JPS58115405A - Manufacture of thick film waveguide - Google Patents

Manufacture of thick film waveguide

Info

Publication number
JPS58115405A
JPS58115405A JP21356481A JP21356481A JPS58115405A JP S58115405 A JPS58115405 A JP S58115405A JP 21356481 A JP21356481 A JP 21356481A JP 21356481 A JP21356481 A JP 21356481A JP S58115405 A JPS58115405 A JP S58115405A
Authority
JP
Japan
Prior art keywords
layer
glass
thick film
glass layer
film waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21356481A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Takeru Fukuda
福田 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP21356481A priority Critical patent/JPS58115405A/en
Publication of JPS58115405A publication Critical patent/JPS58115405A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To form a core layer of a quartz compound thick film waveguide, by heating only a microscopic area part on a clad layer, and generating a dot-like glass layer by a gaseous phase reaction. CONSTITUTION:A substrate 10 having a clad layer 20 is inserted into a reaction tube 50, and raw material gas 54 such as SiH4, etc. is made to flow from an inlet 52. On the other hand, an extremely microscopic area part on the clad layer 20 is spot-heated by a heating source 56, and on this part, a dot-like glass layer 32 is generated by a gaseous phase reaction. When the heating source 56 is moved by a driving device 60, the glass layer 32 is integrated linearly, and becomes a linear glass layer 34.

Description

【発明の詳細な説明】 この発明は、光ファイバの分岐・合流に使用する1す膜
導波路の製造方法に関し、特に、石英系材料による厚膜
導波路のコア層の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a single-film waveguide used for branching and merging optical fibers, and particularly relates to a method for forming a core layer of a thick-film waveguide using a quartz-based material. .

発明の背景と目的 厚膜導波路の一例を「第1図、第3図1に示す10は基
板で、81などからなる。
BACKGROUND AND OBJECTIVES OF THE INVENTION An example of a thick-film waveguide is shown in Figures 1 and 3. Reference numeral 10 in FIGS.

20はクラッド層で、平板状の低屈折率ガラス、たとえ
ば8102などからなる0 30はコア層で、高屈折率ガラス、たとえば5i02−
Ge02などの厚膜からなる。クラ、ド層20上に所定
のパターンと厚さを持って画かれ、光のガイド層となる
20 is a clad layer made of flat low refractive index glass such as 8102; 30 is a core layer made of high refractive index glass such as 5i02-
It is made of a thick film such as Ge02. It is drawn with a predetermined pattern and thickness on the outer and outer layers 20, and serves as a light guide layer.

40はクラ、ド層で、クラッド層20と同じ低屈折率ガ
ラスからなり、コア層60上を一様な厚さでおおう(第
3図では省略)。
Reference numeral 40 denotes a cladding layer and a cladding layer, which are made of the same low refractive index glass as the cladding layer 20, and cover the core layer 60 with a uniform thickness (not shown in FIG. 3).

従来、コア層60は次のようにして形成していた。Conventionally, the core layer 60 has been formed as follows.

すなわち、まずクラッド層20上に、コア層60の元に
なる厚膜を全面的に生成する。それから、ホトリソグラ
フ技術を利用して、T1.81などの金属マスクを形成
し、プラズマ利用のドライエツチングなどによってパタ
ーン形成を行なう。
That is, first, a thick film, which will become the basis of the core layer 60, is formed over the entire surface of the cladding layer 20. Then, a metal mask of T1.81 or the like is formed using photolithography, and a pattern is formed by dry etching using plasma.

しかし、この方法では、かなりの厚さのエツチングが必
要になる。それに耐えるホトマスクが現在のところ見あ
たらない。また断面がきれいな長)j杉にならない。
However, this method requires a considerable thickness of etching. At present, there are no photomasks that can withstand this. It also has a beautiful cross section and does not look like cedar.

この発明は、ホ) IJソゲラフ技術を使用せずに、石
英系厚膜導波路のコア層を形成できるようにしたもので
ある。
This invention makes it possible to form the core layer of a silica-based thick film waveguide without using (e) IJ sogelaf technology.

発明の構成 「第2図1のように、 ■)クラッド層20上の微小面積部分だけを加熱し、気
相反応によって点状ガラス層62を生成すること、 2)その点状ガラス層32を、長さ方向、幅方向ならび
に厚さ方向に集積して、所定のパターンと厚さを持つコ
ア層60を形成すること、を特徴とする。
2) As shown in FIG. 1, 1) heating only a small area on the cladding layer 20 to generate a dotted glass layer 62 through a gas phase reaction; 2) heating the dotted glass layer 32; , is characterized in that it is integrated in the length direction, width direction, and thickness direction to form a core layer 60 having a predetermined pattern and thickness.

1第2図」は製造装置の概略説明図である。1 and 2" is a schematic explanatory diagram of the manufacturing apparatus.

50は反応管で、石英などの光を通す材料からなる0 52は原料ガス54の入口である。50 is a reaction tube made of a light-transmitting material such as quartz. 52 is an inlet for raw material gas 54.

56は加熱源である。反応管50を通して、クラッド層
20上の微小な面積部分、(たとえば直径20μmのス
ボ、ト)を、1500’Q  微小に加熱できるもの、
あるいは同等のエネルギーを与えるもの、たとえばレー
ザ(Ar1Nd−YAGSC!02など)や、レンズ5
8で集光される白色光などを使用する。
56 is a heating source. A device that can minutely heat a minute area on the cladding layer 20 (for example, a groove with a diameter of 20 μm) to 1500'Q through the reaction tube 50;
Or something that gives equivalent energy, such as a laser (Ar1Nd-YAGSC!02, etc.) or a lens 5
White light, etc. that is focused by 8 is used.

60は加熱源58の駆動装置で、精密にコア層60のパ
ターンを描画できるものを使用する。
Reference numeral 60 denotes a driving device for the heating source 58, which is capable of accurately drawing the pattern of the core layer 60.

原料ガス54としては、SiH4やGeH4などの水素
化物、5iC14やGeCl4などの塩素化物、Si 
(CH3>4、Go (OH3)4などの有機金属化物
などを使用する。
The raw material gas 54 includes hydrides such as SiH4 and GeH4, chlorides such as 5iC14 and GeCl4, and Si
(CH3>4, organic metal compounds such as Go (OH3)4 are used.

これらは、加熱部分以外の場所への生成を防ぐために、
連間の薄いものを用いる。
In order to prevent these from forming in areas other than the heated area,
Use one with thin reams.

反応管50内のふんい気は、定圧、減圧のどちらでもよ
いが、原料や加熱方法などにより適当な方を選ぶ。
The atmosphere inside the reaction tube 50 may be either constant pressure or reduced pressure, but the appropriate one is selected depending on the raw materials, heating method, etc.

反応管50内に原料ガス54を流し、加熱源56によっ
て、クラッド層20上の非常に微小な面積の部分だけを
スポット加熱すると、気相反応によって点状ガラス層3
2が生成する。
When the raw material gas 54 is flowed into the reaction tube 50 and only a very small area on the cladding layer 20 is spot-heated by the heating source 56, the dotted glass layer 3 is formed by a gas phase reaction.
2 is generated.

加熱源56を駆動装置60によって移動させると、点状
のガラス層32が練塗に集積されて線状カラス層34に
なる。
When the heating source 56 is moved by the driving device 60, the dotted glass layer 32 is accumulated into a linear glass layer 34.

その線状ガラス層34の隣にもう7本の線状ガラス層6
4を添わせると、幅が広がって面状のガラス層ができる
Next to the linear glass layer 34, there are seven more linear glass layers 6.
When 4 is added, the width expands and a planar glass layer is created.

その面状のガラス層の上に、上記同様にしてまたガラス
層を生成すると、厚さが次第に増す。
When another glass layer is formed on the planar glass layer in the same manner as described above, the thickness gradually increases.

駆動装置60によってパターンを制御しながら以−りの
ことを繰返すと、希望する厚さと形状を持つコア層30
ができる。
By repeating the above steps while controlling the pattern using the driving device 60, the core layer 30 with the desired thickness and shape is formed.
I can do it.

なお、クラ、ド層20と40とは、通常のCVD法で作
る。
Incidentally, the cladding and cladding layers 20 and 40 are formed by a normal CVD method.

実  施  例 基板10には2朋X 5 mの$1ウェハーを使用。Example For the substrate 10, a $1 wafer of 2 x 5 m is used.

その両端に「第3図」のように長さl 1111のVみ
ぞ12を形成。Vみぞ12以外の場所に、厚さ10μm
(1)Si02膜からなるクラ、ド層20を形成。生成
は託常のCVD法により、そのときの流量はSiH。
A V groove 12 with a length l 1111 is formed at both ends as shown in "Figure 3". 10μm thick in places other than V groove 12
(1) Formation of the cladding and cladding layers 20 made of Si02 film. The production is by the regular CVD method, and the flow rate at that time is SiH.

4tl cc / min 、 Ar 1000 cc
 / min 、 H210/ /min 、温間は1
200°01時間は1.5時間である。
4tl cc/min, Ar 1000 cc
/min, H210/ /min, warm is 1
200°01 hour is 1.5 hours.

そのようにしたものを反応管50内に人ねた。The thus prepared mixture was placed in the reaction tube 50.

加熱源56にはArレーザを使用し、レンズ58により
、20μm程変の微小面積部分を、10 MW /cm
  のハワー密変で照射できるようにした。
An Ar laser is used as the heating source 56, and a small area with a variation of about 20 μm is heated by a lens 58 at 10 MW/cm.
It became possible to irradiate with the Hower Density.

駆動装置60には0.1μm単位で位置設定可能なXY
ステージを使用。
The drive device 60 has an XY position that can be set in 0.1 μm increments.
Use stage.

原料ガス54は5iH420QQ /記in 、 Ge
H44cc/min XAr 1200 cc / m
in □反応管50内は225 Torr  の軽い減
圧ふんい気とした。
The raw material gas 54 is 5iH420QQ/in, Ge
H44cc/min XAr 1200cc/m
The inside of the reaction tube 50 was kept under a light vacuum of 225 Torr.

10 cm / Sec  の走査連関で、7回に幅が
50μm、厚さが8μm 微開の5i02−Ge02ガ
ラスの線状ガラス層34を形成。それをパターン上に数
回繰返すことにより、50μm×50μmの四角断面の
コア層60が得られた。
A linear glass layer 34 of 5i02-Ge02 glass having a width of 50 μm and a thickness of 8 μm is formed in seven passes with a scanning speed of 10 cm/Sec. By repeating this several times on the pattern, a core layer 60 with a square cross section of 50 μm×50 μm was obtained.

その上に再び通常のCVD法により、厚さ10μm の
8102膜からなるクラッド40を形成した。
A cladding 40 made of 8102 film having a thickness of 10 μm was formed thereon again by the usual CVD method.

発明の効果 点状ガラス層62を集積してコア層30を形成するので
、任意の厚さとパターンを持つコア層30を形成するこ
とができる。
Effects of the Invention Since the core layer 30 is formed by integrating the dotted glass layers 62, it is possible to form the core layer 30 with any desired thickness and pattern.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は厚膜導波路の説明図、 第211はこの発明の実施に使用する製造装置の概略説
明図、 第3図はこの発明によって製造した厚膜導波路のクラッ
ド層40を設ける前の状態の説明図。 10:基板 20と40:クラッド層 ろ0:コア層 32=点状ガラス層 特許出願人  藤倉電線株式会社
FIG. 1 is an explanatory diagram of a thick film waveguide, FIG. 211 is a schematic explanatory diagram of a manufacturing apparatus used in carrying out the present invention, and FIG. An explanatory diagram of the state. 10: Substrates 20 and 40: Clad layer 0: Core layer 32 = dotted glass layer Patent applicant: Fujikura Electric Cable Co., Ltd.

Claims (1)

【特許請求の範囲】 低屈折率ガラスからなる平板状のクラ、ド層上に、 高屈折率ガラスからなり、かつ所定のパターンと厚さを
持つコア層を設け、 そのコア層上に低屈折率ガラスからなるクラッド層を設
けた厚膜導波路を製造するに際して、前記クラッド層上
の微小面積部分だけ加熱して、点状ガラス層を、気相反
応によって生成し、その点状ガラス層を集積して、前記
所定パターンのコア層を形成することを特徴とする厚膜
導波路の製造方法。
[Claims] A core layer made of high refractive index glass and having a predetermined pattern and thickness is provided on a flat plate-like layer made of low refractive index glass, and a low refractive index layer is provided on the core layer. When manufacturing a thick film waveguide with a cladding layer made of polygonal glass, only a small area on the cladding layer is heated to generate a dotted glass layer by a gas phase reaction, and the dotted glass layer is A method for manufacturing a thick film waveguide, comprising integrating the core layer in the predetermined pattern.
JP21356481A 1981-12-28 1981-12-28 Manufacture of thick film waveguide Pending JPS58115405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21356481A JPS58115405A (en) 1981-12-28 1981-12-28 Manufacture of thick film waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21356481A JPS58115405A (en) 1981-12-28 1981-12-28 Manufacture of thick film waveguide

Publications (1)

Publication Number Publication Date
JPS58115405A true JPS58115405A (en) 1983-07-09

Family

ID=16641292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21356481A Pending JPS58115405A (en) 1981-12-28 1981-12-28 Manufacture of thick film waveguide

Country Status (1)

Country Link
JP (1) JPS58115405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162206A (en) * 1984-02-01 1985-08-24 Hitachi Ltd Ridge type optical waveguide
JPS6366511A (en) * 1986-09-09 1988-03-25 Fujitsu Ltd Production of quartz optical waveguide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163204A (en) * 1981-04-02 1982-10-07 Nec Corp Production of optical waveguide on glass substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163204A (en) * 1981-04-02 1982-10-07 Nec Corp Production of optical waveguide on glass substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162206A (en) * 1984-02-01 1985-08-24 Hitachi Ltd Ridge type optical waveguide
JPS6366511A (en) * 1986-09-09 1988-03-25 Fujitsu Ltd Production of quartz optical waveguide

Similar Documents

Publication Publication Date Title
US4619680A (en) Manufacture of integrated optical waveguides
EP0782713B1 (en) Planar waveguides
US6192712B1 (en) Optical waveguide fabrication method
JP3262259B2 (en) Improved manufacturing method of planar optical waveguide
JPS6157601B2 (en)
US6226433B1 (en) Planar optical waveguide and method of spatially selectively increasing the refractive index in a glass
JPS58115405A (en) Manufacture of thick film waveguide
DK172355B1 (en) Process for the preparation of germanium doped glasses and use of the method
US7253425B2 (en) Method and apparatus for forming optical elements by inducing changes in the index of refraction by utilizing electron beam radiation
US20070253668A1 (en) Method of Producing Germanosilicate with a High Refractive Index Change
WO2002014579A1 (en) Method for depositing a glass layer on a substrate
KR100219715B1 (en) Rare earth ion doped optical waveguide manufacturing method
KR100440763B1 (en) Optical waveguide-type filter device for flattening gain and method for manufacturing the same
JPS57208514A (en) Manufacture of diffraction grating
JP3697155B2 (en) Silicon dioxide film generation method and optical waveguide generation method
JPH05181031A (en) Optical waveguide and its production
JP2005195754A (en) Method of manufacturing optical waveguide, and the optical waveguide
JP2001255425A (en) Optical waveguide
CA2367029C (en) Planar waveguides
GB2369820A (en) Fabrication of substrates for planar waveguide devices by blow moulding tube into facetted mould
JPH08136754A (en) Production of optical waveguide
JPS632006A (en) Production of optical waveguide
JPH0727937A (en) Production of optical waveguide
JP2000226220A (en) Method for forming glass film of optical wave guide
JPH08179146A (en) Method for annealing optical waveguide with laser beam