JPS63214326A - Dilution device for solid-gas mixed phase fluid - Google Patents

Dilution device for solid-gas mixed phase fluid

Info

Publication number
JPS63214326A
JPS63214326A JP63004059A JP405988A JPS63214326A JP S63214326 A JPS63214326 A JP S63214326A JP 63004059 A JP63004059 A JP 63004059A JP 405988 A JP405988 A JP 405988A JP S63214326 A JPS63214326 A JP S63214326A
Authority
JP
Japan
Prior art keywords
solid
gas
phase fluid
mixing chamber
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004059A
Other languages
Japanese (ja)
Inventor
Tsumoru Nakamura
中村 積
Takayoshi Hamada
浜田 高義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63004059A priority Critical patent/JPS63214326A/en
Publication of JPS63214326A publication Critical patent/JPS63214326A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/30Mixing gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/48Mixing liquids with liquids; Emulsifying characterised by the nature of the liquids
    • B01F23/483Mixing liquids with liquids; Emulsifying characterised by the nature of the liquids using water for diluting a liquid ingredient, obtaining a predetermined concentration or making an aqueous solution of a concentrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE:To measure particle distribution and concentration with high accuracy by providing a measuring piping which has an opening facing to an inlet nozzle at one end and with its other end connected with a measuring instrument, and also an outlet with openings at the other end of a mixing chamber and an adjacent barrel. CONSTITUTION:Dilution gas blown off from a blow-off opening 12 is sufficiently mixed with solid-gas mixed phase fluid flowing in from an inlet nozzle 10 for the solid-gas mixed phase fluid 1, and an inlet nozzle 11 of dilution gas is installed at one end of a mixing chamber 9, while the dilution gas is introduced from the blow-off opening 12 constituted of micro-porous plates into the mixing chamber 9. The inner diameter of the mixing chamber 9 should be so designed as to make a turbulence generating no positional concentration distribution of solid particles, in consideration of mixing properties of solid-gas mixed phase fluid and diluted gas flowing in the mixing chamber. A piping 13 which feeds the solid-gas mixing phase fluid after being diluted to a measuring instrument should basically be positioned at the rear, and the dimension of the inner diameter and the like of the piping 13 should take agglomeration and deposition in the piping 13 into consideration.

Description

【発明の詳細な説明】 〔産業上の利用分野」 本発明はボイラ、焼却炉、セメント製造装置等固気混相
流体を取扱うプラントの固気混相流体中の粗粒子を除去
した後の比較的微細な固体粒子の濃度・粒径分布を計測
するための固気混相流体の希釈装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides relatively fine particles after coarse particles are removed from solid-gas mixed-phase fluids in plants that handle solid-gas mixed-phase fluids such as boilers, incinerators, and cement manufacturing equipment. This invention relates to a solid-gas mixed phase fluid dilution device for measuring the concentration and particle size distribution of solid particles.

〔従来の技術〕[Conventional technology]

上記のような固気混相流体中における固体粒子の計測は
環境保持、研究改善、装置性能把握及び連続状態、監視
等の観点から正確な濃度及び粒径分布の実体把握を行う
必要がある。
In order to measure solid particles in a solid-gas mixed phase fluid as described above, it is necessary to accurately grasp the actual concentration and particle size distribution from the viewpoints of environmental preservation, research improvement, understanding of equipment performance, continuous status, monitoring, etc.

高精度の濃度及び粒径分布の計測を期するKは、固体粒
子の状態変化(濃度及び粒径分布の変化)をさせること
なく固気混相流体本流から計測器まで固気混相流体を導
入することが必要である。
K, which aims to measure the concentration and particle size distribution with high accuracy, introduces the solid-gas multiphase fluid from the main stream of the solid-gas multiphase fluid to the measuring device without causing any change in the state of the solid particles (changes in the concentration or particle size distribution). It is necessary.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、粒子本来の特性として「ブラウン拡散」
 「衝突」があり、また「粒子が帯電している場合には
静電気」などの原因により粒子間の凝縮及び導入管内壁
への沈着現象が生じこれらの現象により計測精度が著る
しく低下する。
However, "Brownian diffusion" is an inherent characteristic of particles.
Condensation between particles and deposition on the inner wall of the introduction tube occur due to "collision" and "static electricity if the particles are electrically charged", and these phenomena significantly reduce measurement accuracy.

