. Furthermore, there is an effect that a welded part with good heat conduction can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるガスタービン燃焼筒の溶接方法
の一実施例を示す平面図、第2図はその縦断側面図、第
3図はその縦断正面図、第4図は他の実施例を示す平面
図、第5図(1)  (II)(III)は各溶接ビー
トパターンを示す説明図、第6図はガスタービン燃焼筒
の燃焼筒本体を示す側面図である。 (1)・・・燃焼筒本体、(2)・・・重合部、 (2
1)  ・・・外側殻、 (22)  ・・・波板、 
(23)  ・・・内側殻。 (27)・・パ隙間、 (2B)・・・接触部、 (2
9)  ・・・ろう材。
FIG. 1 is a plan view showing an embodiment of the gas turbine combustion tube welding method according to the present invention, FIG. 2 is a longitudinal side view thereof, FIG. 3 is a longitudinal front view thereof, and FIG. 4 is another embodiment. 5(1), (II) and (III) are explanatory views showing each welding beat pattern, and FIG. 6 is a side view showing the combustion tube main body of the gas turbine combustion tube. (1)... Combustion tube main body, (2)... Overlapping part, (2
1) ...outer shell, (22) ...corrugated plate,
(23) ...inner shell. (27)...Pa gap, (2B)...Contact part, (2
9) ...brazing material.

Claims (1)

【特許請求の範囲】[Claims] ガスタービン燃焼筒の燃焼筒本体を構成する各側殻の隣
接端部を溶接するに当たり、同各側殼の隣接端部を重ね
合わせて、その間に波板を介装し、次いで同各側殼及び
波板とレーザビームとを円周方向に相対移動させて、同
各側殼と同波板との接触部を溶接し、次いで同溶接部の
隙間をろう付けしたことを特徴とするガスタービン燃焼
筒の溶接方法。
When welding the adjacent ends of the side shells constituting the combustion tube body of the gas turbine combustion tube, the adjacent ends of the side shells are overlapped, a corrugated plate is interposed between them, and then the side shells are welded together. and a gas turbine characterized in that the corrugated plate and the laser beam are moved relative to each other in the circumferential direction to weld the contact portions between each side shell and the corrugated plate, and then the gaps between the welded portions are brazed. How to weld a combustion tube.
JP62046876A 1987-03-03 1987-03-03 Welding method for gas turbine combustion cylinder Pending JPS63215391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62046876A JPS63215391A (en) 1987-03-03 1987-03-03 Welding method for gas turbine combustion cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62046876A JPS63215391A (en) 1987-03-03 1987-03-03 Welding method for gas turbine combustion cylinder

Publications (1)

Publication Number Publication Date
JPS63215391A true JPS63215391A (en) 1988-09-07

Family

ID=12759551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62046876A Pending JPS63215391A (en) 1987-03-03 1987-03-03 Welding method for gas turbine combustion cylinder

Country Status (1)

Country Link
JP (1) JPS63215391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302795A (en) * 1990-09-13 1994-04-12 Hitachi, Ltd. Welding equipment for fabricating a combustion liner
US5786559A (en) * 1995-10-17 1998-07-28 Meyer Tool, Inc. Weld-braze process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302795A (en) * 1990-09-13 1994-04-12 Hitachi, Ltd. Welding equipment for fabricating a combustion liner
US5786559A (en) * 1995-10-17 1998-07-28 Meyer Tool, Inc. Weld-braze process

Similar Documents

Publication Publication Date Title
US6651437B2 (en) Combustor liner and method for making thereof
JP2672182B2 (en) Joining method for steel-based materials and aluminum-based materials
JPS63215391A (en) Welding method for gas turbine combustion cylinder
JP2007260701A (en) Method for joining different kinds of materials
JP4566091B2 (en) Dissimilar material joining method
JP3583558B2 (en) Pipe frame structure joining method
JPH01321084A (en) Laser beam spot welding method for gas turbine combustor
JPS59500856A (en) How to weld two parts
SU1540989A1 (en) Method of arc welding of butt welds of thin-sheet elements
JP2909434B2 (en) Assembly method of steam turbine rotor
JPH06190573A (en) Manufacture of hollow structural material
JPS5870985A (en) Joining method for different metals
JPS59113970A (en) Joining method
JP4305888B2 (en) Welding method for cylindrical members
JPH06126444A (en) Welding and joining method for welded and assembled h-shape steel
JPS6125464B2 (en)
JP3120705B2 (en) Fin brazing method
JPS6321589B2 (en)
JP2611869B2 (en) Tube and plate welding method
JPS626911B2 (en)
JPH0556231B2 (en)
JPH02280969A (en) Method for welding titanium plate to titanium clad steel plate
JPS63119985A (en) Method for welding steel-frame joint part
JP2019206011A (en) Joint structure of dissimilar metallic material and joining method of dissimilar metallic material
JPH0516937B2 (en)