JPS63213681A - Treatment of aluminum for providing hydrophilic property - Google Patents

Treatment of aluminum for providing hydrophilic property

Info

Publication number
JPS63213681A
JPS63213681A JP4684087A JP4684087A JPS63213681A JP S63213681 A JPS63213681 A JP S63213681A JP 4684087 A JP4684087 A JP 4684087A JP 4684087 A JP4684087 A JP 4684087A JP S63213681 A JPS63213681 A JP S63213681A
Authority
JP
Japan
Prior art keywords
film
silicate
water
hydrophilic
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4684087A
Other languages
Japanese (ja)
Other versions
JPH0715148B2 (en
Inventor
Ryosuke Sako
良輔 迫
Rikuo Ogino
荻野 陸雄
Motoki Kanazawa
金沢 泉樹
Akira Nishihara
西原 瑛
Hiroshi Okita
置田 宏
Eizo Isoyama
礒山 永三
Masaaki Mizoguchi
政秋 溝口
Katsumi Tanaka
克美 田中
Masaaki Ito
昌明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Altemira Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd, Showa Aluminum Corp filed Critical Nihon Parkerizing Co Ltd
Priority to JP4684087A priority Critical patent/JPH0715148B2/en
Publication of JPS63213681A publication Critical patent/JPS63213681A/en
Publication of JPH0715148B2 publication Critical patent/JPH0715148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a hydrophilic film having superior corrosion resistance when an org. polymer film is formed on the surface of an Al material and treated with an aq. silicate soln., by incorporating a hardening agent which makes the silicate insoluble in water into the org. polymer film. CONSTITUTION:A film of an org. polymer having >=about 5,000mol.wt. such as polyvinyl acetate, polyacrylic acid or polybutadiene is formed on the surface of an Al material to <=about 10mum thickness. An aq. silicate soln. such as water glass having about 2-5 ratio of SiO2 to Na2O is then applied to form a film of about 0.1-5mum thickness and to make the surface of the Al material hydrophilic. At this time, a hardening agent which makes the silicate insoluble in water, e.g., Mg(OH)2, phosphoric acid, tartaric acid or sodium silicofluoride is incorporated into the org. polymer film. Thus, a hydrophilic film having superior hydrophilic property in the early stage and after the lapse of time and superior corrosion resistance is obtd. The film is useful to provide hydrophilic property to the surfaces of fins forming the heat radiating and cooling parts of a heat exchanger made of Al.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウムもしくはアルミニウム合金の表
面を親水性処理するに関するものであり、さらに詳しく
述べるならばアルミニウム製熱交換器の放熱部および冷
却部を構成するフィンの表面を親水化処理する方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to hydrophilic treatment of the surface of aluminum or aluminum alloy, and more specifically, the heat radiation part and cooling part of an aluminum heat exchanger. The present invention relates to a method of hydrophilizing the surface of the fins constituting the fin.

〔従来の技術〕[Conventional technology]

従来、アルミニウムもしくはアルミニウム合金(以下、
「アルミニウム」と総称する)より構成されるアルミニ
ウム製熱交換器のフィン等において、白錆防止を目的と
した表面処理として陽極酸化皮膜、ベーマイト皮膜、並
に樹脂皮膜処理などが行われているが、これらの処理に
より形成される皮膜表面は水濡れ性がほとんどなく、む
しろ撥水性がある。又、白錆防止のためクロメート化成
皮膜処理なども行なわれている。クロメート化成皮膜は
皮膜形成初期には多少の水濡れ性があるが、クロメート
処理だけでは十分な親木性は得られない。またクロメー
ト化成皮膜は特に加温乾燥条件下における経時によって
、親水性面から疎水性面に変化する傾向があるので熱交
換器のフィンの皮膜としては問題がある。
Conventionally, aluminum or aluminum alloy (hereinafter referred to as
For the fins of aluminum heat exchangers made of aluminum (collectively referred to as "aluminum"), surface treatments such as anodic oxide coating, boehmite coating, and resin coating are performed to prevent white rust. The surface of the film formed by these treatments has almost no water wettability, and is rather water repellent. In addition, chromate conversion coating treatment is also performed to prevent white rust. Although chromate conversion coatings have some water wettability in the initial stage of coating formation, sufficient wood-philicity cannot be obtained with chromate treatment alone. In addition, chromate conversion coatings tend to change from hydrophilic to hydrophobic over time, especially under heated and dry conditions, so they are problematic as coatings for heat exchanger fins.