特に上記現象は一般に固体粒子濃度が高くなる程、また
粒子が微粒化する程顕著となる傾向にあり、例えば石炭
焚きボイラ排ガス(11度10g、& )のような高濃
度の場合や、環境計測の目的で大気浮遊粒子と呼ばれる
ような微粒子を対象とする場合には、特に対策が必要で
ある。
In particular, the above phenomenon generally tends to become more pronounced as the solid particle concentration increases and as the particles become more atomized. Particular measures are required when targeting fine particles called airborne particles.

更に、固気混相流体中の固体粒子を計測する計測器の一
般的特性として、 (:)通常前記のような高濃度下では計測精度が著るし
く低下する。
Furthermore, as a general characteristic of measuring instruments that measure solid particles in a solid-gas mixed phase fluid, (:) measurement accuracy usually decreases significantly under high concentrations such as those mentioned above.

(1i)計測可能なサンプリングガス温度が大気温度に
近似していることが多く、サンプリングガス温度を低下
させる必要がある。
(1i) Measurable sampling gas temperature is often close to atmospheric temperature, and it is necessary to lower the sampling gas temperature.

(m)サンプリングガス中に水分、二酸化硫黄(So、
)ガスが含有されている場合、ガス温度をそのまま低下
すると計測対象の固体粒子が凝集し粒径分布及び濃度に
変化を生ずる等の問題がある。
(m) Moisture, sulfur dioxide (So,
) When a gas is contained, if the gas temperature is directly lowered, the solid particles to be measured will aggregate, causing a change in particle size distribution and concentration.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明は前記の問題点を解消し計測対象の固体粒
子が高濃度かつ微粒子の場合でも高精度にその粒径分布
及び濃度の計測が可能となる固気混相流体の希釈装置を
提供するものであって、この発明を具現化するものとし
て、本発明は両端部と胴部とを外壁で囲まれた管状の混
合室と、該混合室の一方の端部中心位置に開口する固気
混相流体の入口ノズルと、希釈ガス供給管に接続され前
記入口ノズルを取り囲むようにして一方の端部に配置さ
れた多数の細孔または環状噴孔を備えてなる希釈ガス吹
出口=、、前記混合室の他方の端部近傍の胴部を貫通し
て該混合室の中心部まで挿入されその先端に前記入口ノ
ズルに対向する開口を設けてなり他端部を計測器に接続
された計測用配管と前記混合室の他方の端部あるいは近
傍の胴部に開口する排出口とを備えてなる装置を提供す
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a diluting device for a solid-gas mixed-phase fluid, which makes it possible to measure the particle size distribution and concentration with high accuracy even when the solid particles to be measured are highly concentrated and fine particles. As an embodiment of the present invention, the present invention includes a tubular mixing chamber whose both ends and a body are surrounded by outer walls, and a solid-gas mixed phase opening at the center of one end of the mixing chamber. A diluent gas outlet comprising a fluid inlet nozzle and a plurality of pores or annular nozzle holes connected to a diluent gas supply pipe and arranged at one end so as to surround the inlet nozzle. A measuring pipe that penetrates the body near the other end of the chamber and is inserted into the center of the mixing chamber, has an opening facing the inlet nozzle at its tip, and has the other end connected to a measuring device. and an outlet opening into the body at or near the other end of the mixing chamber.

