JPS63213649A - Ceramics-strengthened aluminum composite material - Google Patents

Ceramics-strengthened aluminum composite material

Info

Publication number
JPS63213649A
JPS63213649A JP4520487A JP4520487A JPS63213649A JP S63213649 A JPS63213649 A JP S63213649A JP 4520487 A JP4520487 A JP 4520487A JP 4520487 A JP4520487 A JP 4520487A JP S63213649 A JPS63213649 A JP S63213649A
Authority
JP
Japan
Prior art keywords
composite material
ceramics
alloy
powder
aluminum composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4520487A
Other languages
Japanese (ja)
Inventor
Tomomi Soeda
知美 副田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP4520487A priority Critical patent/JPS63213649A/en
Publication of JPS63213649A publication Critical patent/JPS63213649A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramics-strengthened aluminum composite material combining high strength with high toughness at a low cost, by incorporating specific amounts of Ti into a composite material consisting of an Al or Al-alloy matrix and a ceramics reinforcement. CONSTITUTION:Ti is added by >=0.1%, by weight, preferably by 0.1 - about 20%, to a ceramics-strengthened aluminum composite material in which a reinforcement composed of ceramics is contained in a matrix composed of Al or Al alloy. This Ti addition can be carried out by blending prescribed amounts of metallic Ti powder at the time of mixing a ceramics filler and an Al or Al-alloy powder and by applying vacuum hot pressing to the above. In this way, wettability at the interface of the powders is improved, so that composite material having high adhesive strength of interface and combining high strength with high toughness can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アルミニウム(An又はAg合金に、例えば
、粒子、ウィスカ又は繊維状のセラミックス(以下、セ
ラミックスフィラーという)を強化材として添加したセ
ラミックス強化アルミニウム複合材料に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to ceramics in which particles, whiskers, or fibrous ceramics (hereinafter referred to as ceramic fillers) are added to aluminum (An or Ag alloys) as reinforcing materials. Concerning reinforced aluminum composite materials.

[従来の技術] セラミックス強化Affi複合材料は、理論上高い強度
を得ることができるのに加え、耐熱性及び耐蝕性が優れ
ていることから、宇宙航空分野及び自動車分野等におい
て、tI4造材料として実用化されつつある。
[Prior art] Ceramic-reinforced Affi composite materials can theoretically obtain high strength, and have excellent heat resistance and corrosion resistance, so they are used as tI4 construction materials in the aerospace and automobile fields. It is being put into practical use.

ところで、複合材料の強化特性は、セラミックスと/l
又はAR金合金の界面における接着性の良否に支配され
る。この界面接着性を向上させるためには、セラミック
スとAg又はAg合金との相互間の沈れ性を改善するこ
とが有効な手段である。このため、従来、八ρ又は、1
2合金にセラミックスフィラーを混合した粉体を熱間加
圧して複合材料を製造する場合に、熱間成形温度及び加
圧力を極めて高く設定している。これは、この熱間成形
温度及び加圧力が低いと、良好な濡れ性を得ることが困
難であり、製造された複合材料の強度が理論強度よりも
極めて低くなるからである。
By the way, the reinforcing properties of composite materials are similar to those of ceramics.
Or it is controlled by the adhesion quality at the interface of the AR gold alloy. In order to improve this interfacial adhesion, it is effective to improve the mutual sinkability between the ceramic and Ag or Ag alloy. For this reason, conventionally, eight ρ or 1
When a composite material is produced by hot pressing a powder mixture of two alloys and a ceramic filler, the hot forming temperature and pressing force are set extremely high. This is because if the hot forming temperature and pressure are low, it is difficult to obtain good wettability, and the strength of the manufactured composite material will be much lower than the theoretical strength.