一方熱交換器の多くは、放熱あるいは冷却効果を向上さ
せるために放熱部および冷却部の面積を出来る限り大き
くとる様設計されているため、フィンの間隔が極めてせ
まい。このため、冷却用として用いる場合、大気中の水
分が熱交換器表面、特にフィン間隙に凝集する。凝集し
た水は、フィン表面が疎水性面である程水滴になり易く
、且つフィン間隙で目詰りを起して通風抵抗が増加し、
熱交換率を低下させる。
On the other hand, most heat exchangers are designed to have as large an area as possible for the heat radiating section and the cooling section in order to improve the heat dissipation or cooling effect, so the spacing between the fins is extremely narrow. Therefore, when used for cooling, moisture in the atmosphere condenses on the surface of the heat exchanger, particularly in the gaps between the fins. The more hydrophobic the fin surface is, the more condensed water becomes water droplets, and the fin gaps become clogged, increasing ventilation resistance.
Reduces heat exchange rate.

又、フィン間隙に溜った水滴は熱交換器の送風機によっ
て飛散し易くなり、熱交換器の下部に設置した水滴受皿
で受は消れす、熱交換器の近傍を水で汚す。
In addition, the water droplets accumulated in the fin gaps are easily scattered by the blower of the heat exchanger, and the water droplets are dissipated in the water droplet tray installed at the bottom of the heat exchanger, staining the vicinity of the heat exchanger with water.

従って、水滴がフィン間隙に残り水滴による目詰りを起
させない様にするため、アルミニウム表面に親水性を与
え、水濡れ性を向上させる処理が提案されている。特に
、水ガラス等の珪酸塩でフィンを処理する方法は、水濡
性、耐熱性が高く、価格も安いところから、多くの方法
が提案されている。
Therefore, in order to prevent water droplets remaining in the fin gaps from causing clogging, a treatment has been proposed to impart hydrophilicity to the aluminum surface and improve water wettability. In particular, many methods have been proposed for treating fins with silicates such as water glass because they have high water wettability, high heat resistance, and are inexpensive.

そのひとつの方法は、化成処理したアルミニウム表面に
直接珪酸塩水溶液を塗布し、乾燥する方法である。この
方法としては、例えば、特開昭50−38645号公報
に記載のものがある。
One method is to apply a silicate aqueous solution directly to the chemically treated aluminum surface and dry it. This method is described, for example, in Japanese Patent Application Laid-Open No. 50-38645.

別法として、アルミニウム表面に予め有機高分子皮膜を
形成後、この上に珪酸塩溶液を塗布し、乾燥する方法等
が提案されている。この方法は例えば特開昭60−11
7098号公報に提案されている。
As an alternative method, a method has been proposed in which an organic polymer film is previously formed on the aluminum surface, a silicate solution is applied thereon, and the film is dried. This method is used, for example, in JP-A-60-11
This is proposed in Publication No. 7098.

他の別法として有機高分子化合物と無機珪酸塩の混合物
をアルミニウム表面に塗布する提案がされている。この
提案は例えば次の公開公報に見られる。
As another alternative method, it has been proposed to apply a mixture of an organic polymer compound and an inorganic silicate to the aluminum surface. This proposal can be found, for example, in the following publication:

特開昭61−8598号公報は、スチレンマレイン酸共
重合体、ポリアクリルアミド、ブチレンマレイン酸共重
合体、ポリアクリル酸あるいはこれらの塩と、XM2O
・ySiOz(M= Li  、 Na  、 K 、
 y / x≧2)で示されるケイ酸塩化合物との混合
物を被覆層とフィン材を開示している。
JP-A-61-8598 discloses that styrene-maleic acid copolymer, polyacrylamide, butylene-maleic acid copolymer, polyacrylic acid or a salt thereof, and XM2O
・ySiOz (M=Li, Na, K,
y/x≧2) as a coating layer and a fin material.