〔作用〕[Effect]

すなわち本発明に係わる希釈装置では、固気混相流体本
流から計測の目的で採取された固気混相流体を清浄かつ
脱湿された不活性ガス(以下単に希釈ガスと称す)によ
り、先に列記した問題点が生じない所定の固体粒子濃度
、計測温度、凝縮成分濃度以下となる迄所定の固気混相
流体の滞留時間、容量を有する希釈容器内で希釈するも
のであるから該希釈容器から固体粒子濃度・温度・凝縮
成分濃度の調整された希釈後の固気混相流体の一部若し
くは全部は固体粒子計測器にて計測することが可能とな
る。
That is, in the dilution device according to the present invention, the solid-gas mixed-phase fluid collected for the purpose of measurement from the solid-gas mixed-phase fluid main stream is purified and dehumidified using an inert gas (hereinafter simply referred to as dilution gas) to dilute the solid-gas multiphase fluid as listed above. Since the solid particles are diluted in a dilution container having a predetermined residence time and capacity of the solid-gas multiphase fluid until the solid particle concentration, measurement temperature, and condensed component concentration are below a predetermined value without causing any problems, the solid particles are removed from the dilution container. Part or all of the diluted solid-gas multiphase fluid whose concentration, temperature, and condensed component concentration have been adjusted can be measured using a solid particle measuring device.

〔実施例〕〔Example〕

まず、第1図に於いて本発明に係わる装置による希釈の
原理を説明する。
First, the principle of dilution by the apparatus according to the present invention will be explained with reference to FIG.

lはダクト内を流れる固気混相流体本流、2は前記固気
混相流体1を次に説明する希釈容器3に導入する配管、
3は配管2により送り込まれる固気混相流体lを希釈ガ
スにより所定の濃度まで固体粒子の粒径分布及び濃度の
状態変化を起こすことなく希釈する希釈容器、4は清浄
かつ脱湿された不活性な希釈ガスを希釈容器3に供給す
る配管、5は希釈容器3内の希釈後の固気混相流体を次
に説明する固体粒子計測器6に供給する配管、6は固気
混相流体中の固体粒子の粒径分布及び濃度を計測する固
体粒子計測器(以下単に計測器と称す)、7は希釈容器
3から配管2及び5を介して計測器6に固気混相流体を
吸引するための吸引ポンプ、8は希釈容器3内の計測器
6に供給する固気混相流体を除いた残りの希釈後の固気
混相流体を系外へ排出。
1 is a main stream of the solid-gas multiphase fluid flowing in the duct; 2 is a pipe for introducing the solid-gas multiphase fluid 1 into a dilution container 3, which will be described next;
3 is a dilution container for diluting the solid-gas multiphase fluid l sent through piping 2 to a predetermined concentration with a diluent gas without causing changes in the particle size distribution and concentration of solid particles; 4 is a clean and dehumidified inert container; Piping 5 supplies the diluted gas to the dilution container 3; Piping 5 supplies the diluted solid-gas multiphase fluid in the dilution container 3 to a solid particle measuring device 6, which will be described next; A solid particle measuring device (hereinafter simply referred to as a measuring device) for measuring the particle size distribution and concentration of particles; 7 is a suction device for sucking solid-gas mixed phase fluid from the dilution container 3 through piping 2 and 5 to the measuring device 6; A pump 8 discharges the remaining solid-gas mixed-phase fluid after dilution, excluding the solid-gas mixed-phase fluid supplied to the measuring device 6 in the dilution container 3, to the outside of the system.

若しくは他の固体粒子計測器等の処理装置へ供給する配
管である。
Alternatively, it is a pipe that supplies to processing equipment such as other solid particle measuring instruments.

固気混相流体本流1は配管2を介して本発明に係わる希
釈容器3に導入される。この希釈容器3では先に述べた
粒子自体の特性及び計測器の特性に係わる問題点を防止
するためのものである。
A solid-gas mixed phase fluid main stream 1 is introduced via a pipe 2 into a dilution container 3 according to the present invention. This dilution container 3 is intended to prevent the above-mentioned problems related to the characteristics of the particles themselves and the characteristics of the measuring device.

本発明において用いる希釈容器を第2図および第3図に
示す一実施例について説明する。
An embodiment of the dilution container used in the present invention shown in FIGS. 2 and 3 will be described.

