JPS59206741A - Method and apparatus for diluting mixed phase fluid of solid and gas - Google Patents

Method and apparatus for diluting mixed phase fluid of solid and gas

Info

Publication number
JPS59206741A
JPS59206741A JP58082248A JP8224883A JPS59206741A JP S59206741 A JPS59206741 A JP S59206741A JP 58082248 A JP58082248 A JP 58082248A JP 8224883 A JP8224883 A JP 8224883A JP S59206741 A JPS59206741 A JP S59206741A
Authority
JP
Japan
Prior art keywords
gas
concentration
solid
temperature
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58082248A
Other languages
Japanese (ja)
Inventor
Tsumoru Nakamura
中村 積
Takayoshi Hamada
浜田 高義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58082248A priority Critical patent/JPS59206741A/en
Publication of JPS59206741A publication Critical patent/JPS59206741A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples

Abstract

PURPOSE:To measure the distribution of particle size and the concentration of particles highly accurately even if solid particles are in high temperature and high concentration and are fine particles by mixing dilution gas with solid/gas mixed fluid until the concentration of the number of solid particles, measuring temperature and the concentration of condensed components are reduced less than prescribed values to dilute the fluid. CONSTITUTION:The dilution gas is mixed with the solid/gas mixed fluid supplied by a sampling tube 2 to dilute the fluid and the diluted fluid is discharged from a discharge pipe 4. The dilution gas is supplied from feeding pipes 5, 5' to a dilution case 3 through flow meters 6 and regulating valves 7 and the solid/gas mixed fluid is diluted with the dilution gas by controlling the regulating valves 7 so that the concentration and temperature of the mixed gas are included in the measuring ranges of measuring devices, the concentration of condensed components contained in th mixed gas is less than the saturated concentration at the temperature and the concentration of the number of fine solid particles does not cause the reduction of the measuring accuracy by the reduction of the particles due to condensation and settlement.

Description

【発明の詳細な説明】 置などの固気混相流体を取り扱うブラントの固気混相流
体中の粗粒子を除去した後の比較的微細な固体粒子の粒
子数濃度・粒径分布を泪測するために固気混相流体を希
釈する方法および装置に関するものである。
[Detailed description of the invention] To measure the particle number concentration and particle size distribution of relatively fine solid particles after coarse particles are removed from a solid-gas mixed-phase fluid of a blunt, which handles a solid-gas mixed-phase fluid such as a solid-gas mixed-phase fluid. The present invention relates to a method and apparatus for diluting a solid-gas mixed phase fluid.

このような固気混相流体中における固体粒子の計測は、
環境保持,研究改善,装置性能把握及び連続状態監視な
どの観点から、正確な濃度・粒径分布の実体把握を行う
必要がある。高精度の粒子数濃度及び粒径分布の計測を
期するには、固体粒子の状態変化(濃度及び粒径分布の
変化ンをきせることなく固気混相流体本流から計測器捷
で固体粒子を導入することが必要である。
The measurement of solid particles in such a solid-gas mixed phase fluid is
It is necessary to accurately understand the actual concentration and particle size distribution from the viewpoints of environmental preservation, research improvement, understanding equipment performance, and continuous status monitoring. In order to measure the particle number concentration and particle size distribution with high precision, it is necessary to introduce solid particles into the main stream of the solid-gas multiphase fluid by changing the measuring instrument without changing the state of the solid particles (changes in the concentration and particle size distribution). It is necessary to.

しかしながら粒子本来の特性であるブラウン拡散、衝突
により粒子間の凝集及び導入管内壁等の固気混相流体接
触面への沈着現象が生じ、これらの現象により計測精度
が著るしく低下する。
However, Brownian diffusion and collision, which are the inherent characteristics of particles, cause agglomeration between particles and deposition on solid-gas mixed phase fluid contact surfaces such as the inner wall of an inlet pipe, and these phenomena significantly reduce measurement accuracy.

一部た、上記現象は一般に固体粒子数濃度が高くなる程
、粒子が微細化する程顕著となる傾向にあり、例えば石
炭焚ボイラ排ガス(濃度10jZ/mうのような高濃度
の場合や、環境計測の目的で大気浮遊粒子と呼ばれるよ
うな微粒粒子を対象とする場合には、特に対策が必要で
ある。
In general, the above phenomenon tends to become more pronounced as the number concentration of solid particles increases and as the particles become finer. Special measures are required when measuring fine particles called airborne particles for the purpose of environmental measurement.

一方、固気混相流体中の固体粒子を計測する計測器の一
般的特性として (1)  高濃度の固気混相流では、計測精度が著るし
く低下する。
On the other hand, the general characteristics of measuring instruments that measure solid particles in solid-gas mixed-phase fluids are as follows: (1) In high-concentration solid-gas mixed-phase flows, measurement accuracy decreases significantly.