[発明が解決しようとする問題点] しかしながら、このように、セラミックスフィラーとA
2又は/’1合金との間に高い濡れ性を確保1yるため
に、熱間成形温度及び加圧力を高く設定すると、作業時
間が長期化すると共に、製造設備が大型化してしまい、
13Hコストが高いという問題点がある。これが、複合
材料の実用化を阻む要因となり、作業性の改善が要望さ
れている。
[Problems to be solved by the invention] However, in this way, ceramic filler and A
If the hot forming temperature and pressure are set high to ensure high wettability with the 2 or 1 alloy, the working time will become longer and the manufacturing equipment will become larger.
There is a problem that 13H cost is high. This is a factor that hinders the practical application of composite materials, and improvements in workability are desired.

本発明は、かかる事情に鑑みてなされたものであって、
熱間成形温度及び加圧を高くすることなく、セラミック
スとAβ又はAN合金との間に良好な濡れ性が得られて
、高強度且つ高延性であり、VDコストが低いセラミッ
クス強化アルミニウム複合材料を提供することを目的と
する。
The present invention has been made in view of such circumstances, and
A ceramic-reinforced aluminum composite material with good wettability between ceramics and Aβ or AN alloy without increasing hot forming temperature and pressure, has high strength and ductility, and has low VD cost. The purpose is to provide.

[問題点を解決するための手段] 本発明に係るセラミックス強化アルミニウム複合材料は
、マトリックスとしてのアルミニウム又はアルミニウム
合金に、強化材としてセラミックスを含むセラミックス
強化アルミニウム複合材料において、チタンを0.1重
量%以上含有することを特徴とする。
[Means for Solving the Problems] The ceramic-reinforced aluminum composite material according to the present invention contains 0.1% by weight of titanium in a ceramic-reinforced aluminum composite material containing ceramic as a reinforcing material in aluminum or an aluminum alloy as a matrix. It is characterized by containing the above.

[作用〕 本願発明者は、セラミックスと八ρ又はA4合金との間
の界面接着性を高めるべく種々実験研究を重ねた結果、
セラミックスフィラーとAff又はAR合金粉末とを混
合する際に、金属チタン(Ti)の粉末を添加すること
により、この目的を達成することができることに想到し
た。
[Function] As a result of various experimental studies to improve the interfacial adhesion between ceramics and A4 alloy, the inventor of the present application found that
The inventors have come up with the idea that this objective can be achieved by adding metallic titanium (Ti) powder when mixing the ceramic filler and the Aff or AR alloy powder.

添加された金JFITiは、加熱されてAβ又はA4合
金と反応し、液相を生ずる。この液相がセラミックスフ
ィラーと、Aff又はA℃金合金の混合粉末中に浸潤し
て両者の界面における濡れ性を向上させる。これにより
、混合粉末を熱間加圧する際の熱間成形温度及び加圧ツ
ノを高くすることなく、界面接着性を向上させることが
でき、高強度且つ高延性の複合材料を円滑に且つ低コス
トで製造するとができる。
The added gold JFITi is heated and reacts with the Aβ or A4 alloy to form a liquid phase. This liquid phase infiltrates into the mixed powder of the ceramic filler and the Aff or A°C gold alloy to improve the wettability at the interface between the two. As a result, interfacial adhesion can be improved without increasing the hot forming temperature and pressure point when hot pressing the mixed powder, and high strength and high ductility composite materials can be produced smoothly and at low cost. It can be manufactured with.

この場合に、セラミックスフィラーと八ρ又はへ2合金
粉末との混合物中におけるT1含有吊が0.1重量%未
満であると、上述のTiによる界面接着性の向上効果が
認められない。従って、Ti含有吊は0.1重量%以上
であることが必要である。
In this case, if the T1 content in the mixture of the ceramic filler and the 8.rho. Therefore, the Ti content needs to be 0.1% by weight or more.

なお、Ti含有吊が20重量%を超えると、過剰のTi
がマトリックスであるAI又は7’1合金に拡散して材
料特性が変化し、セラミックス強化へ2複合材料として
の所望の特性が得られなくなる。そうすると、熱処理及
び二次加工等の際に支障が出るので、Ti含有吊は、好
ましくは20重量%以下とする。
Note that if the Ti content exceeds 20% by weight, excessive Ti
diffuses into the matrix of AI or 7'1 alloy, changing the material properties, making it impossible to obtain the desired properties as a ceramic-reinforced composite material. If this happens, problems will arise during heat treatment, secondary processing, etc., so the Ti-containing material is preferably 20% by weight or less.