9は希釈容器3の混合室、10は第1図中の配管2によ
り供給される固気混相流体の入口ノズル、11は第1図
中の配管4により供給される希釈ガスの入口ノズル、1
2は入口ノズル11より送られる希釈ガスを所定の速度
にて入口ノズル10より混合室9に入り込む固気混相流
体中へ吹き出す希釈ガス吹出口、13は希釈ガスにより
希釈された固気混相流体を固体粒子の計測器へ供給する
配管、14は希釈容器内の計測器に供給する固気混相流
体を除いた残りの希釈後の固気混相流体の排出口である
Reference numeral 9 denotes a mixing chamber of the dilution container 3, 10 an inlet nozzle for the solid-gas mixed phase fluid supplied by the pipe 2 in FIG. 1, 11 an inlet nozzle for the dilution gas supplied by the pipe 4 in FIG.
Reference numeral 2 indicates a dilution gas outlet for blowing out the dilution gas sent from the inlet nozzle 11 at a predetermined speed into the solid-gas multiphase fluid entering the mixing chamber 9 from the inlet nozzle 10; A pipe 14 for supplying solid particles to the measuring device is an outlet for the remaining solid-gas mixed-phase fluid after dilution, excluding the solid-gas mixed-phase fluid supplied to the measuring device in the dilution container.

希釈ガス吹田口12より吹き出す希釈ガスの流量は前記
計測器6及び固体粒子本来の特性に係る問題点を考慮し
て下記条件を満足するように設定する。
The flow rate of the diluent gas blown out from the diluent gas Suita port 12 is set so as to satisfy the following conditions, taking into account problems related to the measuring device 6 and the inherent characteristics of the solid particles.

(1)高濃度固気混相流体下に於ける計測器自体の精度
の低下を防止するよう該計測器6の所定(最も精度良く
計測出来る)固気混相流体濃度まで希釈する。つまり希
釈ガス流量Q1は(1)式にて求める。
(1) Dilute the solid-gas mixed-phase fluid to a predetermined concentration of the measuring instrument 6 (which allows measurement with the highest accuracy) in order to prevent a decrease in the accuracy of the measuring instrument itself under a high-concentration solid-gas mixed-phase fluid. In other words, the dilution gas flow rate Q1 is determined using equation (1).

Qt〉Qs: n!− 0m 但しQl:希釈ガス流量(cd/wt)Qs:固気混相
流本流からのサンプリング流量(cd /sec ) (入口ノズル10より流入する固気 混相流体の流量) ns:概略の固気混相流体濃度(個/、−j)nm:計
測器の上限固気混相流体濃度 (個/−) (2)固気混相流体の大気温度附近までの冷却に伴う凝
縮成分の凝縮による濃度、粒径分布及び形態の変化を防
止するため、冷却後でも凝縮を起こさないまで希釈する
ことにより凝縮成分濃度を低下させる。
Qt〉Qs: n! - 0m However, Ql: Dilution gas flow rate (cd/wt) Qs: Sampling flow rate from the main stream of solid-gas mixed phase flow (cd/sec) (Flow rate of solid-gas mixed-phase fluid flowing in from the inlet nozzle 10) ns: Approximate solid-gas mixed phase flow Fluid concentration (numbers/, -j) nm: Upper limit of solid-gas multiphase fluid concentration of the measuring device (numbers/-) (2) Concentration and particle size due to condensation of condensed components accompanying cooling of solid-gas multiphase fluid to near atmospheric temperature In order to prevent changes in distribution and morphology, the concentration of condensed components is reduced by diluting until no condensation occurs even after cooling.

つまり、事項の場合の希釈ガス流量もは(2)式にて求
める。
In other words, the dilution gas flow rate in the case of the above is also determined using equation (2).

s Q2≧QSCo。s Q2≧QSCo.