(2)  計測可能なサンプリングガス温度が大気温度
に近似していることが多く、サンプリングガス温度を低
下させる必要がある。
(2) The measurable sampling gas temperature is often close to the atmospheric temperature, so it is necessary to lower the sampling gas temperature.

(3)  水分、三酸化硫黄(503)ガスなどは、ガ
ス温度を大気温度捷で低下させた時に気体から液体へ相
変化をおこす。このようないわゆる凝縮性物質を含有し
ている場合、サンプリングガス温度をその11低下させ
ると計測対象のね子はこの凝縮性物質を結合剤(バイン
ダー)として凝集し粒径分布及び粒子数濃度に変化を生
ずる。
(3) Moisture, sulfur trioxide (503) gas, etc. undergo a phase change from gas to liquid when the gas temperature is lowered by atmospheric temperature change. If such a so-called condensable substance is contained, if the sampling gas temperature is lowered by 11 degrees, the sample to be measured will aggregate using this condensable substance as a binder, and the particle size distribution and particle number concentration will change. bring about change.

などの問題がある。There are problems such as.

本発明は、これらの問題点を解消し、言1測対象の固体
粒子が高温・高濃度かつ微粒子の場合でも高精度にその
粒径分布及び粒子数濃度の計測を行えるよう固気混相流
体を希釈する方法を提供するものであって、サンプリン
グガスに不活性・低湿かつ無塵な希釈ガスの温度を調整
して混合させるに際し、混合ガスの濃度と温度が泪測器
の泪測範囲内であって、混合ガス中に含有きれる凝縮成
分濃度がその温度における飽和濃度未満であって、かつ
、微細々固体粒子の個数濃度がこの粒子の凝集・沈着に
よる減少によって泪測精度の低下をきたさない程度に希
釈するようにしたものである。壕だ、この方法を具現化
するものとして本発明は、両端部の閉じた管状の混合室
と、この混合室の一方の端部中心に取り付けられサンプ
リングされた固気混相流体を軸芯方向に吐出させる入口
ノズルと、混合室の一方の端部に取り付けられ固気混相
流体の吐出方向に対して斜めに希釈ガスを吹き出す多数
の吹出管と、この吹出管の外周の混合室一方の端部に設
けられ軸芯と平行に希釈ガスを吹出す多数の吹出口と、
これら吹出管と吹出口とに不活性・低湿かつ無塵な希釈
ガスの温度と流量を調整して夫々供給する手段と、上記
混合室の他方の端部あるいはそのガ傍の胴部に開口され
る排出口とからなる固気混相流体の希釈装置を提供する
The present invention solves these problems and uses a solid-gas multiphase fluid to enable highly accurate measurement of particle size distribution and particle number concentration even when the solid particles to be measured are high temperature, high concentration, and fine particles. This method provides a method for diluting an inert, low-humidity, and dust-free diluent gas into the sampling gas by adjusting the temperature and making sure that the concentration and temperature of the mixed gas are within the measurement range of the measurement instrument. The concentration of condensed components that can be contained in the mixed gas is less than the saturation concentration at that temperature, and the number concentration of fine solid particles does not decrease due to agglomeration and deposition of these particles, resulting in a decrease in measurement accuracy. It is diluted to a certain degree. As an embodiment of this method, the present invention includes a tubular mixing chamber with both ends closed, and a solid-gas mixed-phase fluid sampled at the center of one end of the mixing chamber in the axial direction. An inlet nozzle for discharging, a number of blowout pipes that are attached to one end of the mixing chamber and blowing out diluent gas obliquely with respect to the discharge direction of the solid-gas multiphase fluid, and one end of the mixing chamber on the outer periphery of the blowoff pipes. A large number of blow-off ports are provided to blow out dilution gas parallel to the axis,
Means for supplying an inert, low-humidity, and dust-free diluent gas to the blow-off pipe and the blow-out port by adjusting the temperature and flow rate, respectively, and a means for supplying an inert, low-humidity, and dust-free diluent gas to the blow-off pipe and the blow-out port, respectively, and a means for supplying the inert, low-humidity, and dust-free diluent gas to the blow-off pipe and the blow-off port, respectively, and a means for supplying the inert, low-humidity, and dust-free diluting gas to the blow-off pipe and the blow-off port, respectively; A diluting device for a solid-gas multiphase fluid is provided.

すなわち本発明は、固気混相流体の本流から計測の目的
で採取された固気混相流体に清浄・脱湿・不活性かつ温
度調節された希釈ガスを混ぜ、先に列記した問題点が生
じない所定の固体粒子数濃度、計測温度、凝縮成分濃度
以下となる迄所定の固気混相流体の滞留[積間、攪拌能
力。
In other words, the present invention does not cause the above-mentioned problems by mixing a cleaned, dehumidified, inert, and temperature-controlled diluent gas into a solid-gas multiphase fluid sampled from the main flow of the solid-gas multiphase fluid for the purpose of measurement. Retention of a predetermined solid-gas multiphase fluid until the concentration of solid particles, measurement temperature, and condensed component concentration are below a predetermined number [interval, stirring capacity].

容量を有する希釈容器内で希釈するものであるから、希
釈容器から固体粒子数濃度・温度・凝縮成分濃度の調整
された希釈後の固気混相流体の一部若しくは全部は固体
粒子数濃度にて詣測することが可能となる。
Since the dilution is carried out in a dilution container with a large capacity, part or all of the solid-gas multiphase fluid after dilution, whose solid particle number concentration, temperature, and condensed component concentration have been adjusted, is transferred from the dilution container at the solid particle number concentration. It will be possible to take a tour.

まず第1図に於いて本発明の希釈の方法原理を説明する
First, the principle of the dilution method of the present invention will be explained with reference to FIG.

1はダクト内を流れる固気混相流の本流で、サンプリン
グ管2によりその一部が採取される。
Reference numeral 1 denotes the main flow of the solid-gas multiphase flow flowing inside the duct, a part of which is sampled by the sampling pipe 2.

3は希釈容器で、サンプリング管2で供給されたガスに
希釈ガス(後述)を混ぜて希釈し、排出管4より排出す
るものである。5および5°は希釈ガスを希釈容器3へ
供給する供給管で、夫々流量it 6・調整弁7を介し
て希釈ガスタンク8・8゛へ接続されている。希釈ガス
タンク8・8゛は、低湿かつ無塵々不活性ガスを貯留す
るもので、適当な温度調節手段を有し希釈ガスを任意の
温度に設定することができる。
3 is a dilution container that mixes the gas supplied through the sampling tube 2 with a dilution gas (described later) to dilute the gas, and discharges the diluted gas through the discharge tube 4. 5 and 5° are supply pipes for supplying dilution gas to the dilution container 3, which are connected to dilution gas tanks 8 and 8′ via a flow rate it 6 and a regulating valve 7, respectively. The dilution gas tanks 8 and 8' are for storing a low-humidity and dust-free inert gas, and are equipped with appropriate temperature control means so that the dilution gas can be set at an arbitrary temperature.

従って、調整弁7を操作することにより、採取きれたガ
スと希釈ガスとを希釈容器3内で混合し、任意の温度・
濃度を有する混合ガスを作ることができる。こパにより
、混合ガスの濃度と温度が計測器の言1測範囲内であっ
て、混合ガス中に含有される凝縮成分濃度がその温度に
おける飽和儂度未蒲りであって、かつ、微細な固体粒子
の個数濃度がこの粒子の凝集・沈着による減少によって
計測精度の低下をきたさない程度に希釈する。(詳細は
後述) なお、9は希釈容器3で混合された混合ガスを計測器1
0へ送るだめの採取管、11は吸引ポンプである。
Therefore, by operating the regulating valve 7, the sampled gas and the dilution gas are mixed in the dilution container 3, and the temperature
It is possible to create a mixture of gases with a concentration. With this control, the concentration and temperature of the mixed gas are within the measurable range of the measuring instrument, the concentration of condensed components contained in the mixed gas is not saturated at that temperature, and it is fine. The number concentration of solid particles is diluted to such an extent that the measurement accuracy does not decrease due to aggregation and deposition of these particles. (Details will be described later) In addition, 9 is the measuring device 1 for the mixed gas mixed in the dilution container 3.
11 is a suction pump.

第2図および第3図には、本発明の装置の中心となる希
釈容器を示しである。
FIGS. 2 and 3 show a dilution container which is the central part of the apparatus of the present invention.

12は混合室で両端部の閉じた管状をなし、その一方の
端部12A中心に入口ノズル13が取す付けられている
。この入口ノズル13は第1図に示しだサンプリング管
2に接続されるもので、サンプリングされた固気混相流
体を混合室12内の軸芯方向に吐出するものである。1
4は混合室12の端部12A側へ配設される多数の吹出
管で、希釈ガスの供給管5と連通されていて、固気混相
流体の吐出方向に対して斜めに希釈ガスを吹き出す。こ
の吹出管14の外周の混合室12の端部12Aには吹出
口15が設けられていて、希釈ガスの供給管5′と接続
され軸芯と平行に希釈ガスを吹出すものである。なお、
これら吹出管14と吹出口15とは混合室12内に漏斗
状のネ゛(面1Gに配設されていて、この斜面16と混
合室12内壁および仕切円筒17との間で形成されるチ
ャンバ室H,、H2,に希釈ガスが供給され分配されて
いる。また、混合室12の端部12Bに開口きれた排出
口17は、排出管4に接続される。
A mixing chamber 12 has a tubular shape with both ends closed, and an inlet nozzle 13 is installed at the center of one end 12A. This inlet nozzle 13 is connected to the sampling pipe 2 shown in FIG. 1, and discharges the sampled solid-gas mixed phase fluid in the axial direction within the mixing chamber 12. 1
Reference numeral 4 designates a large number of blow-off pipes disposed toward the end 12A side of the mixing chamber 12, which communicate with the dilution gas supply pipe 5, and blow out the dilution gas obliquely with respect to the discharge direction of the solid-gas mixed phase fluid. A blowout port 15 is provided at the end 12A of the mixing chamber 12 on the outer periphery of the blowoff pipe 14, and is connected to the dilution gas supply pipe 5' to blow out the dilution gas parallel to the axis. In addition,
These blow-off pipes 14 and blow-off ports 15 are arranged in a funnel-shaped neck (surface 1G) in the mixing chamber 12, and are formed between the slope 16, the inner wall of the mixing chamber 12, and the partition cylinder 17. Diluent gas is supplied and distributed to the chambers H, , H2, and a discharge port 17 opened at the end 12B of the mixing chamber 12 is connected to the discharge pipe 4.

さて、吹出管14および吹出口15より吐出させる希釈
ガスの流量及び吹出し方法は、語測器10および固体粒
子本来の特性に係る問題点を考慮して下記条件を満足す
るように設定する。
Now, the flow rate and method of blowing out the diluent gas to be discharged from the blow-off pipe 14 and the blow-off port 15 are set so as to satisfy the following conditions, taking into consideration problems related to the inherent characteristics of the speech measuring device 10 and the solid particles.

(1)  高濃度固気混相流体下に於ける語測器10自
体の精度の低下を防止するよう計測器10の所定(最も
精度良く計測出来る)固気混相流体本流捷で希釈する。
(1) In order to prevent a decrease in the accuracy of the word measuring instrument 10 itself under a high concentration solid-gas mixed-phase fluid, dilute it with a predetermined (the most accurate measurement possible) solid-gas mixed-phase fluid main flow of the measuring instrument 10.

つまり希釈ガスの流量の合羽流量Q+は(1)式にて求
める。
In other words, the combined flow rate Q+ of the dilution gas flow rate is determined using equation (1).

C1)+> Qs Ns/Nm           
tl)但しQl;希釈ガスの合81流量(7/ sec
 )Qs:固気混相流体本流からのサンプリング流量(
77sec ) (入口ノズル10より流入する固気 混相流体の流量) Ns:概略の固気混相流体濃度(個/7)Nm:泪測器
の上限固気混相流体濃度 (個/Cd) (2)  高温の固気混相流体を大気温度附近1で冷却
する場合の凝縮成分の凝縮による濃度、粒径分布及び形
態の変化を防止するため、冷却後でも凝縮を起こさない
成分濃度1で希釈する。しかし、入口ノズル13より流
入する固気混相流体を急激に冷却すると、局所的に冷却
され凝縮する可能性があるため、入口ノズル13に近設
した希釈ガスの吹出管]4からは大気温度より高い温度
に調整した希釈ガスを吹き出す。更に、固気混相流体と
希釈ガスとを短時間内に均一混合きせるために吹出管】
4がら吹き出される希釈カスの吹き出し方向と入口ノズ
ル13から流入する固気混相流体の吹き出し方向のなす
角が90’以下となるよう、捷だ、吹出管14から吹き
出される希釈ガスの吠き出し方向と吹出管14から最も
近い入口ノズル13の点における接線とのなす角度が9
0’以下となるように吹出管14の吹出角度を設定し、
希釈ガスに旋回流を与えた。一方希釈ガス吹出管14の
外側に位置する吹出口15からは大気温度と同程度に温
度調節された希釈ガスを吹き出す。吹出口15の吹出し
方向は入口ノズル13がら出る固気混相流体の吹き出し
方向き平行として、混合室12壁面と、前記固気混相流
体と吹出管14がら吐出される希釈ガスとの混合ガスと
の間に清浄ガス空間を設け、固気混相流体中の粒子が混
合室12壁面へ沈着(一般的には付着と言うが、固体粒
子の場合には%に本表現を用いる)するのを防止する。
C1)+>Qs Ns/Nm
tl) However, Ql; Total flow rate of diluent gas is 81 (7/sec
) Qs: Sampling flow rate from the main stream of solid-gas mixed phase fluid (
(77 sec) (Flow rate of solid-gas mixed-phase fluid flowing in from the inlet nozzle 10) Ns: Approximate solid-gas mixed-phase fluid concentration (pieces/7) Nm: Upper limit solid-gas mixed-phase fluid concentration (pieces/Cd) (2) In order to prevent changes in concentration, particle size distribution, and morphology due to condensation of condensed components when cooling a high-temperature solid-gas mixed phase fluid to around atmospheric temperature 1, dilute it to a component concentration 1 that does not cause condensation even after cooling. However, if the solid-gas multiphase fluid flowing in from the inlet nozzle 13 is rapidly cooled, it may be locally cooled and condensed. Blows out dilution gas adjusted to a high temperature. Furthermore, in order to uniformly mix the solid-gas mixed phase fluid and the diluent gas within a short time, a blow-off pipe is installed.
The direction of the dilution gas blown out from the blow-off pipe 14 is adjusted so that the angle between the blow-out direction of the diluted gas blown out from the blow-off pipe 14 and the blow-out direction of the solid-gas multiphase fluid flowing in from the inlet nozzle 13 is 90' or less. The angle between the outlet direction and the tangent at the point of the inlet nozzle 13 closest to the blowout pipe 14 is 9.
Set the blowing angle of the blowing pipe 14 so that it is 0' or less,
A swirling flow was applied to the diluent gas. On the other hand, from the outlet 15 located outside the diluent gas blow-off pipe 14, dilute gas whose temperature is adjusted to the same level as the atmospheric temperature is blown out. The blowing direction of the blowing outlet 15 is parallel to the blowing direction of the solid-gas mixed phase fluid discharged from the inlet nozzle 13, so that the mixed gas of the solid-gas mixed phase fluid and the dilution gas discharged from the blowing pipe 14 is connected to the wall surface of the mixing chamber 12. A clean gas space is provided in between to prevent particles in the solid-gas mixed phase fluid from depositing on the wall surface of the mixing chamber 12 (generally referred to as adhesion, but in the case of solid particles, this expression is used for %). .

以上希釈ガスの吹出方法について述べたが、本項の凝縮
防止に必要な希釈ガス流量Q2は+2j式にて求められ
る。
The method for blowing out the diluent gas has been described above, and the diluent gas flow rate Q2 necessary for preventing condensation in this section is determined by the +2j formula.

Q2 > QS CS / Co          
   (21但しQ2二希釈ガスの合計流量(77se
c )Qs:固気混相流体からのサンプリング流量(7
7sec) C5:サンプリングする固気混相流体中の凝縮成分濃度
(vo1%) co=混合後の固気混相流体の温度における凝縮成分の
飽和濃度(vol係) Coは各種文献にて調査出来、例えば燃焼排ガス中によ
く含有される水分の場合湿度図表により求めることが出
来る。なお、吹出管14と吹出口15とから吐出させる
希釈ガスの流量比並びに温度は、入口ノズル13から導
入される固気混相流体の温度、凝縮成分濃度などの固気
混相流体の性状に屯り決定する。
Q2 > QS CS/Co
(21 However, Q2 total flow rate of diluent gas (77se
c) Qs: Sampling flow rate from solid-gas multiphase fluid (7
7 sec) C5: Concentration of condensed components in the solid-gas mixed phase fluid to be sampled (VO1%) co = Saturation concentration of condensed components at the temperature of the solid-gas mixed phase fluid after mixing (vol) Co can be investigated in various documents, for example. Moisture often contained in combustion exhaust gas can be determined using a humidity chart. Note that the flow rate ratio and temperature of the diluent gas discharged from the blow-off pipe 14 and the blow-off port 15 depend on the temperature of the solid-gas mixed-phase fluid introduced from the inlet nozzle 13 and the properties of the solid-gas mixed-phase fluid, such as the concentration of condensed components. decide.

(3)  ブラウン拡散及び衝突による固体粒子間凝集
、沈着を防止するように希釈ガス量を決定する。粒子の
凝集・沈着はフィック(Fick)の法則により理論解
として求められる。例えば凝集、沈着による粒子数の変
化は+31 、 +41式にて計算できる。
(3) Determine the amount of diluent gas to prevent solid particle agglomeration and deposition due to Brownian diffusion and collisions. Aggregation and deposition of particles can be determined as a theoretical solution using Fick's law. For example, changes in the number of particles due to aggregation and deposition can be calculated using formulas +31 and +41.

即=   1+31 No  KNoL’+1 Nt 、、;、 = Exp (−η)(4)但しNo=初期
状態(【−0)における粒子数濃度(個/cn) Nt:i秒後における粒子数濃度(個/、d)k:凝集
定数(cd/個’ sec )t:経過時間(sec) η:定数(無次元) (3)式では右辺中Noが大きくなれば左辺のNt/N
Immediately = 1+31 No KNoL'+1 Nt , ;, = Exp (-η) (4) However, No = particle number concentration in the initial state ([-0) (particles/cn) Nt: particle number concentration after i seconds ( pieces/, d) k: aggregation constant (cd/pieces' sec) t: elapsed time (sec) η: constant (dimensionless) In equation (3), if No on the right side becomes large, Nt/N on the left side
.

が小さくなり、丑だ(4)式では右辺中ηがNOの増大
にともない大きくなる傾向にあるため、Noが太きくな
ればNL/Noは小さくなる(っ1り凝集・沈着により
粒子数濃度が減少する)。
In equation (4), η on the right side tends to increase as NO increases, so as NO increases, NL/No decreases (due to agglomeration and deposition, the particle number concentration increases). (decreases).

これにより希釈ガス流量Q3は(5)式により求められ
る。
Thereby, the diluent gas flow rate Q3 is determined by equation (5).

Q3 ’:2 Qs Ns/N5          
  +51但しQ3;希釈ガス流fit (cn/ s
ec )Qs:固気混相流体からのサンプリング流量(
cn/5ec) N5 : +31及び(4)式中のNt/Noが請訓精
度に影響を及ぼさない程度の希釈後 の固気混相流体濃度(個/、I+) 以上tl+ 、 +21及び(5)式を満足するような
希釈ガス流量に設定する。
Q3':2 Qs Ns/N5
+51 However, Q3; Dilution gas flow fit (cn/s
ec ) Qs: Sampling flow rate from solid-gas multiphase fluid (
cn/5ec) N5: +31 and the solid-gas multiphase fluid concentration after dilution (Nt/No in formula (4) to the extent that it does not affect the test accuracy (number/, I+) or more tl+, +21 and (5) Set the dilution gas flow rate to satisfy the formula.

ところで(1)及び(5)式中の概略の固気混相流体濃
度Nsは、固気混相流体を含有する流体の本流中の中間
ないし籾粒子の%li度及び粒径分布をJIS等の公知
の計測法(例えばJISに規定されている「排ガス中の
ダスト濃度の測定方法J等)の計測値より、また従来頻
繁に用いられるサイクロン等の慣性法により中間ないし
籾粒子を除去後微細な粒子だけを戸紙フィルターに捕集
し、該フィルターに付着した粒子重量により前記の微細
な粒子の濃度を求める言1測法の31測値等により予め
求める。
By the way, the approximate solid-gas mixed-phase fluid concentration Ns in equations (1) and (5) is the %li degree and particle size distribution of intermediate to paddy particles in the main stream of the fluid containing the solid-gas mixed-phase fluid, based on known standards such as JIS. Based on the measurement value of the measurement method (for example, "Measurement method of dust concentration in exhaust gas J etc." specified in JIS), or after removing intermediate or rice particles by inertial method such as cyclone, which is frequently used in the past, fine particles are determined. Only the fine particles are collected on a paper filter, and the concentration of the fine particles is determined in advance by the 31 measurement value of the 1 measurement method, etc., which determines the concentration of the fine particles based on the weight of the particles attached to the filter.

なお濃度の計測法に関しては上記に述べた2つの例以外
にも本J1測の目白<4に適する方法であればいずれの
計測方法でも差し支えない。
Regarding the density measurement method, in addition to the two examples described above, any measurement method suitable for the measurement of <4 in this J1 measurement may be used.

一方希釈谷器3の構造に関しては (1)  希釈ガスを吹き出す吹出管14および吹出口
15は、入口ノズル13から流入する固気混相流体と混
合させるものであるから、混合室12の一方の端部12
Δ中心取り付けた入口ノズル13の周囲から大気温度よ
シ所定温度高い希釈ガスを吹き出し、更にその外側から
大気温度と同程度の温度の希釈ガスを吹き出すようにし
である。また、固気混相流体と希釈ガスが短時間内に均
一に混合するよう (イ) 希釈ガス吹出管14から吹き出る希釈ガスの吹
き出し方向と固気混相流体の吹き出し方向とのなす角度
を90°以下とし く口) 吹出管14から吹き出る希釈ガスの方向と最も
近い入口ノズル13の点における接線とのなす角度が9
00以下とし 希釈ガスに旋回流を生じさせて固気混相流体と短時間内
に均一混合させる。一方、吹出口15からの吹出し方向
は固気混相流体の吹出し方向と平行とする。なお、希釈
ガスの流速は混合性を考慮して約1〜20m1secと
し、この流速となるような吹出管i′4・吹出口15の
面積の設計を行う。
On the other hand, regarding the structure of the dilution valley device 3, (1) the blow-off pipe 14 and the blow-off port 15 that blow out the diluted gas are for mixing with the solid-gas mixed-phase fluid flowing in from the inlet nozzle 13; Part 12
A diluent gas having a predetermined temperature higher than the atmospheric temperature is blown out from around the inlet nozzle 13 attached at the center, and a diluent gas having a temperature similar to the atmospheric temperature is blown out from the outside. In addition, so that the solid-gas mixed phase fluid and the diluent gas are mixed uniformly within a short time (a), the angle between the blowing direction of the diluent gas blown out from the diluent gas blowing pipe 14 and the blowing direction of the solid-gas mixed phase fluid is 90° or less. The angle between the direction of the diluent gas blown out from the blow-off pipe 14 and the tangent at the nearest point of the inlet nozzle 13 is 9.
00 or less to generate a swirling flow in the diluent gas and uniformly mix it with the solid-gas mixed phase fluid within a short time. On the other hand, the blowing direction from the blowing outlet 15 is parallel to the blowing direction of the solid-gas mixed phase fluid. Note that the flow rate of the diluent gas is set to about 1 to 20 ml sec in consideration of miscibility, and the areas of the blow-off pipe i'4 and the blow-off port 15 are designed to achieve this flow rate.

(2)  混合室12の内径は、その中を流れる固気混
相流体及び希釈ガスの混合性を考慮し固体粒子の位置的
濃度分布が生じない程度の乱流状態になるよう設計する
(2) The inner diameter of the mixing chamber 12 is designed in consideration of the miscibility of the solid-gas multiphase fluid and the diluent gas flowing therein so as to create a turbulent flow state to the extent that no local concentration distribution of solid particles occurs.

(3)  混合室12の長さは、希釈後の固気混相流体
の帯留時間、これは(3)式中の経過時間とほぼ比例し
ておりこれを長くすると、(3)式より明らかなように
NL/Noが小さくなり絹測精度に影響を及ぼす可能性
があるので(3)式を考慮して設計を行う。
(3) The length of the mixing chamber 12 is the residence time of the solid-gas mixed phase fluid after dilution, which is approximately proportional to the elapsed time in equation (3). Since NL/No becomes small as shown in FIG. 2, which may affect the silk measurement accuracy, design is performed by considering equation (3).

(4)  希釈後の固気混相流体を請訓器10に供給す
る採取管9は基本的には後方に位置し、内径等の寸法は
、管内での凝集・沈着を考慮するため(3)及び(4)
式を参考にして設計するとよい。
(4) The sampling pipe 9 that supplies the diluted solid-gas mixed phase fluid to the collecting device 10 is basically located at the rear, and the dimensions such as the inner diameter are determined to take into account agglomeration and deposition within the pipe (3) and (4)
It is best to design using the formula as a reference.

また混合室12内での固体粒子の位置的濃度分布が生じ
た場合の計測精度低下を防止するため、混合室12の径
方向複数点で採取し、混合室12内ガス流速とほぼ等し
くなるようにする。
In addition, in order to prevent a decrease in measurement accuracy in the event that a positional concentration distribution of solid particles occurs within the mixing chamber 12, samples are taken at multiple points in the radial direction of the mixing chamber 12, and the flow velocity is set to be approximately equal to the gas flow velocity within the mixing chamber 12. Make it.

(5)  希釈後の固気混相流体の抽出口17は、同部
分にて大きな圧力損失が生じない形状7寸法とする。
(5) The extraction port 17 for the solid-gas mixed phase fluid after dilution has a shape and dimensions of 7 so that no large pressure loss occurs in the same area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示す概略説明図、第2図は本発
明希釈装置の1実施例を示す縦断面図、第3図は第2図
のIII −In線に沿う横断面図である。 1:固気混相流、2:サンプリ7り管、3:希釈容器、
5・5゛:供給管、8・8°、希釈ガスタンク、12:
混合室、13:入口ノズル、14:吹出管、15:吹出
口。 垢1区
FIG. 1 is a schematic explanatory diagram showing the principle of the present invention, FIG. 2 is a longitudinal cross-sectional view showing one embodiment of the diluter of the present invention, and FIG. 3 is a cross-sectional view taken along the line III-In in FIG. be. 1: solid-gas multiphase flow, 2: sample tube, 3: dilution container,
5.5゛: Supply pipe, 8.8°, dilution gas tank, 12:
Mixing chamber, 13: inlet nozzle, 14: blowout pipe, 15: blowout outlet. 1st ward

Claims (2)

【特許請求の範囲】[Claims] (1)  サンプリングされた高温であって濃密な固気
混相流体の濃度および粒径分布を計測するために希釈す
る方法であって、サンプリングガスに不活性・低湿かつ
無塵な希釈ガスの温度を調整して混合させるに際し、混
合ガスの濃度と温度が計測器の計測範囲内であって、混
合ガス中に含有きれる凝縮成分濃度がその温度における
飽和濃度未満であって、かつ、微細な固体粒子の個数濃
度がこの粒子の凝集・沈着による減少によって計測精度
の低下をきたさなlA程度に希釈するようにした希釈方
法。
(1) A dilution method for measuring the concentration and particle size distribution of a sampled high-temperature, dense solid-gas multiphase fluid, in which the temperature of an inert, low-humidity, and dust-free diluent gas is added to the sampling gas. When adjusting and mixing, the concentration and temperature of the mixed gas are within the measurement range of the measuring instrument, the concentration of condensed components that can be contained in the mixed gas is less than the saturation concentration at that temperature, and fine solid particles are required. A dilution method in which the number concentration of particles is diluted to about 1A without reducing the measurement accuracy due to aggregation and deposition of particles.
(2)  両端部の閉じた管状の混合室と、この混合室
の一方の端部中心に取り伺けられサンプリングされた固
気混相流体を軸芯方向に吐出させる入口ノズルと、混合
室の一方の端部に取り付けられ固気混相流体の吐出方向
に対して斜めに希釈ガスを吹き出す多数の吹出管と、と
の吹出管の外周の混合室一方の端部に設けられ軸芯と平
行に希釈ガスを吹出す多数の吹出口と、これら吹出管と
吹出口とに不活性・低湿かつ無塵な希釈ガスの温度と流
量を調整して夫々供給する手段と、上記混合室の他方の
端部あるいはその近傍の胴部に開口される排出口とから
なることを特徴とする固気混相流体の希釈装置。
(2) A tubular mixing chamber with both ends closed, an inlet nozzle installed at the center of one end of the mixing chamber and discharging the sampled solid-gas mixed phase fluid in the axial direction, and one side of the mixing chamber. A mixing chamber is installed on the outer periphery of the blow-off pipe, and a dilution chamber is installed at one end of the blow-off pipe and runs parallel to the axis. A large number of blow-off ports for blowing out gas, a means for supplying inert, low-humidity, and dust-free dilution gas to these blow-off pipes and blow-off ports by adjusting the temperature and flow rate thereof, and the other end of the mixing chamber. or a discharge port opened in the body in the vicinity thereof.
JP58082248A 1983-05-11 1983-05-11 Method and apparatus for diluting mixed phase fluid of solid and gas Pending JPS59206741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58082248A JPS59206741A (en) 1983-05-11 1983-05-11 Method and apparatus for diluting mixed phase fluid of solid and gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58082248A JPS59206741A (en) 1983-05-11 1983-05-11 Method and apparatus for diluting mixed phase fluid of solid and gas

Publications (1)

Publication Number Publication Date
JPS59206741A true JPS59206741A (en) 1984-11-22

Family

ID=13769126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58082248A Pending JPS59206741A (en) 1983-05-11 1983-05-11 Method and apparatus for diluting mixed phase fluid of solid and gas

Country Status (1)

Country Link
JP (1) JPS59206741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354370A (en) * 2003-04-11 2004-12-16 Matter Engineering Ag Method and apparatus for detecting, characterizing and/or eliminating floating fine particles
JP2017508954A (en) * 2014-12-31 2017-03-30 同方威視技術股▲フン▼有限公司 Sampling device and gas curtain guide
WO2023218795A1 (en) * 2022-05-10 2023-11-16 株式会社堀場製作所 Vehicle-mounted drain separator, and vehicle-mounted exhaust gas analysis device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354370A (en) * 2003-04-11 2004-12-16 Matter Engineering Ag Method and apparatus for detecting, characterizing and/or eliminating floating fine particles
JP2017508954A (en) * 2014-12-31 2017-03-30 同方威視技術股▲フン▼有限公司 Sampling device and gas curtain guide
US10151671B2 (en) 2014-12-31 2018-12-11 Nuctech Company Limited Sampling device and gas curtain guide
WO2023218795A1 (en) * 2022-05-10 2023-11-16 株式会社堀場製作所 Vehicle-mounted drain separator, and vehicle-mounted exhaust gas analysis device

Similar Documents

Publication Publication Date Title
Fuchs et al. Coagulation rate of highly dispersed aerosols
Fuchs Sampling of aerosols
Allen Particle size measurement
Tatterson et al. Drop sizes in annular gas‐liquid flows
Noone et al. Cloud droplets: Solute concentration is size dependent
US5231865A (en) Diffusion gas diluter
Huebert et al. Airborne aerosol inlet passing efficiency measurement
US7830508B2 (en) Method and assembly for determining soot particles in a gas stream
US3011336A (en) Droplet sampling probe
Alonso et al. Drop size measurements in Venturi scrubbers
US4274846A (en) Particle sizing sampler
Calvert et al. Venturi scrubber performance
JPS59206741A (en) Method and apparatus for diluting mixed phase fluid of solid and gas
JPS63500613A (en) Analysis of multiphase mixtures
Manning et al. Heat and mass transfer to decelerating finely atomized sprays
GB2307300A (en) A wet gas multiphase meter
Ahuja Wetted wall cyclone—A novel concept
KR101793982B1 (en) Gas dilution device
JPH02500933A (en) steam quality meter
US5841037A (en) Process for sampling in particle-laden gas streams
JPS5823885B2 (en) Solid-gas multiphase fluid sampling device
JPS63214326A (en) Dilution device for solid-gas mixed phase fluid
JPS5881431A (en) Method and apparatus for diluting solid-gas mixed phase fluid
Kress et al. Liquid phase controlled mass transfer to bubbles in cocurrent turbulent pipeline flow
Wubulihairen et al. Prototype development and laboratory evaluation of an aerosol to hydrosol sampler