特開昭60−101156号公報は、アルカリケイ酸塩
とカルボニル基を含む化合物(アルデヒド類、エステル
類、アミド類など)を含むアルミニウムの親水性皮膜形
成剤を開示している。
JP-A-60-101156 discloses a hydrophilic film-forming agent for aluminum containing an alkali silicate and a compound containing a carbonyl group (aldehydes, esters, amides, etc.).

特開昭60−221582号公報は、アルミニウム板上
にケイ酸塩、ベーマイト等より構成される親水性無機皮
膜層を形成し、その上に重合度が50以上の親水性有機
高分子皮膜を形成したフィン材を開示している。
JP-A No. 60-221582 discloses that a hydrophilic inorganic film layer made of silicate, boehmite, etc. is formed on an aluminum plate, and a hydrophilic organic polymer film with a degree of polymerization of 50 or more is formed on top of the hydrophilic inorganic film layer. discloses a fin material made of

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第1番目に述べた従来の親水性処理方法(化成処理した
アルミニウムに直接珪酸塩水溶液塗布)により形成され
る皮膜は、親水性皮膜のみであり、耐食性皮膜ではない
ため、皮膜形成によりかえって、耐食性が低下し、白錆
発生傾向が高まるなどの欠点があった。
The film formed by the conventional hydrophilic treatment method (directly applying a silicate aqueous solution to chemically treated aluminum) mentioned in the first section is only a hydrophilic film and not a corrosion-resistant film. There were disadvantages such as a decrease in the corrosion resistance and an increase in the tendency for white rust to occur.

第2番目に述べた従来の親水性処理方法(有機高分子皮
膜形成後、珪酸塩皮膜形成)では、耐食性と初期の親水
性は充分であるが、上層の珪酸塩が凝縮水で流去され易
いため、親木持続性が悪いという欠点があった。
The conventional hydrophilic treatment method mentioned in the second section (forming an organic polymer film and then forming a silicate film) provides sufficient corrosion resistance and initial hydrophilicity, but the silicate in the upper layer is washed away by condensed water. Because it is easy to grow, it has the disadvantage of poor persistence of parent trees.

第3番目に述べた従来の親水性処理方法(有機高分子と
珪酸塩の混合物塗布)でアルミニウム上に形成される皮
膜に含まれる珪酸塩は親水性であるため、この方法で処
理されたフィンはアルミニウムの白錆発生を促進する傾
向がある。また、アルミニウム上に混合物を塗布し、乾
燥する段階で珪酸塩と有機高分子が相分離するため製造
条件による性能のばらつきが太き(、フィンの親水性は
不十分になる。
The silicate contained in the film formed on aluminum by the conventional hydrophilic treatment method (coating a mixture of organic polymer and silicate) mentioned in the third point is hydrophilic, so fins treated with this method tends to promote the formation of white rust on aluminum. In addition, the silicate and organic polymer undergo phase separation when the mixture is applied to aluminum and dried, resulting in wide variations in performance depending on manufacturing conditions (and the hydrophilicity of the fin becomes insufficient).

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者らは種々検討の結果、第2番目に説明
した従来の親水性処理方法の工程を採用し、同方法の問
題点を解消するのが、最もすぐれ、かつ安定した親水性
皮膜を得またアルミニウムの白錆発生をなくする上での
最良の方法であると判断し、アルミニウム上に塗布する
有機高分子皮膜に、後に塗布される珪酸塩を非水溶化さ
せる硬化剤特に水溶性の硬化剤を含有させることにより
、親水持続性を大きく向上させ得ることを見出した。
Therefore, as a result of various studies, the present inventors adopted the process of the conventional hydrophilic treatment method described in the second section, and found that the most excellent and stable hydrophilic coating that solves the problems of this method. In addition, we determined that this was the best way to eliminate the occurrence of white rust on aluminum, and added a hardening agent, especially a water-soluble one, to the organic polymer film applied to aluminum to make the silicate that will be applied later non-water-soluble. It has been found that hydrophilicity sustainability can be greatly improved by including a curing agent of