但しQz:希釈ガス流量(I!/lK11)Qs:固気
混相流体からのサンプリング流量(//馴) C8:サンプリングする固気混相流体中の凝縮成分濃度
(vol % ) COO:冷却後の固気混相流体の温度(周囲大気温度)
における凝縮成分の 飽和濃度(vol % ) Cooは各種文献にて調査できるが、例えば燃焼排ガス
中によく含有される水分の場合。
However, Qz: Diluent gas flow rate (I!/lK11) Qs: Sampling flow rate from solid-gas multiphase fluid (//condition) C8: Concentration of condensed component in solid-gas multiphase fluid to be sampled (vol %) COO: Solid after cooling Temperature of gas multiphase fluid (ambient atmospheric temperature)
The saturation concentration (vol %) of the condensed component in Coo can be investigated in various literatures, but for example, in the case of water often contained in combustion exhaust gas.

湿度図表により簡単に求めることが出来る。It can be easily determined using a humidity chart.

(3)ブラウン拡散及び衝突による固体粒子間凝集。(3) Coagulation between solid particles due to Brownian diffusion and collisions.

沈着を防止するよう希釈ガスにて希釈する。Dilute with diluent gas to prevent deposition.

粒子の凝集・沈着はフィック(Fick)の法則により
理論解として求められる。例えば凝集。
Aggregation and deposition of particles can be determined as a theoretical solution using Fick's law. For example, agglomeration.

沈着による数子数の変化は(3)、(4)式にて計算で
きる。
Changes in the number of numerals due to deposition can be calculated using equations (3) and (4).

1」−1 ゜。−一匹;「■−(3) 但しno=最初の状態(t=o)における粒子数濃度(
個/−) ni:を秒後における粒子数濃度(個/−)k:定数(
t−j/個・蹴) t:経過時間(me ) 肛−8−? n。
1”-1 °. - One; "■-(3) However, no = particle number concentration in the initial state (t = o) (
particles/-) ni: particle number concentration after seconds (particles/-) k: constant (
t-j/piece/kick) t: Elapsed time (me) Anal-8-? n.

但しno:最初の状態(t=o)における粒子数濃度(
個/c1d) nt:を秒後における粒子数濃度(個/−)?二定数(
−ン (3)及び(4)式はnoが大なる程nt7hoが小さ
くなるので、nt/no  が計測精度に影響しない程
度(一般的に計測器並びに計測全体の精度を考慮し5%
未満)まで式を小さくする。つまり希釈する必要がある
However, no: particle number concentration in the initial state (t=o) (
particles/c1d) nt: Particle number concentration (particles/-) after seconds? Two constants (
- Equations (3) and (4) show that the larger no, the smaller nt7ho, so nt/no does not affect measurement accuracy (generally 5% considering the accuracy of the measuring instrument and the overall measurement).
(less than). This means that it needs to be diluted.

従って希釈ガス流量Qs  は(5)式により求められ
る。
Therefore, the dilution gas flow rate Qs is determined by equation (5).

Q−〉Qs蓋 但しQ舅:希釈ガス流量(−/冠) QS:固気混相流体からのサンプリング流量(crtl
 / saり ns:概略の固気混相流体濃度(個/−)ffo:f3
1及び(4)式中のnt/noが計測精度に影響を及ぼ
さない程度の希釈後 の固気混相流体濃度(個/−) 以上(1)、(2)及び(5)式を満足するような希釈
ガス流量に設定する。
Q->Qs Lid Q: Diluent gas flow rate (-/cap) QS: Sampling flow rate from solid-gas mixed phase fluid (crtl
/ sarins: approximate solid-gas mixed phase fluid concentration (numbers/-) ffo: f3
nt/no in formulas 1 and (4) is the concentration of solid-gas mixed phase fluid after dilution (pcs/-) to the extent that it does not affect measurement accuracy. Satisfies formulas (1), (2), and (5) above. Set the diluent gas flow rate as follows.

ところで(1)及び(5)式中の概略の固気混相流体濃
度lは同固気混相流体を含有する該流体の本流中の中間
ないし粗粒子の濃度及び粒径分布をJIS等の公に知ら
れている計測法(例えばJISに規定されている1排ガ
ス中のダスト濃度の測定方法1等)の計測値より、また
従来頻繁に用いられるサイクロン等の慣性法により中間
ないし粗粒子を除去後微細な粒子だけをP紙フィルター
に捕集し、該フィルターに付着した粒子重量により前記
の微細な粒子の濃度を求める計測法の計測値等により予
め求める。
By the way, the approximate solid-gas mixed-phase fluid concentration l in equations (1) and (5) is the concentration and particle size distribution of intermediate to coarse particles in the main stream of the fluid containing the same solid-gas mixed-phase fluid, based on the official standards such as JIS. Based on the measured values of known measurement methods (for example, method 1 for measuring dust concentration in exhaust gas specified in JIS), and after removing intermediate to coarse particles using inertial methods such as cyclones, which are frequently used in the past. Only fine particles are collected on a P paper filter, and the concentration of the fine particles is determined in advance from the measured value of the measurement method, etc., which determines the concentration of the fine particles based on the weight of the particles attached to the filter.

一方、希釈容器3の構造に関しては (1)  希釈ガスを吹き出す吹出口12は固気混相流
体1の入口ノズル10から流入する固気混相流体と充分
に混合させるものであるから、混合室9の一方の端部中
心に入口ノズル10を配設し、その周囲に希釈ガスの入
口ノズル11を設けるとともに微小多孔板よりなる吹出
口12で希釈ガスを混合室9内に導入させるようにする
On the other hand, regarding the structure of the dilution container 3, (1) the outlet 12 that blows out the dilution gas is used to sufficiently mix the solid-gas mixed-phase fluid 1 flowing in from the inlet nozzle 10; An inlet nozzle 10 is provided at the center of one end, and an inlet nozzle 11 for diluting gas is provided around it, and the diluting gas is introduced into the mixing chamber 9 through an outlet 12 made of a microporous plate.

従って、吹出口12より吹き出す希釈ガスの流速は混合
性を考慮して約3〜30 m/a−とじ、この流速とな
るよう吹出口12の面積、孔数等の設計を行う。
Therefore, the flow rate of the diluent gas blown out from the outlet 12 is set at approximately 3 to 30 m/a, taking into account the mixing property, and the area, number of holes, etc. of the outlet 12 are designed to achieve this flow rate.

(2)混合室3の内径は、その中を流れる固気混相流体
および希釈ガスの混合性を考慮し、固体粒子の位置的濃
度分布が生じない程度の乱流状態なるに設計する。
(2) The inner diameter of the mixing chamber 3 is designed in consideration of the miscibility of the solid-gas multiphase fluid flowing therein and the diluent gas, and is designed to create a turbulent flow state to the extent that no local concentration distribution of solid particles occurs.

(3)  まな混合室3の長さは希釈後の固気混相流体
の帯留時間、これは(3)式中のもの経過時間とほぼ比
例しておりこれを長くする。(3)式より明らかなよう
Vcnt/noが小さくなると計測精度に影響を及ぼす
可能性があるので(3)式を考慮して設計を行う。
(3) The length of the large mixing chamber 3 is the residence time of the solid-gas mixed phase fluid after dilution, which is approximately proportional to the elapsed time in equation (3), and is lengthened. As is clear from equation (3), if Vcnt/no becomes small, there is a possibility that the measurement accuracy will be affected, so design is performed taking equation (3) into consideration.

(4)希釈後の固気混相流体を計測器に供給する配管1
3は基本的には後方に位置し、同配管13の内径等の寸
法は、同配管13内での凝集・沈着を考慮するため、(
3)及び(4)式を参考に設計する。
(4) Piping 1 that supplies diluted solid-gas multiphase fluid to the measuring instrument
3 is basically located at the rear, and the dimensions such as the inner diameter of the pipe 13 are (
Design with reference to equations 3) and (4).

(5)希釈後の固気混相流体の排出口14は、同部分に
て大きな圧力損失が生じない形状・寸法とする。
(5) The discharge port 14 for the solid-gas mixed phase fluid after dilution should have a shape and dimensions that will not cause a large pressure loss in the same area.

第2図および第3図に示した希釈容器3では。In the dilution vessel 3 shown in FIGS. 2 and 3.

上記5項目を満すように設計されているが、構造はその
実施例に限られるものでなく、たとえば第4図および第
5図に示すようなものも考えられる。
Although the structure is designed to satisfy the above five items, the structure is not limited to the embodiment, and structures such as those shown in FIGS. 4 and 5 may also be considered.

符号は第2図と同様に付しであるが、希釈ガスの吹出口
12が入口ノズル10の周囲に環状に配設しであるのが
特徴的である。
The reference numerals are given in the same manner as in FIG. 2, but the diluent gas outlet 12 is characteristically arranged in an annular manner around the inlet nozzle 10.

〔発明の効果〕〔Effect of the invention〕

すなわち本発明は、固気混相流体本流から計測の目的で
採取された固気混相流体を、清浄かつ脱湿された希釈ガ
スにより、計測精度に影響を与えない程度の所定の固体
粒子濃度、計測温度、凝縮成分濃度以下となる迄所定の
固気混相流体の滞留時間、容量を有する希釈容器内で希
釈する装置に係わるものであるから、該希釈容器から固
体粒子濃度・温度・凝縮成分濃度の調整された希釈後の
固気混相流体の一部若しくは全部は、固体粒子計測器に
て高精度にその粒径分布と濃度を計測することが可能と
なる等実験技術上有用なものである。
In other words, the present invention uses a clean and dehumidified diluent gas to measure a solid-gas multi-phase fluid sampled from the main flow of the solid-gas multi-phase fluid for the purpose of measurement at a predetermined solid particle concentration that does not affect measurement accuracy. This relates to a device that dilutes a solid-gas mixed phase fluid in a dilution container having a predetermined residence time and capacity until the temperature and concentration of condensed components are lowered, so the concentration of solid particles, temperature, and concentration of condensed components can be measured from the dilution container. Part or all of the adjusted solid-gas mixed phase fluid after dilution is useful in terms of experimental technology, such as making it possible to measure its particle size distribution and concentration with high precision using a solid particle measuring instrument.

先回面の簡単な説明 第1図は本発明の原理を示す概略説明図、第2図は本発
明希釈装置の一実施例を示す縦断面図、第3図は第2図
の■−■線に侃う横断面図、第4図は本発明希釈装置の
異なる実施例を示す縦断面図、第5図は第4図のv−■
線に沿う横断面図である。
Brief explanation of the previous aspects Figure 1 is a schematic explanatory diagram showing the principle of the present invention, Figure 2 is a longitudinal cross-sectional view showing an embodiment of the diluting device of the present invention, and Figure 3 is a cross-sectional view of ■-■ in Figure 2. 4 is a longitudinal sectional view showing different embodiments of the diluting device of the present invention, and FIG. 5 is a cross-sectional view taken along line v-■ in FIG.
FIG.

1・・・固気混相流体、2・・・配管、3・・・希釈容
器、4.5・・・配管、6・・・計測器、7・・・吸引
ポンプ。
DESCRIPTION OF SYMBOLS 1... Solid-gas mixed phase fluid, 2... Piping, 3... Dilution container, 4.5... Piping, 6... Measuring instrument, 7... Suction pump.

8・・・配管、9・・・混合室、10・・・固気混相流
体の入口ノズル、11・・・希釈ガスの入口ノズル、1
2・・・吹出口、13・・・配管、14・・・排出口。
8... Piping, 9... Mixing chamber, 10... Solid-gas mixed phase fluid inlet nozzle, 11... Dilution gas inlet nozzle, 1
2...Air outlet, 13...Piping, 14...Discharge port.

庸l閃 鰻鯨号讃鑓Standard flash Eel whale praise

Claims (1)

【特許請求の範囲】[Claims] 両端部と胴部とを外壁で囲まれた管状の混合室と、該混
合室の一方の端部中心位置に開口する固気混相流体の入
口ノズルと、希釈ガス供給管に接続され前記入口ノズル
を取り囲むようにして一方の端部に配置された多数の細
孔または環状噴孔を備えてなる希釈ガス吹出口と、前記
混合室の他方の端部近傍の胴部を貫通して該混合室の中
心部まで挿入され、その先端に前記入口ノズルに対向す
る開口を設けてなり他端部を計測器に接続された計測用
配管と、前記混合室の他方の端部あるいは近傍の胴部に
開口する排出口とを備えてなることを特徴とする固気混
相流体の希釈装置。
a tubular mixing chamber having both ends and a body surrounded by outer walls; an inlet nozzle for a solid-gas mixed phase fluid that opens at the center of one end of the mixing chamber; and the inlet nozzle connected to a dilution gas supply pipe. a dilution gas outlet comprising a large number of pores or annular nozzle holes arranged at one end so as to surround the mixing chamber; is inserted to the center of the mixing chamber, has an opening facing the inlet nozzle at its tip, and connects the other end to a measuring pipe connected to a measuring instrument, and the other end of the mixing chamber or a nearby body. 1. A diluting device for a solid-gas mixed phase fluid, comprising: a discharge port that opens.
JP63004059A 1988-01-12 1988-01-12 Dilution device for solid-gas mixed phase fluid Pending JPS63214326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004059A JPS63214326A (en) 1988-01-12 1988-01-12 Dilution device for solid-gas mixed phase fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004059A JPS63214326A (en) 1988-01-12 1988-01-12 Dilution device for solid-gas mixed phase fluid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56180659A Division JPS5881431A (en) 1981-11-11 1981-11-11 Method and apparatus for diluting solid-gas mixed phase fluid

Publications (1)

Publication Number Publication Date
JPS63214326A true JPS63214326A (en) 1988-09-07

Family

ID=11574294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004059A Pending JPS63214326A (en) 1988-01-12 1988-01-12 Dilution device for solid-gas mixed phase fluid

Country Status (1)

Country Link
JP (1) JPS63214326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300677A (en) * 1993-03-29 1994-10-28 Internatl Business Mach Corp <Ibm> Particle detection device
CN103033379A (en) * 2012-12-10 2013-04-10 中国船舶重工集团公司第七一一研究所 Particle load mixing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300677A (en) * 1993-03-29 1994-10-28 Internatl Business Mach Corp <Ibm> Particle detection device
CN103033379A (en) * 2012-12-10 2013-04-10 中国船舶重工集团公司第七一一研究所 Particle load mixing device

Similar Documents

Publication Publication Date Title
US4689052A (en) Virtual impactor
Noone et al. Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets
Fuchs et al. Coagulation rate of highly dispersed aerosols
US7363828B2 (en) Aerosol measurement by dilution and particle counting
AU743354B2 (en) Method and device for liquid purification of crude gas flows
US5231865A (en) Diffusion gas diluter
CN106769728A (en) PM2.5 quality and concentration monitor calibrating installations
KR101031612B1 (en) Condensation particle counting device
CN106769729A (en) PM2.5 cutter cuts characteristic detection device and method
PT757241E (en) PARTICLE SAMPLING SYSTEM FOR GAS SUPPLY SYSTEM
Manning et al. Heat and mass transfer to decelerating finely atomized sprays
JPS63214326A (en) Dilution device for solid-gas mixed phase fluid
JP2008224300A (en) Sampling probe, installation structure therefor, and cement production process
Gupta et al. Investigation of a novel condensation aerosol generator: solute and solvent effects
KR101793982B1 (en) Gas dilution device
Drew et al. The Laskin aerosol generator
Krames et al. The cyclone scrubber–a high efficiency wet separator
JPS5823885B2 (en) Solid-gas multiphase fluid sampling device
JPS6210685B2 (en)
JPS59206741A (en) Method and apparatus for diluting mixed phase fluid of solid and gas
JP2010101870A (en) Wind amount measuring method in wind channel
Dale et al. A comparison of cloud chambers for use in inductively coupled plasma nebulisation systems
JPH08136437A (en) Leak inspection method for air filter and manufacture of the air filter
CN110186722A (en) Convenient for gaseous pollutant sample introduction mechanism, sampling system and the method for aircraft aerial survey
JPS586903B2 (en) Sampling method