[実施例] 以下、この発明の実施例について具体的に説明する。[Example] Examples of the present invention will be described in detail below.

実施例1 平均粒径が5μmの炭化けい素粉末と、平均粒径が20
amのAR金合金JIS規格、A6081)粉末を、1
:4の一定の重量比で混合し、この混合粉体に金ffT
i粉末を下記第1表にて示す添加量で配合した(なお、
試験片1−1はTiを添加していない)。
Example 1 Silicon carbide powder with an average particle size of 5 μm and a silicon carbide powder with an average particle size of 20 μm
am's AR gold alloy JIS standard, A6081) powder, 1
: mixed at a constant weight ratio of 4, and gold ffT is added to this mixed powder.
i powder was blended in the amount shown in Table 1 below (in addition,
Test piece 1-1 did not contain Ti).

第1表 この原料を均一に混合した後、真空度が10−3Tor
r、 m度が530 ’C、加圧力が1トン/ cdの
条件で真空ホットプレスした。得られた複合材料から引
張試験片を切り出し、この試験片を530℃に2時間加
熱した後水冷し、次いで175℃に8時間保持して焼戻
しだ後、空冷した(T6熱処理)。この熱処理後の試験
片をインス1−ロン型引張試験橢(最大能力2トン)に
て引張試験し、引張強さ及び伸びを測定した。この引張
強ざ及び伸びの測定結果を下記第2表に示ザ。
Table 1: After uniformly mixing these raw materials, the degree of vacuum is 10-3 Torr.
Vacuum hot pressing was carried out under the conditions of r, m degrees of 530'C and pressing force of 1 ton/cd. A tensile test piece was cut from the resulting composite material, heated to 530°C for 2 hours, cooled with water, then kept at 175°C for 8 hours to temper, and then cooled in air (T6 heat treatment). After this heat treatment, the test piece was subjected to a tensile test using an Insu 1-ron type tensile test rack (maximum capacity: 2 tons), and the tensile strength and elongation were measured. The results of this measurement of tensile strength and elongation are shown in Table 2 below.

第2表 この第2表から明らかなように、従来のようにTiを含
有しないSiC強化AR合金(試験例1−1)の場合に
比して、Tiを0.1重ff1%含有するSiC強化A
℃合金(試験例1−2)の場合には、引張り強さ及び伸
びが著しく向上する。この礪械的特性は、Ti含有量が
0.1乃至20重量%の場合に従来の複合材料よりも極
めて高く、Ti含有量が22重量%を超えると低下する
。このため、このSiC強化八βへ金の場合には、Ti
含有量は0.1乃至22重量%、好ましくは0.1乃至
20重量%に設定する。
Table 2 As is clear from Table 2, compared to the conventional SiC reinforced AR alloy that does not contain Ti (Test Example 1-1), SiC containing 0.1% Ti by weight and 1% Enhancement A
In the case of the °C alloy (Test Example 1-2), the tensile strength and elongation are significantly improved. The mechanical properties are much higher than conventional composite materials when the Ti content is between 0.1 and 20% by weight, and decrease when the Ti content exceeds 22% by weight. Therefore, in the case of gold to this SiC reinforced 8β, Ti
The content is set at 0.1 to 22% by weight, preferably 0.1 to 20% by weight.

実施例2 平均粒径が0.8μ汎のアルミナ(Aff203 )粒
子と、粒度が150メツシュ以上のAにt(JIS規格
A1070)粉末とを1:5の一定の重量比で混合し、
この混合粉体に金属Ti粉末を下記第3表にて示す添加
量で配合した。
Example 2 Alumina (Aff203) particles with an average particle size of 0.8 μm and A and T (JIS standard A1070) powder with a particle size of 150 mesh or more were mixed at a constant weight ratio of 1:5,
Metallic Ti powder was added to this mixed powder in the amount shown in Table 3 below.

第3表 この原料を均一に混合した後、金型を使用して800K
g/dの加圧力で、直径が50ma、長さが5Oram
の丸棒圧粉体を得た。次いで、この丸棒を、温度が50
0℃、加圧力が670Kfl/dの条件で熱間押出しし
、幅が40闇、厚みが5闇、長さが500市の板状複合
材料を得た。
Table 3 After uniformly mixing this raw material, use a mold to heat it to 800K.
With a pressing force of g/d, the diameter is 50ma and the length is 5Oram.
A round bar compact was obtained. Next, this round bar was heated to a temperature of 50
Hot extrusion was carried out at 0° C. and a pressure of 670 Kfl/d to obtain a plate-like composite material with a width of 40 mm, a thickness of 5 mm, and a length of 500 mm.

この複合材料から引張試験片を切り出し、実施例1と同
じに引張試験して引張強さ及び伸びを測定した。その結
果を下記第4表に示す。
A tensile test piece was cut out from this composite material and subjected to a tensile test in the same manner as in Example 1 to measure tensile strength and elongation. The results are shown in Table 4 below.

第4表 この第4表から明らかなように、金属Tiを0.1乃至
22重伍%含有するAり203強化Aa複合材料の場合
(試験片2−2.2−3.2−4.2−53には、引張
強さ及び伸びがT1を含まない従来の複合材料の場合(
試験片2−1ンに比して高く、界面接着性が向上したこ
とがわかる。
Table 4 As is clear from Table 4, in the case of Al203 reinforced Aa composite material containing 0.1 to 22% by weight of metallic Ti (test specimen 2-2.2-3.2-4. 2-53, for conventional composite materials whose tensile strength and elongation do not include T1 (
It can be seen that the interfacial adhesion was higher than that of test piece 2-1, indicating that the interfacial adhesion was improved.

この実施例においても、Ti含有量が0.1乃至20重
量%の場合に、従来よりも極めて高い機械的特性が得ら
れる。
In this example as well, when the Ti content is 0.1 to 20% by weight, mechanical properties that are significantly higher than those of the prior art can be obtained.

実施例3 炭化けい素ウィスカと粒度が250メツシユ以下のジュ
ラルミン(JISgJ格がA2017のAり合金)粉末
を1:5の一定の重量比で混合し、この混合物に金属T
i粉末を下記第5表に示す添加量で配合した。
Example 3 Silicon carbide whiskers and duralumin (A alloy with JISgJ rating of A2017) powder with a particle size of 250 mesh or less were mixed at a constant weight ratio of 1:5, and metal T was added to this mixture.
i powder was blended in the amounts shown in Table 5 below.

第5表 この原料を均一に混合した後、真空度がI Q−3TO
rr、 、 WA度が515℃、加圧力が1.2トン/
dの条件で真空ホットプレスした。
Table 5 After uniformly mixing this raw material, the degree of vacuum is IQ-3TO
rr, , WA degree is 515℃, pressing force is 1.2 tons/
Vacuum hot pressing was carried out under the conditions of d.

プレス後、引張試験片を切り出し、この試験片を500
℃に2時間加熱した後、水金した(T4熱処理)。この
熱処理後の試験片を実施例1と同様に引張試験し、引張
強さ及び伸びを測定した。この測定結果を下記第6表に
示す。
After pressing, a tensile test piece was cut out, and this test piece was
After heating at ℃ for 2 hours, it was boiled (T4 heat treatment). The test piece after this heat treatment was subjected to a tensile test in the same manner as in Example 1, and the tensile strength and elongation were measured. The measurement results are shown in Table 6 below.

第6表 この第6表から明らかなように、このSiCウィスカ強
化ジュラルミンにおいても、Ti含有吊を0.1乃至2
2小吊%、好ましくは0.1乃至20重示%に設定する
ことにより、従来の複合材料(試験片3−1)よりも優
れた1械的特性が得られる。
Table 6 As is clear from Table 6, this SiC whisker-reinforced duralumin also has a Ti-containing suspension of 0.1 to 2.
By setting the weight ratio to 2%, preferably from 0.1 to 20%, mechanical properties superior to those of the conventional composite material (test piece 3-1) can be obtained.

実施例4 繊維長が3 crtのピッチ系カーボンファイバと、粒
度が150メツシユ以下の超々ジュラルミン(JIS規
格A7075f7)Au合金)粉末トラ、1:10の一
定重吊比で配合し、更に金属liを下記第7表に示す配
合量で添加した。
Example 4 Pitch-based carbon fiber with a fiber length of 3 crt and ultra-super duralumin (JIS standard A7075f7) Au alloy powder with a particle size of 150 mesh or less were mixed at a constant weight ratio of 1:10, and metal li was further added. It was added in the amounts shown in Table 7 below.

第7表 この原料を均一に混合した後、金型を使用して加圧力8
00Kg/cmで、直径が50闇、長さが50zaの圧
粉体を得た。次いで、温度が480℃、加圧力が1トン
/ ciの条件でこの圧粉体を熱間押出し成形し、幅が
401m、厚みが5 run M長さが500rtmの
板状複合材料を製造した。この複合材料から引張試験片
を切り出し、この試験片を465℃に2時間加熱した後
水金し、次いで120°Cに24時間保持して空冷した
(T6熱処理)。熱処理後の試験片を実施例1と同様に
引張試験し、引張強さ及び伸びを測定した。この測定結
果を下記第8表に示す。
Table 7 After uniformly mixing these raw materials, use a mold to apply pressure of 8
00 kg/cm, a green compact with a diameter of 50 mm and a length of 50 za was obtained. Next, this green compact was hot extruded at a temperature of 480° C. and a pressure of 1 ton/ci to produce a plate-shaped composite material with a width of 401 m, a thickness of 5 m, and a length of 500 rtm. A tensile test piece was cut from this composite material, and this test piece was heated to 465°C for 2 hours, then boiled, and then kept at 120°C for 24 hours and cooled in air (T6 heat treatment). The test piece after the heat treatment was subjected to a tensile test in the same manner as in Example 1, and the tensile strength and elongation were measured. The measurement results are shown in Table 8 below.

第8表 この第8表から明らかなように、カーボンファイバ強化
ジュラルミン複合材料の場合には、Ti含有吊が0.1
乃至20重量%のときに、従来の金RTiを含まない複
合材料(試験片4−1)よりも、引張強さ及び伸びが高
く、1械的特性が侵れている。
Table 8 As is clear from Table 8, in the case of carbon fiber reinforced duralumin composite material, the Ti content is 0.1
20% by weight, the tensile strength and elongation are higher than the conventional composite material not containing gold RTi (test specimen 4-1), and the mechanical properties are deteriorated.

[発明の効果] 本発明によれば、複合材料の原料混合時に、金属Ti粉
末を添加する等して、Tiを0.1重量%以上含有させ
ることによって、セラミックスとA2又はAR金合金の
間の濡れ性が向上し、界面接着性が著しく高まる。この
ため、この発明に係る複合材料は引張強さ及び伸びが著
しく高くなって構造材料等として有益であると共に、熱
間成形温度及び加圧力を高くすることなく十分な界面接
着強度が得られるので、作業性が改善され製造コストが
低い。
[Effects of the Invention] According to the present invention, by adding metallic Ti powder or the like to contain 0.1% by weight or more of Ti when mixing the raw materials of the composite material, the bond between the ceramic and the A2 or AR gold alloy is reduced. improves wettability and significantly increases interfacial adhesion. Therefore, the composite material according to the present invention has significantly high tensile strength and elongation, making it useful as a structural material, etc., and sufficient interfacial adhesive strength can be obtained without increasing the hot forming temperature and pressing force. , workability is improved and manufacturing costs are low.

Claims (2)

【特許請求の範囲】[Claims] (1)マトリックスとしてのアルミニウム又はアルミニ
ウム合金に、強化材としてセラミックスを含むセラミッ
クス強化アルミニウム複合材料において、チタンを0.
1重量%以上含有することを特徴とするセラミックス強
化アルミニウム複合材料。
(1) In a ceramic-reinforced aluminum composite material containing ceramic as a reinforcing material in aluminum or an aluminum alloy as a matrix, titanium is added to 0.
A ceramic-reinforced aluminum composite material containing 1% by weight or more.
(2)前記チタンの含有量は20重量%以下であること
を特徴とする特許請求の範囲第1項に記載のセラミック
ス強化アルミニウム複合材料。
(2) The ceramic-reinforced aluminum composite material according to claim 1, wherein the titanium content is 20% by weight or less.
JP4520487A 1987-03-02 1987-03-02 Ceramics-strengthened aluminum composite material Pending JPS63213649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4520487A JPS63213649A (en) 1987-03-02 1987-03-02 Ceramics-strengthened aluminum composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4520487A JPS63213649A (en) 1987-03-02 1987-03-02 Ceramics-strengthened aluminum composite material

Publications (1)

Publication Number Publication Date
JPS63213649A true JPS63213649A (en) 1988-09-06

Family

ID=12712741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4520487A Pending JPS63213649A (en) 1987-03-02 1987-03-02 Ceramics-strengthened aluminum composite material

Country Status (1)

Country Link
JP (1) JPS63213649A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104508A (en) * 1977-02-25 1978-09-11 Hitachi Ltd High conductivity metal-carbon fiber composite silinding member and production of the same
JPS5623242A (en) * 1979-08-02 1981-03-05 Sumitomo Chem Co Ltd Fiber reinforced metal composite material and parts for aircraft parts
JPS58151440A (en) * 1982-03-02 1983-09-08 Nippon Gakki Seizo Kk Composite material
JPS60145340A (en) * 1984-08-06 1985-07-31 Res Inst Iron Steel Tohoku Univ Manufacture of composite aluminum material reinforced with silicon carbide fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104508A (en) * 1977-02-25 1978-09-11 Hitachi Ltd High conductivity metal-carbon fiber composite silinding member and production of the same
JPS5623242A (en) * 1979-08-02 1981-03-05 Sumitomo Chem Co Ltd Fiber reinforced metal composite material and parts for aircraft parts
JPS58151440A (en) * 1982-03-02 1983-09-08 Nippon Gakki Seizo Kk Composite material
JPS60145340A (en) * 1984-08-06 1985-07-31 Res Inst Iron Steel Tohoku Univ Manufacture of composite aluminum material reinforced with silicon carbide fiber

Similar Documents

Publication Publication Date Title
US4662429A (en) Composite material having matrix of aluminum or aluminum alloy with dispersed fibrous or particulate reinforcement
US4834810A (en) High modulus A1 alloys
US4597792A (en) Aluminum-based composite product of high strength and toughness
US5435825A (en) Aluminum matrix composite powder
JPS63274659A (en) Silicon carbide reinforced alumina zirconia ceramic composite body and manufacture
FI92925C (en) Method of making a self-supporting body and self-supporting material
EP0448572A1 (en) Hard metal composite body and process for producing it.
Li et al. In situ synthesis of porous ceramics with a framework structure of aluminium borate whisker
JPS63213649A (en) Ceramics-strengthened aluminum composite material
US5529748A (en) Metal matrix composite
EP0754659B1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
JPH02270931A (en) Ceramic grains reinforced titanium composite material
US5369064A (en) shaped fibrous materials for fiber-reinforced metals
JPS6046347A (en) Fiber reinforced metal composite material
JPS6342341A (en) Aluminum alloy material
Sumarji et al. Effect of Variation of SiC Mass Fraction on Mechanical Properties of Al-SiC Composite Using Stir Casting Method
RU2814924C1 (en) Metal matrix composite based on heat-resistant titanium alloy
JPS6242017B2 (en)
US5604165A (en) CrB2 -NbB2 /Al2 03 and CrB2 -NbB2 /SiC ceramic composite materials
USRE34262E (en) High modulus Al alloys
JPH0368090B2 (en)
JPS6140740B2 (en)
JPS61284541A (en) Inorganic fiber reinforced metallic composite material
JPH02194135A (en) Aluminum composite excellent in high-temperature wear property
JPH01139735A (en) Fiber-reinforced metallic material