JPS6321421A - Heating device - Google Patents
Heating deviceInfo
- Publication number
- JPS6321421A JPS6321421A JP16581386A JP16581386A JPS6321421A JP S6321421 A JPS6321421 A JP S6321421A JP 16581386 A JP16581386 A JP 16581386A JP 16581386 A JP16581386 A JP 16581386A JP S6321421 A JPS6321421 A JP S6321421A
- Authority
- JP
- Japan
- Prior art keywords
- heated
- heated item
- heating
- mounting table
- ultrasonic sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 235000013311 vegetables Nutrition 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 235000012015 potatoes Nutrition 0.000 description 2
- 240000004178 Anthoxanthum odoratum Species 0.000 description 1
- 241000276457 Gadidae Species 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Landscapes
- Control Of High-Frequency Heating Circuits (AREA)
- Electric Ovens (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 。[Detailed description of the invention] Industrial application field.
本発明は、加熱装置の自動化を被加熱物の形状認識によ
って実現する加熱装置に関する。The present invention relates to a heating device that realizes automation of the heating device by recognizing the shape of an object to be heated.
従来の技術
特開昭50−152334号公報に記載の自動式高周波
加熱器は、被加熱物の太き−gvを検波器を用いて検出
し、加熱時間を自動設定するものである。The conventional automatic high-frequency heater described in Japanese Unexamined Patent Publication No. 50-152334 detects the thickness -gv of the object to be heated using a wave detector and automatically sets the heating time.
これは被加熱物の負荷としての大きさ水換算分vtg+
を、補助導波管に配した検波器で検出しこれと手動で設
定された初期温度Ts’と出来上がり温度Te とから
、vx (Te −Ts’ )に比例した加熱時間を算
出し、自動的に加熱の制御を行うものである。This is the size of the load on the object to be heated, equivalent to water vtg+
is detected by a detector placed in the auxiliary waveguide, and from this, the manually set initial temperature Ts', and the finished temperature Te, a heating time proportional to vx (Te - Ts') is calculated, and the heating time is automatically calculated. It controls the heating.
被加熱物の負荷としての大きさVは、加熱用の電波の一
部を検出することで実現される。The magnitude V of the object to be heated as a load is realized by detecting a part of the heating radio waves.
発明が解決しようとする問題点
ところがこのような従来の自動加熱法では、被加熱物の
大きさは、マグネトロンと負荷との整合の度合いから推
定され、マグネトロンてとってその被加熱物がインピー
ダンスとして重いか軽いかが検出され、これから水換算
分の大きさかもとめられるわけで、被加熱物の体積が実
際に検出されるわけではない。Problems to be Solved by the Invention However, in such conventional automatic heating methods, the size of the object to be heated is estimated from the degree of matching between the magnetron and the load, and the size of the object to be heated is estimated by the impedance of the magnetron. It is detected whether the object is heavy or light, and from this the size of the object in terms of water can be determined, but the volume of the object to be heated is not actually detected.
ところが検波器によって検出される高周波電流は、マグ
ネトロンの温度に依存して大幅に変動し、被加熱物の大
きさ水換算Vは安定しない。つまり同じ大きさの被加熱
物であっても、冷時には高周波電流が大きくなり、繰り
返して使用するうちにマグネトロンが温まり、高周波電
流が小さくなって被加熱物の大きさが小さく検出される
。本発明はかかる背景に鑑み、被加熱物の実際の体積を
検出し、これと重量データとから加熱時間を自動制御し
ようとするものである。However, the high frequency current detected by the wave detector varies significantly depending on the temperature of the magnetron, and the size of the object to be heated, V, in terms of water, is not stable. In other words, even if the object to be heated is the same size, the high-frequency current increases when it is cold, and as the magnetron is repeatedly used, the magnetron warms up, the high-frequency current decreases, and the size of the object to be heated is detected to be smaller. In view of this background, the present invention attempts to detect the actual volume of the object to be heated and automatically control the heating time based on this and weight data.
問題点を解決するための手段
本発明は、上記問題点を解決するために、超音波センサ
を加熱室の天井に設け、被加熱物を回転載置台によって
回転させて、被加熱物までの距離を連続的に制御部に入
力し、さらに重量センサとを用いて、被加熱物の大きさ
と重量を検出し、これらから加熱時間を自動制御しよう
とするものである。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an ultrasonic sensor on the ceiling of the heating chamber, rotates the object to be heated on a rotating mounting table, and measures the distance to the object to be heated. is continuously input to the control unit, and a weight sensor is used to detect the size and weight of the object to be heated, and the heating time is automatically controlled from these.
作用
本発明の加熱装置は、超音波センナが加熱室の上面に取
り付けられるので、回転載置台の回転により被加熱物ま
での距離が制御部に連続して入力されるため、制御部は
このデータから被加熱物のある回転断面を検出でき、こ
れから被加熱物の大きさく体積)を推定できる。Function In the heating device of the present invention, since the ultrasonic sensor is attached to the upper surface of the heating chamber, the distance to the object to be heated is continuously input to the control unit by rotation of the rotary mounting table, and the control unit receives this data. The rotational cross section of the object to be heated can be detected from this, and the size and volume of the object to be heated can be estimated from this.
これと重量データとから、制御部は加熱時間もしくは加
熱時間を決定する因子を設定し、加熱手段への給電を制
御できる。Based on this and the weight data, the control unit can set the heating time or a factor that determines the heating time and control the power supply to the heating means.
実施例
以下、本発明の一実施例の加熱装置を図面を参照して説
明する。EXAMPLE Hereinafter, a heating device according to an example of the present invention will be explained with reference to the drawings.
第2図は本発明に係わる加熱装置の本体斜視図である。FIG. 2 is a perspective view of the main body of the heating device according to the present invention.
本体1の前面には開閉自在に扉体2が軸支され、操作パ
ネル3が具備されている。この操作パネル3上にはキー
ボード4が配される。A door body 2 is pivotally supported on the front surface of the main body 1 so as to be freely openable and closable, and an operation panel 3 is provided. A keyboard 4 is arranged on this operation panel 3.
第1図はかかる加熱装置の構成を示すブロック図である
。操作パネル3上のキーボード4から入力された動作指
令は、制御部5によって解読される。そして制御部5は
、超音波センサ6を用いて被加熱物までの距離を測る。FIG. 1 is a block diagram showing the configuration of such a heating device. Operation commands input from the keyboard 4 on the operation panel 3 are decoded by the control section 5. Then, the control unit 5 uses the ultrasonic sensor 6 to measure the distance to the object to be heated.
超音波センナから回転載置台までの距離は一定なので、
被加熱物が超音波センサの下部に来れば、超音波センサ
に反射が早く帰って来る。その差分て被加熱物の高さが
判る。Since the distance from the ultrasonic sensor to the rotating mounting table is constant,
If the object to be heated comes below the ultrasonic sensor, the reflection returns to the ultrasonic sensor quickly. The height of the object to be heated can be determined by the difference.
すなわち、被加熱物の高さは h=H−d h−被加熱物の高さ H−回転載置台までの距離 d−検出された距離 で算出される(第1図参照)。In other words, the height of the heated object is h=H-d h-Height of the heated object H-Distance to rotary mounting table d - detected distance (See Figure 1).
さてかかる状態で加熱室T内の回転載置台8が回転を始
めると、被加熱物9と超音波センサ6との相対的な位置
関係が変化していく。そして被加熱物の高さデータが次
々と制御部に入力され、制御部はこのデータから被加熱
物のある回転断面を検出でき、これから被加熱物の大き
さく体積)を推定できる。Now, when the rotary mounting table 8 in the heating chamber T starts rotating in this state, the relative positional relationship between the object to be heated 9 and the ultrasonic sensor 6 changes. Then, the height data of the object to be heated is input one after another to the control section, and the control section can detect a certain rotational cross section of the object to be heated from this data, and can estimate the size (volume) of the object to be heated from this data.
次に制御部は、回転載置台の下方に設けた重量センサ1
oを用いて、被加熱物の重量を検出する。Next, the control unit controls the weight sensor 1 provided below the rotary mounting table.
o is used to detect the weight of the object to be heated.
重量センサ10としては、静電容量方式や歪みゲージ方
式により回転載置台8の変位量を検出するものや、載置
台の固有振動数を磁石とコイルで測定する振動方式など
を採用できる。モータ11は、回転載置台8を回転させ
る駆動源である。As the weight sensor 10, a capacitance method or a strain gauge method for detecting the displacement amount of the rotary mounting table 8, a vibration method for measuring the natural frequency of the mounting table using a magnet and a coil, etc. can be adopted. The motor 11 is a drive source that rotates the rotary mounting table 8 .
超音波センサは検知回路12を介して、また重量センサ
は検知回路13を介して、それぞれ制御部にデータを入
力する。The ultrasonic sensor inputs data to the control unit via the detection circuit 12, and the weight sensor inputs data to the control unit via the detection circuit 13.
第3図は超音波センナの一例として狭超指向性超音波マ
イクを示すものである。超音波センサは圧電素子14、
円錐状共振子15、端子16、ビーム整形板17、ケー
ス18、リード線19、結合軸20、端子板21、吸音
シート22から成っている。(ナショナル・テクニカル
・レポートP 、504〜514 Vol、29
No、3JAN 1983)
第4図はかかる超音波センサを用いて、被加熱物の体積
を検出したものである。横軸は回転載置台の位置(回転
角度)を、縦軸は被加熱物の高さを表している。従って
載置台の各位置で検出された被加熱物の高さの連続デー
タ(斜線を付した部分)は、被加熱物のある回転断面を
表しており、超音波センサの取り付は位置を適切に選べ
ば、被加熱物全体の形状を推定できる。FIG. 3 shows a narrow ultra-directional ultrasonic microphone as an example of an ultrasonic sensor. The ultrasonic sensor includes a piezoelectric element 14,
It consists of a conical resonator 15, a terminal 16, a beam shaping plate 17, a case 18, a lead wire 19, a coupling shaft 20, a terminal plate 21, and a sound absorbing sheet 22. (National Technical Report P, 504-514 Vol. 29
No. 3 JAN 1983) FIG. 4 shows the volume of a heated object detected using such an ultrasonic sensor. The horizontal axis represents the position (rotation angle) of the rotary mounting table, and the vertical axis represents the height of the object to be heated. Therefore, the continuous data of the height of the heated object detected at each position on the mounting table (the shaded area) represents the rotational cross section of the heated object, and the ultrasonic sensor should be installed at the appropriate position. If selected, the shape of the entire object to be heated can be estimated.
1=80mは、超音波センサの加熱室中央からの距離を
示し、ある実験ではこの位置が最も被加熱物の形状をよ
り良く判定できた。いずれにしてもセンサは、加熱室の
天井の中央よりは少し位置をずらした方が良い結果が得
られる。これはセンサが中央にあると、被加熱物との相
対的な位置関係があまり変化せず、極端な例では被加熱
物を載置台の中央に置けば、センサは被加熱物の中央の
一点の高さしか検出できず、全体の形状を判定できない
ことによる。1=80 m indicates the distance of the ultrasonic sensor from the center of the heating chamber, and in one experiment, the shape of the object to be heated could be determined best at this position. In any case, better results can be obtained by placing the sensor slightly off the center of the ceiling of the heating chamber. This is because if the sensor is placed in the center, the relative positional relationship with the object to be heated will not change much.In an extreme example, if the object to be heated is placed in the center of the mounting table, the sensor will be placed at a point in the center of the object. This is because only the height of the object can be detected and the overall shape cannot be determined.
なお1値の最適値は、当然加熱室の大きさや超音波セン
サの選択によって変化する。Note that the optimum value of one value naturally changes depending on the size of the heating chamber and the selection of the ultrasonic sensor.
また第4図には、はうれん草とじゃがいものデータを掲
げたが、図から明らかなように重量が同一であれば、両
者の間には相当な違いが認められる。つまり重量と体積
とが検出できれば、野菜の例であれば、それが葉菜(は
うれん草)なのか根菜(じゃがいも)なのかを識別でき
る。かかる判定によりドライバ26を介して加熱手段2
6への給電を制御し、加熱を自動化できる。Figure 4 shows the data for spinach and potatoes, but as is clear from the figure, there is a considerable difference between the two if their weights are the same. In other words, if the weight and volume can be detected, in the case of vegetables, for example, it is possible to identify whether they are leafy vegetables (spring grass) or root vegetables (potatoes). Based on this determination, the heating means 2 is heated via the driver 26.
It is possible to control the power supply to 6 and automate heating.
さて第5図は、超音波センサの検知回路の構成例を示す
ブロック図である。Now, FIG. 5 is a block diagram showing an example of the configuration of a detection circuit of an ultrasonic sensor.
制御部5はマイクロコンピュータなどで構成され、タイ
ミングコントロールを行うことにより、1つの超音波セ
ンサが数十KHzの超音波を送信するとともに、受信の
際には受波器に切り換えられて動作する。The control unit 5 is composed of a microcomputer or the like, and performs timing control so that one ultrasonic sensor transmits an ultrasonic wave of several tens of KHz, and when receiving the ultrasonic wave, it is switched to a receiver and operates.
23は送信回路、24は受信回路である。比較回路25
は基準電圧と受信信号を比較し、この基準電圧を越える
受信信号をラッチし、制御部6に入力する。制御部5は
超音波を送信してから受信するまでの時間を計数し、超
音波の伝播速度から被加熱物までの距離を算出し、これ
から被加熱物の高さを求める。23 is a transmitting circuit, and 24 is a receiving circuit. Comparison circuit 25
compares the reference voltage and the received signal, latches the received signal exceeding this reference voltage, and inputs it to the control section 6. The control unit 5 counts the time from transmitting the ultrasonic waves to receiving them, calculates the distance to the object to be heated from the propagation velocity of the ultrasonic waves, and calculates the height of the object from this.
以上の構成により被加熱物の形状認識を正確に行うこと
ができ、被加熱物を自動的に加熱することができる。With the above configuration, the shape of the object to be heated can be accurately recognized, and the object to be heated can be automatically heated.
発明の効果
以上のように本発明の加熱装置は、超音波セ/すと重量
センナとを備え、回転載置台によって被加熱物を回転さ
せ、制御部に被加熱物の高さデータを連続的に入力する
ことで、被加熱物の大きさを検出する構成であり、被加
熱物の形状が再現よく認識でき、被加熱物の加熱時間を
自動的に設定できる。Effects of the Invention As described above, the heating device of the present invention is equipped with an ultrasonic sensor and a weight sensor, rotates the object to be heated using a rotary mounting table, and continuously transmits height data of the object to the control unit. By inputting this information, the size of the object to be heated can be detected, the shape of the object to be heated can be recognized with good reproducibility, and the heating time of the object to be heated can be automatically set.
また形状を認識するセンサとして超音波センサを用いた
ので、通常汎用されるカメラとCODなど光学系のセン
サに比べ、はるかに安価であり、しかも汚れに強い。電
子レンジなどの加熱装置では、加熱室内はかなりひどい
油汚れとなり、これに搭載するセンサは通常ヒータで汚
れを焼き切るなどの工夫が必要であるが、防滴型の超音
波センサであれば、素子自身が汚れによって物理的、化
学的に経時変化することはありえず、このような配慮は
何ら必要ない。Furthermore, since an ultrasonic sensor is used as a shape recognition sensor, it is much cheaper and more resistant to dirt than optical sensors such as cameras and CODs that are commonly used. In heating devices such as microwave ovens, the heating chamber gets quite dirty with oil, and the sensors installed in these devices usually require measures such as burning off the dirt with a heater, but if it is a drip-proof ultrasonic sensor, the element It is impossible for the material itself to change physically or chemically over time due to dirt, so there is no need for such consideration.
このように本発明によれば、繰り返して使用しても再現
よく検出ができ、しかも長期間に渡って安定な動作が期
待できる。As described above, according to the present invention, detection can be performed with good reproducibility even after repeated use, and stable operation can be expected over a long period of time.
第1図は本発明の一実施例の加熱装置の構成を示すブロ
ック図、第2図は同本体斜視図、第3図は狭指向性超音
波センサの断面図、第4図は超音波センサによって検出
された被加熱物の高さデータを示す波形図、第6図は超
音波センサの検知回路の構成例を示す回路ブロック図で
ある。
5・・・・・・制御部、6・・・・・・超音波センサ、
7・・・・・・加熱室、8・・・・・・回転載置台、9
・・・・・・被加熱物、1゜・・・・・・重量センサ、
26・・・・・・加熱手段。
代理人の氏名 弁厘士 中 尾 敏 男 ほか1名第2
図
第3図
第4図
1=30“2食先重量=訪g
ターンテーフ)しの位i(°)Fig. 1 is a block diagram showing the configuration of a heating device according to an embodiment of the present invention, Fig. 2 is a perspective view of the main body, Fig. 3 is a sectional view of a narrow directional ultrasonic sensor, and Fig. 4 is an ultrasonic sensor. FIG. 6 is a circuit block diagram showing a configuration example of a detection circuit of an ultrasonic sensor. 5...Control unit, 6...Ultrasonic sensor,
7... Heating chamber, 8... Rotating mounting table, 9
... Heated object, 1° ... Weight sensor,
26... Heating means. Name of agent: Attorney Toshio Nakao and 1 other person 2nd
Fig. 3 Fig. 4
Claims (1)
た加熱手段と、前記加熱手段への給電を制御する制御部
と、前記被加熱物の大きさを検知する超音波センサと、
前記被加熱物の重量を検知する重量センサと、前記被加
熱物を回転させる回転載置台とより成り、前記超音波セ
ンサを加熱室の上面に設け、前記制御部は前記超音波セ
ンサを用いて前記被加熱物までの距離を検出することで
前記被加熱物の高さを推定し、前記回転載置台の回転に
より連続的に入力される距離データから、前記被加熱物
の大きさを認識するとともに、前記重量センサで検出し
た前記被加熱物の重量とから加熱時間もしくは加熱時間
を決定する因子を設定し、前記加熱手段への給電を制御
するよう構成したことを特徴とした加熱装置。a heating chamber in which an object to be heated is placed; a heating means coupled to the heating chamber; a control section that controls power supply to the heating means; an ultrasonic sensor that detects the size of the object to be heated;
The apparatus comprises a weight sensor that detects the weight of the object to be heated, and a rotating mounting table that rotates the object to be heated, the ultrasonic sensor is provided on the upper surface of the heating chamber, and the control section uses the ultrasonic sensor to The height of the heated object is estimated by detecting the distance to the heated object, and the size of the heated object is recognized from distance data that is continuously input by rotation of the rotary mounting table. The heating device is further configured to set a heating time or a factor for determining the heating time based on the weight of the object to be heated detected by the weight sensor, and to control power supply to the heating means.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165813A JP2532396B2 (en) | 1986-07-15 | 1986-07-15 | Heating device |
KR1019870011746A KR900003755B1 (en) | 1986-02-06 | 1987-10-22 | Automatic vending machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165813A JP2532396B2 (en) | 1986-07-15 | 1986-07-15 | Heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6321421A true JPS6321421A (en) | 1988-01-29 |
JP2532396B2 JP2532396B2 (en) | 1996-09-11 |
Family
ID=15819483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61165813A Expired - Lifetime JP2532396B2 (en) | 1986-02-06 | 1986-07-15 | Heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2532396B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215519A (en) * | 1983-05-24 | 1984-12-05 | Toshiba Corp | Cooking utensil |
-
1986
- 1986-07-15 JP JP61165813A patent/JP2532396B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215519A (en) * | 1983-05-24 | 1984-12-05 | Toshiba Corp | Cooking utensil |
Also Published As
Publication number | Publication date |
---|---|
JP2532396B2 (en) | 1996-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0264935B1 (en) | Automatic heating appliance with ultrasonic sensor | |
US4703151A (en) | Heating cooking appliance having weight detecting function | |
CN100371735C (en) | Ultrasonic sensor | |
US4340796A (en) | Wireless temperature-sensing system inclusive of thermally-responsive oscillator | |
WO2021143342A1 (en) | Wireless charger and wireless charging control method | |
US6583392B2 (en) | Apparatus and method for determining properties of a cooktop using ultrasound techniques | |
US20050016278A1 (en) | Acoustic wave ice and water detector | |
JPS6321421A (en) | Heating device | |
JP3846533B2 (en) | Sensitivity adjustment method of distance measurement circuit using ultrasonic sensor and distance measurement method using the circuit | |
JPS63105492A (en) | Heater | |
JPS5946003B2 (en) | Aerial ultrasonic position control device for tables or chairs | |
JP2795637B2 (en) | Microwave oven and control method thereof | |
JPH037850B2 (en) | ||
AU2018324642B2 (en) | Air conditioner | |
WO1984004961A1 (en) | Apparatus for detecting position of object being measured | |
JP2537880B2 (en) | High frequency heating equipment | |
JP3172271B2 (en) | Method of determining shape of heated object in food heater | |
JPH0317429A (en) | Oven | |
JPS60144526A (en) | Cooker provided with weighing function | |
JPS60102509A (en) | Position detecting apparatus for material to be measured | |
JPS60174427A (en) | Heating and cooking unit with weight sensing function | |
JPH0348503Y2 (en) | ||
CN117145348A (en) | Cash collecting equipment for bank counter | |
JPS6217529A (en) | Heated cooking oven with weight detection function | |
JPS62136793A (en) | Heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |