JPS63213923A - Equipment for monitoring thin film - Google Patents

Equipment for monitoring thin film

Info

Publication number
JPS63213923A
JPS63213923A JP4974087A JP4974087A JPS63213923A JP S63213923 A JPS63213923 A JP S63213923A JP 4974087 A JP4974087 A JP 4974087A JP 4974087 A JP4974087 A JP 4974087A JP S63213923 A JPS63213923 A JP S63213923A
Authority
JP
Japan
Prior art keywords
light
optical fiber
thin film
film
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4974087A
Other languages
Japanese (ja)
Inventor
Eiji Iri
井利 英二
Kiyoshi Yamazaki
山崎 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP4974087A priority Critical patent/JPS63213923A/en
Publication of JPS63213923A publication Critical patent/JPS63213923A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable monitoring the variation of the thickness of a thin film by providing an optical fiber for projection to project light generated from a coherence light source nonperpendicularly to the thin film and an optical fiber for receiving light to guide the reflected light from the thin film to a required position. CONSTITUTION:Windows 21, 22 fitted with quartz glass are provided face to face in the side walls of a reaction chamber 12; one end of an optical fiber 23 for projection and one end of an optical fiber 24 for receiving light are fixed each at an appropriate position. The fixing angles of the ends of both the optical fibers 23, 24 are so determined that the light propagated through the optical fiber 23 makes an angle theta with a substrate 20 and the reflected light can be received by the optical fiber 24. The other end of the optical fiber 23 is connected to a light source 25 which generates coherent light. When the light source 25 is driven, the light is propagated through the optical fiber 23 and is projected on the substrate 20. Then, an interference output variation is generated by the reflected light on the surface and the back of a film on the substrate with the variation of the thickness of the film and is propagated to an interference variation analysis equipment 26 via the optical fiber 24. Accordingly, the variation of a film thickness can be read in this equipment.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は例えばECRプラズマWffにおける成膜状況
又はエツチング状況をモニタする装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an apparatus for monitoring film formation or etching conditions in, for example, ECR plasma Wff.

〔従来技術〕[Prior art]

良好な膜質を得ることができるCVD (化学的気相成
長)装置としてECR(Electronic Cyc
lotoronResonance )プラズマ装置が
知られており、実用化されつつある。
ECR (Electronic Cyc) is a CVD (Chemical Vapor Deposition) device that can obtain good film quality.
Lotoron Resonance) plasma devices are known and are being put into practical use.

この装置は磁界中へマイクロ波を導きこの中へ原料ガス
を送給して電子のサイクロトロン共鳴を応用してそのプ
ラズマを発生させ、このプラズマ生成室からプラズマを
これに隣接する反応室へ導き、反応室に配した基板上に
成膜する構成となっている。
This device introduces microwaves into a magnetic field, feeds raw material gas into the magnetic field, generates plasma by applying electron cyclotron resonance, and guides the plasma from this plasma generation chamber to an adjacent reaction chamber. The structure is such that a film is formed on a substrate placed in a reaction chamber.

C発明が解決しようとする問題点〕 ところで、この成膜厚さは、成膜時間によって制御され
ているが、実際にその膜厚をモニタする手段は従来は設
けられていなかった。そのために何らかの理由で所要の
膜厚が得られなかった場合においても反応室から基板を
とり出して初めてそれに気がつくという不都合があった
。反応室には覗き窓が設けられているが、プラズマの生
成が確認できるだけであり膜厚をモニタできるものでな
いことは言うまでもない。
C Problems to be Solved by the Invention] By the way, although the film thickness is controlled by the film formation time, conventionally no means for actually monitoring the film thickness has been provided. Therefore, even if the required film thickness cannot be obtained for some reason, there is an inconvenience in that this is not noticed until the substrate is removed from the reaction chamber. Although the reaction chamber is equipped with a viewing window, it is only possible to confirm the generation of plasma, and it goes without saying that it cannot monitor the film thickness.

本発明は斯かる問題点を解決するためになされたもので
あり、光ファイバによる投光で膜の表裏に光干渉を生じ
させ、これを光ファイバにてプラズマ雰囲気外へ導くよ
うにして薄膜の厚さ変動をモニタする装置を提供するこ
とを目的とする。
The present invention was made in order to solve such problems, and it is possible to create a thin film by projecting light using an optical fiber to cause optical interference on the front and back surfaces of the film, and guiding this interference to the outside of the plasma atmosphere using the optical fiber. It is an object of the present invention to provide a device for monitoring thickness variations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る薄膜のモニタ装置は、ECRプラズマ装置
に取付けられ、又は除去或は形成される薄膜を生成する
装置に取付けられ、可干渉光源と、該可干渉光源から発
せられた光を出力し、この光を前記薄膜に対して非垂直
に投射するように配した投光用光ファイバと、前記薄膜
からの反射光が入射され、この光を所要位置へ導くよう
に配した受光用光ファイバとを備えることを特徴とする
The thin film monitoring device according to the present invention is attached to an ECR plasma device or a device for producing a thin film to be removed or formed, and outputs a coherent light source and light emitted from the coherent light source. a light-emitting optical fiber arranged so as to project this light non-perpendicularly to the thin film; and a light-receiving optical fiber arranged so as to receive reflected light from the thin film and guide this light to a desired position. It is characterized by comprising:

〔作用〕[Effect]

可干渉光は投光用光ファイバによって薄膜へ投射される
。この光は膜厚が変動するにつれ、薄膜の表面と裏面(
基板側の面)とで反射された光により干渉変動が生じる
The coherent light is projected onto the thin film by a projection optical fiber. As the film thickness changes, this light is transmitted to the front and back surfaces of the thin film (
Interference fluctuations occur due to the light reflected by the substrate side surface).

これが受光用光ファイバによって捉えられ、例えば干渉
変動解析部等へ送られる。これにより、薄膜の膜厚変動
のモニタが行えることになる。
This is captured by a light-receiving optical fiber and sent to, for example, an interference fluctuation analysis section. This makes it possible to monitor changes in the thickness of the thin film.

〔実施例〕〔Example〕

以下本発明をその実施例を示す凹面に基づいて詳述する
。図面は本発明の全体構造を示す模式図である。ECR
プラズマ装置1はプラズマ生成室11とその下側の反応
室12とを備え、プラズマ生成室11の周囲にはこれと
同心的に励磁コイル13が配設されている。プラズマ生
成室11と図示しないマイクロ波源とはプラズマ生成室
11上部に連なる導波管14によって連結されており、
導波管14を伝搬されてきたマイクロ波はガスシールの
ための石英ガラス板15を介してマイクロ波生成室11
へ導入される。
Hereinafter, the present invention will be described in detail based on a concave surface showing an embodiment thereof. The drawings are schematic diagrams showing the overall structure of the present invention. ECR
The plasma device 1 includes a plasma generation chamber 11 and a reaction chamber 12 below the plasma generation chamber 11, and an excitation coil 13 is arranged concentrically around the plasma generation chamber 11. The plasma generation chamber 11 and a microwave source (not shown) are connected by a waveguide 14 that extends above the plasma generation chamber 11.
The microwaves propagated through the waveguide 14 enter the microwave generation chamber 11 via a quartz glass plate 15 for gas sealing.
will be introduced to

プラズマ生成室11の周囲には冷却水通流室16が設け
られている。またプラズマ生成室11の上部には原料ガ
ス供給室17が連結されている。プラズマ生成室11の
底壁は開口しておりプラズマ引出窓18としている。プ
ラズマ生成室11で生成したプラズマは反応室12へ導
出されるがプラズマ引出窓18の下方に載置台19を配
し、ここに基板20を載置する。
A cooling water flow chamber 16 is provided around the plasma generation chamber 11 . Further, a raw material gas supply chamber 17 is connected to the upper part of the plasma generation chamber 11 . The bottom wall of the plasma generation chamber 11 is open and serves as a plasma extraction window 18. The plasma generated in the plasma generation chamber 11 is led out to the reaction chamber 12, and a mounting table 19 is arranged below the plasma extraction window 18, on which the substrate 20 is placed.

その他28は原料ガス供給管、31は排気口である。In addition, 28 is a raw material gas supply pipe, and 31 is an exhaust port.

さて、本発明装置では反応室12の側壁の対向位置に石
英ガラスを嵌め込んでなる窓21.22を設け、夫々投
光用光ファイバ23、受光用光ファイバ24の各一端末
々を位置させて固定する。両光ファイバ23、24の端
末には必要に応じて光集束用、結像用のレンズを取付け
ておく。使用光ファイバは限定するものではないが投光
用光ファイバ23としてコア径/クラツド径=100 
/150μm の純粋石英系光ファイバを用いる。また
受光用光ファイバとしてはファイバ径50μm の多成
分ガラスファイバ2400本を束にしたものを用いる。
Now, in the apparatus of the present invention, windows 21 and 22 made of quartz glass are provided at opposite positions on the side wall of the reaction chamber 12, and one end of each of the light emitting optical fiber 23 and the light receiving optical fiber 24 is positioned. and fix it. Lenses for light focusing and imaging are attached to the terminals of both optical fibers 23 and 24 as necessary. Although the optical fiber used is not limited, the light emitting optical fiber 23 has a core diameter/cladding diameter of 100.
/150 μm pure silica optical fiber is used. The light-receiving optical fiber used is a bundle of 2,400 multi-component glass fibers each having a fiber diameter of 50 μm.

この端末は投光用光ファイバ23を伝播されてきた光が
基板20と角度θをなし、またその反射光が受光用光フ
ァイバ24に受光されるようにその固定角度を定める。
The fixed angle of this terminal is determined so that the light propagated through the light emitting optical fiber 23 makes an angle θ with the substrate 20, and the reflected light is received by the light receiving optical fiber 24.

投光用光ファイバ23の他端は可干渉光を発する光源2
5に接続されている。光源25としては半導体レーザ、
He −Neレーザ等を用いればよい。
The other end of the light projection optical fiber 23 is a light source 2 that emits coherent light.
5. As the light source 25, a semiconductor laser,
A He-Ne laser or the like may be used.

一方、受光用光ファイバ24の他端は干渉変動解析1f
fi26と光学的に結合されている。可干渉光の投射角
度θは後に示すような理由から7〜20°とするのがよ
いが、ECRプラズマ装置1の特徴は基板20とプラズ
マ生成室11とが、正対するので基板20と垂直な方向
からの投光が不可能であり、非垂直に(θ≠90°)設
定するのが不可欠である。
On the other hand, the other end of the light receiving optical fiber 24 is connected to the interference fluctuation analysis 1f.
It is optically coupled to fi26. The projection angle θ of the coherent light is preferably set to 7 to 20 degrees for the reasons explained later, but the feature of the ECR plasma apparatus 1 is that the substrate 20 and the plasma generation chamber 11 face each other directly, so that the projection angle θ is perpendicular to the substrate 20. It is impossible to project light from any direction, and it is essential to set it non-perpendicularly (θ≠90°).

而して基板20上の光スポットと投光用光ファイバ23
の端末との距離Xを300〜400 鰭とした場合にお
ける種々のθの値による検出波形の良否を調べた。表1
はその結果を示し、ECRプラズマ装置1の寸法上の制
約によるθの良否も併せて示している。
Thus, the light spot on the substrate 20 and the light emitting optical fiber 23
The quality of the detected waveforms was examined using various values of θ when the distance X from the terminal was set to 300 to 400 fins. Table 1
shows the results, and also shows the quality of θ due to the dimensional constraints of the ECR plasma device 1.

以上よりθは7〜20″の範囲とするのがよい。From the above, it is preferable that θ is in the range of 7 to 20''.

なおこのときの基板20上の光スポツト径は7〜15龍
であった。次に以上の装置の動作を説明する。
The diameter of the light spot on the substrate 20 at this time was 7 to 15 mm. Next, the operation of the above device will be explained.

マイクロ波源を駆動し、励磁コイル13を励磁し、原料
ガスを管17.28から供給する。そうするとプラズマ
生成室11にプラズマが生成し、これが反応室12へ送
られ基板20上には供給ガスにて定まる化合物の膜(図
示せず)が生成されていく。
The microwave source is driven, the excitation coil 13 is energized, and the source gas is supplied through the tube 17.28. Then, plasma is generated in the plasma generation chamber 11, which is sent to the reaction chamber 12, and a film (not shown) of a compound determined by the supplied gas is generated on the substrate 20.

一方、光源25を駆動するとその光は投光用光ファイバ
23を伝播し、基板20に投射される。そうするとその
上の膜の膜厚変動に伴い膜表裏面での反射光により干渉
出力変動が生じ、これが光ファイバ24を介して干渉変
動解析装置26へ伝播される。
On the other hand, when the light source 25 is driven, the light propagates through the light projection optical fiber 23 and is projected onto the substrate 20. Then, as the thickness of the film thereon changes, interference output fluctuations occur due to light reflected from the front and back surfaces of the film, and this is propagated to the interference fluctuation analysis device 26 via the optical fiber 24.

従って、ここで膜厚変動が読取れることになる。Therefore, the film thickness variation can be read here.

なお、上述の実施例ではECRプラズマ装置をCvD装
置として使用する場合について説明したが、ECRプラ
ズマ装置はエツチング装置としても利用できこの場合は
腐食されて膜厚が減じていくのをモニタするのに同様に
使用できる。
In addition, in the above embodiment, the case where the ECR plasma device is used as a CvD device was explained, but the ECR plasma device can also be used as an etching device, and in this case, it can be used to monitor the decrease in film thickness due to corrosion. Can be used similarly.

〔効果〕〔effect〕

以上のように本発明による場合は従来全く膜厚をモニタ
することができなかったECRプラズマ装置においてそ
れを可能としたものであるので、成膜又は膜除去の過多
、過少が防止できこれによる生産歩留の向上は著しい。
As described above, in the case of the present invention, it is possible to monitor the film thickness in an ECR plasma apparatus, which was conventionally not possible at all. Therefore, it is possible to prevent excessive or insufficient film formation or film removal, thereby improving production. The improvement in yield is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明装置の模式図である。 1・・・ECRプラズマ装置 11・・・プラズマ生成
室12・・・反応室 20・・・基板 23.24・・
・光ファイバ25・・・光源 26・・・干渉変動解析
装置時 許 出願人  三菱電線工業株式会社代理人 
弁理士  河  野  登  夫手続補正書く方式) 昭和62年5月29日 1、事件の表示 昭和62年特許願第49740号 2、発明の名称 薄膜のモニタ装置 3、補正をする者 事件との関係 特許出廓人 所在地 兵庫県尼崎市東向島西之町8番地名 称 (3
26)三菱電線工業株式会社代表者 結 城 醇 造 4、代理人 住 所  ■543大阪市天王寺区四天王寺1丁目14
番22号 日進ビル207号 河野特許事務所(置 06−779−3088 )氏 
名  (7886)弁理士 河 野 登 夫″゛□−□
暑6、補正の対象 明細書の「発明の詳細な説明」及び「図面の簡単な説明
」の欄並びに図面 7、補正の内容 7−1明細書の「発明の詳細な説明」の憫明細書第4頁
4行目に「図面は」とあるのを「第1図は」と訂正する
。 7−2明細書の「図面の簡単な説明」の欄明細書第8頁
2行目に「図面は」とあるのを「第1図は」と訂正する
。 7−3図面 図面を添付図面の如く図番号を付加する訂正をする。(
内容に変更なし) 8、 添付書類の目録
The drawing is a schematic diagram of the device of the present invention. 1... ECR plasma device 11... Plasma generation chamber 12... Reaction chamber 20... Substrate 23.24...
・Optical fiber 25...Light source 26...Interference fluctuation analysis device Applicant Mitsubishi Cable Industries Co., Ltd. Agent
Patent Attorney Noboru Kono Procedural Amendment Writing Method) May 29, 1988 1, Indication of the case 1988 Patent Application No. 49740 2, Name of the invention Thin film monitoring device 3, Person making the amendment Relationship with the case Patent distributor location: 8, Higashimukojima Nishinocho, Amagasaki City, Hyogo Prefecture Name (3)
26) Mitsubishi Cable Industries Co., Ltd. Representative: Junzo Yuki 4, Agent address: 1-14 Shitennoji, Tennoji-ku, Osaka City, 543
No. 22, Nisshin Building 207, Mr. Kono Patent Office (06-779-3088)
Name (7886) Patent Attorney Noboru Kono”゛□−□
Heat 6, "Detailed Description of the Invention" and "Brief Description of Drawings" columns of the specification to be amended, Drawing 7, Contents of Amendment 7-1, "Detailed Description of the Invention" of the specification On page 4, line 4, ``The drawing is'' is corrected to ``Figure 1 is''. 7-2 In the "Brief explanation of the drawings" column of the specification, on page 8, line 2 of the specification, the phrase "the drawings are" is corrected to "FIG. 1 is". 7-3 Drawings Correct the drawings by adding figure numbers as shown in the attached drawings. (
(No change in content) 8. List of attached documents

Claims (1)

【特許請求の範囲】 1、ECRプラズマ装置に取付けられ、又は除去或は形
成される薄膜を生成する装置に取付けられ、 可干渉光源と、該可干渉光源から発せられた光を出力し
、この光を前記薄膜に対して非垂直に投射するように配
した投光用光ファイバと、前記薄膜からの反射光が入射
され、この光を所要位置へ導くように配した受光用光フ
ァイバとを備えることを特徴とする薄膜のモニタ装置。
[Claims] 1. A coherent light source, which is attached to an ECR plasma device or a device for producing a thin film to be removed or formed, outputs light emitted from the coherent light source, and outputs the light emitted from the coherent light source; A light emitting optical fiber arranged to project light non-perpendicularly to the thin film, and a light receiving optical fiber arranged so as to receive reflected light from the thin film and guide this light to a desired position. A thin film monitor device comprising:
JP4974087A 1987-03-03 1987-03-03 Equipment for monitoring thin film Pending JPS63213923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4974087A JPS63213923A (en) 1987-03-03 1987-03-03 Equipment for monitoring thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4974087A JPS63213923A (en) 1987-03-03 1987-03-03 Equipment for monitoring thin film

Publications (1)

Publication Number Publication Date
JPS63213923A true JPS63213923A (en) 1988-09-06

Family

ID=12839583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4974087A Pending JPS63213923A (en) 1987-03-03 1987-03-03 Equipment for monitoring thin film

Country Status (1)

Country Link
JP (1) JPS63213923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145127A (en) * 1989-10-31 1991-06-20 Toshiba Corp Measuring device for etching depth
JP2004535673A (en) * 2001-07-13 2004-11-25 アクセリス テクノロジーズ インコーポレーテッド Shallow angle interference method and apparatus for determining real time etch rate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268879A (en) * 1975-12-08 1977-06-08 Hitachi Ltd Formation method of gas phase growth film
JPS5660638A (en) * 1979-10-22 1981-05-25 Hitachi Ltd Treatment in gaseous phase reaction
JPS60241227A (en) * 1984-05-16 1985-11-30 Hitachi Ltd Microwave plasma device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268879A (en) * 1975-12-08 1977-06-08 Hitachi Ltd Formation method of gas phase growth film
JPS5660638A (en) * 1979-10-22 1981-05-25 Hitachi Ltd Treatment in gaseous phase reaction
JPS60241227A (en) * 1984-05-16 1985-11-30 Hitachi Ltd Microwave plasma device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145127A (en) * 1989-10-31 1991-06-20 Toshiba Corp Measuring device for etching depth
JP2004535673A (en) * 2001-07-13 2004-11-25 アクセリス テクノロジーズ インコーポレーテッド Shallow angle interference method and apparatus for determining real time etch rate
JP4775685B2 (en) * 2001-07-13 2011-09-21 アクセリス テクノロジーズ インコーポレーテッド Method and apparatus for shallow angle interference for determining real-time etching rates

Similar Documents

Publication Publication Date Title
JPS61250605A (en) Image fiber with optical waveguide
EP0222960B1 (en) Method and apparatus for the on-line coating of silica based fibers with boron-nitride
JPS63213923A (en) Equipment for monitoring thin film
US5018829A (en) Optical fiber and method of producing the same
JPH1085969A (en) Device for monitoring energy and/or energy density of laser beam
DE69209163D1 (en) Plasma assisted diamond manufacturing
JPH05323165A (en) Lens holding block
US4875759A (en) Optical fiber and method of producing the same
KR100211048B1 (en) Vertical self-centering flame hydrolysis deposition reaction torch
JPS60260125A (en) Selective formation of semiconductor substrate
JP2005128319A (en) Optical functional element and its manufacturing method
JP3132867B2 (en) Recoating method of carbon coated optical fiber
JP2000219970A (en) Formation of silica film, production of electronic parts and production of optical parts
JPS59192832U (en) Optical CVD equipment
JPS58115405A (en) Manufacture of thick film waveguide
JP2000277505A (en) Formation of phosphorus-doped silica film and manufacture of electronic component
JP2000243353A (en) Discharge tube
KR100376166B1 (en) Flame hydrolysis apparatus for optical amplifier
JP2010066562A (en) Method of positioning optical fiber
JPH0610673Y2 (en) Optical CVD device
Hanabusa et al. FABRICATION OF SILICON OXYNITRIDE AND SILICON NITRIDE WAVEGUIDES BY LASER CHEMICAL VAPOR DEPOSITION
JPS5831305A (en) Laser light transmitting device
JP2002250608A (en) Monitoring device for optical film thickness
JPS63197905A (en) Detecting method for core of optical fiber
JPS6348432A (en) Measuring instrument for light transmission loss of optical fiber