本発明が最大の特徴とする、有機高分子内に含有せしめ
られた硬化剤としては、(イ) Mg(OH)z硝酸ア
ルミ、ミョウバンなどの多価金属の水酸化物、塩、(ロ
)リン酸、ポリリン酸、硼酸などの無機酸及びそのアン
モニウム塩、(ハ)酒石酸、リンゴ酸、有機スルホン酸
、ホスホン酸、拘縁酸、ポリアクリル酸などの存機酸、
特にカルボン酸、ハイドロキシカルボン酸およびそのア
ンモニウム塩、(ニ)ケイ弗化ソーダ、チタン弗酸など
の珪弗化、チタン弗化物などを用いることができる。
The curing agent contained in the organic polymer, which is the most characteristic feature of the present invention, includes (a) hydroxides and salts of polyvalent metals such as Mg(OH)z aluminum nitrate and alum; Inorganic acids and their ammonium salts such as phosphoric acid, polyphosphoric acid, and boric acid; (c) organic acids such as tartaric acid, malic acid, organic sulfonic acids, phosphonic acids, restrictive acids, and polyacrylic acids;
In particular, carboxylic acids, hydroxycarboxylic acids and their ammonium salts, (di)silifluorides such as sodium silicofluoride, titanium fluoride, and titanium fluorides can be used.

水ガラスが上記のような硬化剤で硬化(非水溶化)する
のは公知である(例えば、科学と工業Up: 1.77
〜178.184〜185(1983) 、日本接着協
会誌12394(1976)など)が、これらの化合物
は無機系耐熱塗料や耐熱接着剤等の成分である水ガラス
を硬化させるために塗料、接着剤等に含有させる従来例
がほとんどである。唯、前掲特開昭60−101156
号公報にはグリオキザールとアルカリケイ酸塩の混合液
よりアルミニウムの親水性皮膜を形成することが述べら
れているが、この方法は上記した第3番目の従来法の問
題点の他に、このような混合液は混合後直ちに、又は暫
時にしてゲル化し、塗装し難いために、水ガラスの硬化
反応(不溶化反応)が工業的に有効に親水性処理に利用
されておらない。本発明者らは種々実験を行なったとこ
ろ、意外にも、加熱乾燥された有機高分子皮膜中に含有
された硬化剤が、珪酸塩水溶液を用い珪酸塩皮膜を造膜
する工程で、珪酸塩が流去しない程度に珪酸塩を不溶化
させ、フィン材の要求性能が完全に満足されることを見
出した。水ガラスの硬化剤としては水溶性のものが好ま
しい。
It is known that water glass can be cured (made non-water soluble) by the above-mentioned curing agents (for example, Science and Industry Up: 1.77
178.184-185 (1983), Japan Adhesive Association Journal 12394 (1976), etc.), these compounds are used in paints and adhesives to harden water glass, which is a component of inorganic heat-resistant paints and heat-resistant adhesives. In most conventional examples, it is contained in Only, the above-mentioned Japanese Patent Application Publication No. 60-101156
The publication describes the formation of a hydrophilic film on aluminum from a mixed solution of glyoxal and alkali silicate, but this method has the following problems in addition to the problems of the third conventional method mentioned above. The water glass hardening reaction (insolubilization reaction) has not been effectively used industrially for hydrophilic treatment because the mixed liquid gels immediately or after a while after mixing and is difficult to coat. The present inventors conducted various experiments and found that, surprisingly, the curing agent contained in the heat-dried organic polymer film was removed from the silicate layer during the process of forming a silicate film using an aqueous silicate solution. It was discovered that the required performance of the fin material was completely satisfied by insolubilizing the silicate to such an extent that the silicate was not washed away. As the hardening agent for water glass, a water-soluble one is preferable.

以下、親水性処理剤の成分、条件などについて詳しく説
明する。
The components, conditions, etc. of the hydrophilic treatment agent will be explained in detail below.

有機高分子皮膜としては、現在工業化され使用されてい
る有機高分子樹脂のほとんどが使用可能であり、酢酸ビ
ニル、塩化ビニル、塩化ビニリデン等のビニル系および
その共重合体、アクリル酸、メタクリル酸、及びそのエ
ステル、アクリルアミド等のアクリル系およびその共重
合体、アルキッド系、エポキシ系、ウレタン系、ポリエ
ステル系、スチレン系、オレフィン系およびそれらの共
重合体、ブタジェン等の合成ゴム系および天然高分子系
及びそれらの混合物が用いられる。
Most of the organic polymer resins that are currently industrialized and used can be used as the organic polymer film, including vinyl-based resins such as vinyl acetate, vinyl chloride, and vinylidene chloride, and their copolymers, acrylic acid, methacrylic acid, and their esters, acrylics and their copolymers such as acrylamide, alkyds, epoxys, urethanes, polyesters, styrenes, olefins and their copolymers, synthetic rubbers such as butadiene, and natural polymers. and mixtures thereof are used.

有機高分子樹脂の分子量は5,000以上が好ましく 
、5,000未満の場合特に親水性の高い樹脂の場合に
は、 皮膜形成時に酸化反応・付加反応あるいはビニル重合反
応などによって高分子化し水に不溶で耐食性のある皮膜
を形成させることが好ましい。
The molecular weight of the organic polymer resin is preferably 5,000 or more.
, less than 5,000, particularly in the case of a highly hydrophilic resin, it is preferable to polymerize it by oxidation reaction, addition reaction, vinyl polymerization reaction, etc. during film formation to form a water-insoluble and corrosion-resistant film.

又、本発明では表面処理用の樹脂が主として熱交換器に
用られるため、アルミニウムおよびその合金表面に対し
て薄膜で耐食性の良い樹脂皮膜を形成するものから選択
する必要がある。熱交換器に用いる皮膜厚は出来る限り
薄い方が望ましく、通常は10ミクロン以下であり最適
には0.1ミクロン〜2ミクロンが望ましい。有機溶媒
溶液又はオルガノゾル形態の塗料を使用してもよいが、
有m溶剤等による大気汚染や、引火性の点などを勘案す
ると、下塗組成としては、水溶性高分子、と水溶性架橋
剤の組合せまたは水系エマルジョンが最も望ましい。
Further, in the present invention, since the resin for surface treatment is mainly used for the heat exchanger, it is necessary to select a resin that forms a thin resin film with good corrosion resistance on the surface of aluminum and its alloy. The thickness of the coating used in the heat exchanger is preferably as thin as possible, usually 10 microns or less, and most preferably 0.1 micron to 2 microns. Paints in the form of organic solvent solutions or organosols may be used, but
Considering air pollution and flammability caused by solvents, the most desirable undercoat composition is a combination of a water-soluble polymer and a water-soluble crosslinking agent, or a water-based emulsion.

造膜用水溶性高分子としては、ポリビニルアルコール、
グルコース誘導体、ヒドロキシエチルセルロース、ポリ
ビニルフェノール、ポリエチレングリコール、ポリ (
メタ)アクリル酸、マレイン酸(イタコン酸)コポリマ
ー、リン酸ポリスチレン、サリチル酸樹脂、スルホン酸
ポリスチレン、スルホン酸フェノール、ポリエチレンイ
ミン、アミノ化ポリスチレン、ポリビニルピリジン、ポ
リアクリルアミド、水溶性ポリアミド、ポリビニルピリ
ジン、ポリビニルピロリドン、澱粉、ゼラチン、カゼイ
ン、アラビアゴムなどの天然または合成高分子やメチロ
ールアクリルアミド、メチロールメラミン、メチロール
フェノール、メタクリル酸ヒドロキシエチル、レゾール
、p−アミノベンゼンスルホン酸等のモノマー、オリゴ
マーより得られる重合体などを用いることができる。
Water-soluble polymers for film formation include polyvinyl alcohol,
Glucose derivatives, hydroxyethylcellulose, polyvinylphenol, polyethylene glycol, poly(
meth)acrylic acid, maleic acid (itaconic acid) copolymer, polystyrene phosphate, salicylic acid resin, polystyrene sulfonate, phenol sulfonate, polyethyleneimine, aminated polystyrene, polyvinylpyridine, polyacrylamide, water-soluble polyamide, polyvinylpyridine, polyvinylpyrrolidone Polymers obtained from natural or synthetic polymers such as starch, gelatin, casein, and gum arabic, and monomers and oligomers such as methylol acrylamide, methylol melamine, methylol phenol, hydroxyethyl methacrylate, resol, and p-aminobenzenesulfonic acid. can be used.

架橋剤としては基体となる高分子によって各種のものが
使用され例えば、活性水素を有する高分子の場合には、
2ヶ以上のイソシアネート基、アジリジル基、グリシジ
ル基、メチロール基等の活性水素と反応し得る化合物が
、また、不飽和基を含有するオリゴマーや高分子の場合
にはこれと共重合可能な不飽和化合物が使用される。Z
n、Al。
Various types of crosslinking agents are used depending on the base polymer. For example, in the case of a polymer containing active hydrogen,
A compound that can react with active hydrogen, such as two or more isocyanate groups, aziridyl groups, glycidyl groups, and methylol groups, is also an unsaturated compound that can be copolymerized with oligomers and polymers that contain unsaturated groups. compound is used. Z
n, Al.

Ti化合物などの無機化合物は、O,N含有の有機高分
子と錯体を生成し、架橋不溶化剤として作用する。有機
高分子の塗布方法としては、噴霧、刷毛、ロール、フロ
ーコート、浸漬塗装、粉体塗装等任意の方法を採用でき
る。
An inorganic compound such as a Ti compound forms a complex with an organic polymer containing O and N, and acts as a crosslinking insolubilizer. As a method for applying the organic polymer, any method such as spraying, brushing, roll coating, flow coating, dip coating, powder coating, etc. can be adopted.

次に、有機高分子塗膜の乾燥方法としては加熱による方
法が最も一般的であるが、勿論風乾のほか、UV、EB
熱照射よる乾燥も使用し得る。
Next, the most common method for drying organic polymer coatings is by heating, but of course, in addition to air drying, UV, EB
Drying by thermal radiation may also be used.

有機高分子塗膜上に塗布される珪酸塩水溶液の珪酸塩と
しては、Li、Na、K、アミンの珪酸塩を使用可能で
あるが、いわゆる水ガラスがコストの面から一般に使用
される。水ガラスの5ift/NazO比は特に制限が
ないが、2〜5のものが一般に使用される。珪酸塩水溶
液の濃度は、塗布し易いように定めればよく、親水性面
の性能上の制限は特に制限はない。珪酸塩水溶液の塗布
量は、加熱乾燥後に0.1〜5μmの厚さの珪酸塩皮膜
が形成されるようにすることが好ましい。皮膜の厚さが
O,1μm未満であると、親水性持続効果が十分でなく
、5μmを越えると珪酸塩が十分硬化(非水溶化)され
なくなり、また亀裂の発生や剥離などのため熱交換器の
性能への悪影響が懸念される。
As the silicate of the silicate aqueous solution applied onto the organic polymer coating film, silicates of Li, Na, K, and amine can be used, but so-called water glass is generally used from the viewpoint of cost. The 5ift/NazO ratio of water glass is not particularly limited, but a ratio of 2 to 5 is generally used. The concentration of the silicate aqueous solution may be determined to facilitate application, and there are no particular limitations on the performance of the hydrophilic surface. The coating amount of the silicate aqueous solution is preferably such that a silicate film having a thickness of 0.1 to 5 μm is formed after heating and drying. If the thickness of the film is less than 0.1 μm, the hydrophilic effect will not be sufficient, and if it exceeds 5 μm, the silicate will not be sufficiently hardened (insoluble in water), and heat exchange will be difficult due to cracking and peeling. There is concern that this may have an adverse effect on the performance of the device.

珪酸塩の加熱乾燥温度は100〜200℃および10秒
〜IO分の範囲内において、高く低)温州では短(長)
時間加熱とする。
The heating drying temperature of silicate is within the range of 100 to 200℃ and 10 seconds to IO minutes, high and low) and short (long) in Wenzhou.
Heat for an hour.

〔作 用〕[For production]

上塗として塗布される珪酸塩水溶液は均一に塗布され、
乾燥後も均質な珪酸塩度IQを形成する。
The silicate aqueous solution applied as a topcoat is applied evenly,
Even after drying, a homogeneous silicate degree IQ is formed.

下塗として用いられる塗膜は均一上塗りを可能とすると
ともに、乾燥後には耐水性を発揮する。
The coating film used as an undercoat allows for uniform topcoating and exhibits water resistance after drying.

均質な珪酸塩皮膜はすぐれた親水性を発揮し、また下塗
り塗膜中に含有された硬化剤の作用により珪酸塩皮膜の
親木性は経時劣化を示さない。このため上下塗膜の耐食
性も高められる。
A homogeneous silicate film exhibits excellent hydrophilicity, and the wood-philicity of the silicate film does not deteriorate over time due to the action of the curing agent contained in the undercoat film. Therefore, the corrosion resistance of the upper and lower coatings is also improved.

以下、実施例によりさらに本発明を説明する。The present invention will be further explained below with reference to Examples.

〔実施例〕〔Example〕

以下の実施例における試験法は次のとおりである。 The test methods in the following examples are as follows.

1、九 固体表面上に静置した直径1〜21Mの小水滴
の接触角をFACE接触角接触角計C型(協和界面化学
製品)を用いて測定した。
1.9 The contact angle of a small water droplet with a diameter of 1 to 21 M placed on a solid surface was measured using a FACE contact angle meter C type (Kyowa Kaimen Kagaku Products).

■皇ユ 塩水噴霧試験法JIS Z−2371に基づく
測定を行ない、白錆面積が5%に達する迄の噴霧テスト
時間で示す。
■Kou Yu Salt water spray test method Measurements are carried out based on JIS Z-2371, and the spray test time is shown as the spray test time until the white rust area reaches 5%.

遣水玉淀五−室温で流水中に8時間浸漬後、16時間8
0℃で乾燥する処理を1 cycleとし、5cyc!
e後の対水接触角で表わす。
Yarizutama Yodogo - Soaked in running water for 8 hours at room temperature, then 8 hours for 16 hours
The process of drying at 0°C is 1 cycle, and 5 cycles!
It is expressed as the contact angle with water after e.

実施例1 造膜用有機高分子として水溶性ナイロン(AQ−ナイロ
ン、東し■)を22 g/l 、水溶性ナイロンの架橋
剤として水溶性ポリウレタン(エラストロンH−38、
第一工業製薬)を固形分換算で5g/l、水溶性珪酸塩
の硬化剤としてリン酸を8g/!l含む混合水溶液を、
脱脂したアルミニウム板(A−1100)の表面に塗布
し、180℃の空気乾燥層中で3分間乾燥し、平均膜厚
0.8μの塗膜を得た。
Example 1 22 g/l of water-soluble nylon (AQ-Nylon, Toshi ■) was used as an organic polymer for film formation, and water-soluble polyurethane (Elastron H-38,
(Daiichi Kogyo Seiyaku) in terms of solid content, 5 g/l, and phosphoric acid as a hardening agent for water-soluble silicate, 8 g/l! A mixed aqueous solution containing l,
It was applied onto the surface of a degreased aluminum plate (A-1100) and dried for 3 minutes in an air drying layer at 180°C to obtain a coating film with an average thickness of 0.8 μm.

この上に3号水ガラスの10%水溶液を塗布後、上記同
様に乾燥して、平均膜厚0.3μの塗膜とした。
A 10% aqueous solution of No. 3 water glass was applied thereon and dried in the same manner as above to form a coating film with an average thickness of 0.3 μm.

比較例1 硬化剤であるリン酸を除いた以外上記実施例1と同様に
処理した。
Comparative Example 1 The same process as in Example 1 was carried out except that the curing agent phosphoric acid was omitted.

以下余白 〔発明の効果〕 以」二説明したように、本発明によれば、初期親水性、
経時親水性および耐食性のすべてにすぐれた親水性皮膜
が得られる。かかる皮膜はアルミニウム製熱交換器のフ
ィンのみならず、アルミニウム送電線の耐コロナ放電処
理(特開昭57−49110号)としても有用である。
In the following margin [Effects of the Invention] As explained hereinafter, according to the present invention, initial hydrophilicity,
A hydrophilic film with excellent aging properties and corrosion resistance can be obtained. Such a coating is useful not only for the fins of aluminum heat exchangers, but also for anti-corona discharge treatment of aluminum power transmission lines (Japanese Patent Laid-Open No. 57-49110).

Claims (1)

【特許請求の範囲】[Claims] 1. アルミニウム材の表面に有機高分子皮膜を形成さ
せ、次で珪酸塩水溶液で処理する親水化処理法において
、有機高分子皮膜中に珪酸塩を非水溶化する硬化剤を含
有せしめることを特徴とする親水化処理方法。
1. A hydrophilic treatment method in which an organic polymer film is formed on the surface of an aluminum material and then treated with a silicate aqueous solution, characterized by containing a hardening agent that makes the silicate insoluble in water in the organic polymer film. Hydrophilic treatment method.
JP4684087A 1987-03-03 1987-03-03 Method for hydrophilic treatment of aluminum Expired - Fee Related JPH0715148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4684087A JPH0715148B2 (en) 1987-03-03 1987-03-03 Method for hydrophilic treatment of aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4684087A JPH0715148B2 (en) 1987-03-03 1987-03-03 Method for hydrophilic treatment of aluminum

Publications (2)

Publication Number Publication Date
JPS63213681A true JPS63213681A (en) 1988-09-06
JPH0715148B2 JPH0715148B2 (en) 1995-02-22

Family

ID=12758536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4684087A Expired - Fee Related JPH0715148B2 (en) 1987-03-03 1987-03-03 Method for hydrophilic treatment of aluminum

Country Status (1)

Country Link
JP (1) JPH0715148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693462A (en) * 1991-05-13 1994-04-05 Enthone Omi Inc Method for sealing chromate converting film on electroplated zinc
US10113070B2 (en) 2015-11-04 2018-10-30 Ppg Industries Ohio, Inc. Pretreatment compositions and methods of treating a substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693462A (en) * 1991-05-13 1994-04-05 Enthone Omi Inc Method for sealing chromate converting film on electroplated zinc
US10113070B2 (en) 2015-11-04 2018-10-30 Ppg Industries Ohio, Inc. Pretreatment compositions and methods of treating a substrate

Also Published As

Publication number Publication date
JPH0715148B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JP2523114B2 (en) Method for hydrophilic treatment of aluminum
JP2506924B2 (en) Aluminum heat exchanger
CA1132887A (en) Composition and method for coating metal surfaces
JP2002285139A (en) Hydrophilizing agent, method for hydrophilizing and aluminum or aluminum alloy material subjected to hydrophilizing
KR100669629B1 (en) Process for hydrophilic treatment of aluminum materials and primers therefor and hydrophilic coatings
US4650527A (en) Hydrophilic surface-treating process for an aluminum article
JP2512452B2 (en) Method for hydrophilic treatment of aluminum
US5211989A (en) Clear hydrophilic coating for heat exchanger fins
JPH0136503B2 (en)
JP4035251B2 (en) Substrate having surface hydrophilicity and method for producing the same
JP2507060B2 (en) Aluminum heat exchanger and manufacturing method thereof
JPS63213681A (en) Treatment of aluminum for providing hydrophilic property
JP2507070B2 (en) Method for hydrophilizing aluminum fin coil material
JPH02219876A (en) Hydrophilic coating agent, aluminum or aluminum alloy sheet for fin and heat exchanger
JP3225793B2 (en) Highly hydrophilic paint
JP4176026B2 (en) anti-rust
KR100509881B1 (en) A method of forming a hydrophilic coating on a metal surface
JP2564478B2 (en) Method for making hydrophilic metal material containing aluminum
JPH02219877A (en) Hydrophilic coating agent, aluminum or aluminum alloy sheet for fin and heat exchanger
JPS63262238A (en) Heat-exchanger fin material
JP2564479B2 (en) Method for making hydrophilic metal material containing aluminum
JPH02105873A (en) Highly hydrophilic coating material
JPH02219875A (en) Hydrophilic coating agent, aluminum or aluminum alloy sheet for fin and heat exchanger
JP2002161377A (en) Fin material for heat exchanger with non-chromate coating type primary coating layer, and heat exchanger having the same
JPS63216977A (en) Treatment of aluminum material for preventing corrosion and providing hydrophilic property

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees