EP0448572A1 - Hard metal composite body and process for producing it. - Google Patents

Hard metal composite body and process for producing it.

Info

Publication number
EP0448572A1
EP0448572A1 EP89913058A EP89913058A EP0448572A1 EP 0448572 A1 EP0448572 A1 EP 0448572A1 EP 89913058 A EP89913058 A EP 89913058A EP 89913058 A EP89913058 A EP 89913058A EP 0448572 A1 EP0448572 A1 EP 0448572A1
Authority
EP
European Patent Office
Prior art keywords
composite body
reinforcing material
sintering
hard
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89913058A
Other languages
German (de)
French (fr)
Other versions
EP0448572B1 (en
Inventor
Klaus Dreyer
Hans Kolaska
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widia GmbH
Original Assignee
Krupp Widia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883842439 external-priority patent/DE3842439A1/en
Priority claimed from DE19883843219 external-priority patent/DE3843219A1/en
Application filed by Krupp Widia GmbH filed Critical Krupp Widia GmbH
Priority to AT89913058T priority Critical patent/ATE90399T1/en
Publication of EP0448572A1 publication Critical patent/EP0448572A1/en
Application granted granted Critical
Publication of EP0448572B1 publication Critical patent/EP0448572B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/08Iron group metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments

Definitions

  • the invention relates to a hard metal composite body consisting of hard material phases such as tungsten carbide and / or carbides or nitrides or elements of the IVa or Va group of the periodic table, of reinforcing materials and of a binder metal phase such as cobalt and / or iron and / or nickel . Furthermore, the invention relates to a method for producing a hard metal composite material by powder metallurgy.
  • the single crystals known in principle from the prior art have excellent mechanical properties, such as great tensile and shear strength.
  • DE-PS 259249 describes a sintered hard metal consisting of hard materials and binders, which hard materials in the form of needle-shaped single crystals in an amount of at least 0.1%, preferably 0.5 to 1.5% of the contains total hard material.
  • WC in the form of acicular single crystals is added to the hard material before grinding, after the addition of a binding metal to the iron group, the hard metal batch is pressed and sintered to form a liquid phase.
  • the monocrystalline WC portion largely dissolves in the binding phase (cf. DE-Z "Metall", July 1974, issue 7).
  • the proposed hard single crystals do not suffice to obtain a noticeable improvement in the wear properties, in particular also not because only as many hard single crystals should be added until the hard grain fraction (grains with an average diameter below 2 ⁇ m) is replaced. It is an object of the present invention to provide a hard metal composite body which, compared to the previously known hard metal composite bodies, has a higher toughness resistance, greater hardness, even when the hard metal composite body is subjected to high thermal loads, and less susceptibility to breakage. It is also an object of the present invention to provide a method for producing such a hard metal composite body.
  • EP-0067584 B1 describes a process for producing a composite material from a metallic, ceramic glass or plastic base material and therein substantially homogeneously and uniformly distributed deagglomerated silicon carbide whiskers for reinforcing the base material, in which silicon carbide whiskers are used in a polar solvent stirring to form a slurry and then grinding the slurry to form a slurry of deagglomerated silicon carbide whiskers, mixing the slurry therefrom with a base material to form a homogeneous mixture, then drying and shaping into a blank.
  • composite materials are known from EP-0213615 A2, in which silicon carbide and silicon nitride whiskers are contained in a metal matrix.
  • a particular advantage of an inert whisker coating is, however, that a targeted strength of the bond with the matrix can be set.
  • the storage of coated whiskers leads to an increase in hardness with a simultaneous increase in toughness, even under high-temperature loads, such as those e.g. take place at Schneidtechnik ⁇ . This is advantageously also achieved in the case of hard metals which have a low binder content (less than 8% by volume).
  • the inert coating has a certain protective function for the coated single crystals, i.e. the single crystals cannot be dissolved in the binder; in particular, WC single crystals can be used for the first time in a proportion which is effective in relation to the hard metal composition.
  • the part of the task relating to the method known from the prior art is achieved by the features specified in claim 11, in particular with contents of up to 20 volume -3.
  • the normal sintering process, the combined sintering / HIP process or the sintering with a subsequent hot isostatic pressing in a separate plant and, in the case of higher reinforcing material contents, the hot pressing is preferred.
  • the production of whisker hard metal composites is basically based on known powder metallurgical process steps.
  • the reinforcing materials whiskers, platelets
  • the reinforcing materials are first prepared, deagglomerated and classified and preferably coated using a CVD or PVD process before they are subjected to the further process steps.
  • the hard metal composite material according to the invention has greater hardness and higher strength values than composite materials known from the prior art.
  • the toughness resilience is higher with a reduced risk of breakage, without having to set higher binding contents.

Abstract

Corps composite de métal dur consistant en une substance dure, un liant et un matériau de renforcement intercalé, et procédé pour produire un corps composite de métal dur par métallurgie des poudres. Pour obtenir un corps composite de métal dur, qui supporte de fortes contraintes d'endurance en étant à la fois très dur et peu sujet à la rupture, on y intercale des matériaux de renforcement monocristallins cristallisés en aiguilles et/ou en lamelles, dotés de préférence d'un revêtement inerte par rapport à la phase de métal liant, et composés de borures et/ou carbures et/ou nitrures et/ou carbonitrures, éléments de la colonne IVa ou Va, ou de mélanges de ces derniers, et/ou un matériau de renforcement monocristallin en SiC, Si3N4, Si2N2O, Al2O3, ZrO2, AlN et/ou BN. Ce corps composite de métal dur est obtenu par des procédés de métallurgie des poudres, le matériau de renforcement, doté par dépôt en phase gazeuse par procédé chimique ou physique (CVD ou PVD) d'un revêtement inerte par rapport à la phase de métal liant, étant mélangé, sous forme désagglomérée et classifiée, avec le mélange broyé de substances dures et de liants, puis séché, granulé, pressé par compression uniaxiale et isostatique à basse température, et soumis à une opération de frittage ou à un procédé combiné ou séparé de frittage/compression isostatique à température élevée ou à une compression axiale à chaud. On optera de préférence pour la compression axiale à chaud lorsque la teneur en matériau de renforcement est supérieure à 20 % en volume, sinon il est préférable de recourir aux autres modes de traitement.Hard metal composite body consisting of a hard substance, a binder and an interleaved reinforcing material, and method for producing a hard metal composite body by powder metallurgy. To obtain a hard metal composite body, which withstands high endurance constraints while being both very hard and not very subject to breakage, there are interposed monocrystalline reinforcing materials crystallized in needles and / or in lamellae, provided with preferably an inert coating with respect to the binder metal phase, and compounds of borides and / or carbides and / or nitrides and / or carbonitrides, elements of column IVa or Va, or mixtures of the latter, and / or a monocrystalline reinforcing material in SiC, Si3N4, Si2N2O, Al2O3, ZrO2, AlN and / or BN. This hard metal composite body is obtained by powder metallurgy processes, the reinforcing material, provided by deposition in the gas phase by chemical or physical process (CVD or PVD) of an inert coating with respect to the binder metal phase. , being mixed, in disaggregated and classified form, with the crushed mixture of hard substances and binders, then dried, granulated, pressed by uniaxial and isostatic compression at low temperature, and subjected to a sintering operation or to a combined or separate process isostatic sintering / compression at high temperature or hot axial compression. Preferably, hot axial compression will be used when the content of reinforcing material is greater than 20% by volume, otherwise it is preferable to use other treatment methods.

Description

Beschreibung description
Hartmetallverbundkörper und Verfahren zu seiner HerstellungCarbide composite body and method for its production
Die Erfindung betrifft einen Hartmetallverbundkörper, bestehend aus Hartstoffphasen, wie Wolframcarbid und/oder Carbiden bzw. Nitriden de Elemente der IVa- oder Va-Gruppe des Periodensystems, aus Verstär¬ kungsmaterialien und aus einer Bindemetallphase, wie Cobalt und/oder Eisen und/oder Nickel. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines HartmetallVerbundwerkstoffes auf pulvermetallurgi¬ schem Weg.The invention relates to a hard metal composite body consisting of hard material phases such as tungsten carbide and / or carbides or nitrides or elements of the IVa or Va group of the periodic table, of reinforcing materials and of a binder metal phase such as cobalt and / or iron and / or nickel . Furthermore, the invention relates to a method for producing a hard metal composite material by powder metallurgy.
Die nach dem Stand der Technik im Prinzip bekannten Einkristalle be¬ sitzen hervorragende mechanische Eigenschaften, wie z.B. eine große Zug- und Schubfestigkeit.The single crystals known in principle from the prior art have excellent mechanical properties, such as great tensile and shear strength.
In der DE-PS 259249 wird ein aus Hartstoffen und Bindemitteln beste¬ hendes Sinterhartmetall beschrieben, das Hartstoffe in Form- von nadel- förmigen Einkristallen in einer Menge von wenigstens 0,1 %, vorzugs¬ weise 0,5 bis 1,5 % des gesamten Hartstoffanteils enthält. Zur Her¬ stellung dieses Sinterhartmetalls wird dem Hartstoffanteil vor dem Vermählen WC in Form von nadeiförmigen Einkristallen zugesetzt, wobei nach Zusatz eines Bindemetalls der Eisengruppe der Hartmetallansatz gepreßt und unter Bildung einer flüssigen Phase gesintert wird. Nach¬ teiligerweise löst sich jedoch der einkristalline WC-Anteil weitgehend in der Bindephase (vgl. DE-Z "Metall", Juli 1974, Heft 7). Im übrigen reichen die vorgeschlagenen Hartstoff-Einkristalle nicht aus, um eine merkliche Verbesserung der Verschleißeigenschaften zu erhalten, insbe¬ sondere auch deshalb nicht, weil maximal nur so viel Hartstoff-Einkri¬ stalle zugegeben werden sollen, bis der Hartstoffeinkornanteil (Körner mit mittlerem Durchmesser unter 2 μm) ersetzt ist. Es ist Aufgabe der vorliegenden Erfindung, einen Hartmetallverbundkör- per anzugeben, der gegenüber den bisher bekannten Hartmetallverbund- körpern eine höhere Zähigkeitsbelastbarkeit, eine größere Härte, auch bei starker thermischer Belastung des Hartmetallverbundkörpers und eine geringere Bruchanfälligkeit aufweist. Ferner ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung eines solchen Hartmetallverbundkörpers anzugeben.DE-PS 259249 describes a sintered hard metal consisting of hard materials and binders, which hard materials in the form of needle-shaped single crystals in an amount of at least 0.1%, preferably 0.5 to 1.5% of the contains total hard material. To produce this cemented carbide, WC in the form of acicular single crystals is added to the hard material before grinding, after the addition of a binding metal to the iron group, the hard metal batch is pressed and sintered to form a liquid phase. Disadvantageously, however, the monocrystalline WC portion largely dissolves in the binding phase (cf. DE-Z "Metall", July 1974, issue 7). Otherwise, the proposed hard single crystals do not suffice to obtain a noticeable improvement in the wear properties, in particular also not because only as many hard single crystals should be added until the hard grain fraction (grains with an average diameter below 2 μm) is replaced. It is an object of the present invention to provide a hard metal composite body which, compared to the previously known hard metal composite bodies, has a higher toughness resistance, greater hardness, even when the hard metal composite body is subjected to high thermal loads, and less susceptibility to breakage. It is also an object of the present invention to provide a method for producing such a hard metal composite body.
Die Aufgabe wird durch einen HartmetallVerbundkörper der im Anspruch 1 genannten Zusammensetzung gelöst.The object is achieved by a hard metal composite body of the composition mentioned in claim 1.
Die Verwendung von Whiskern ist zwar nach dem Stand der Technik bei anderen Stoffen bereits vorgeschlagen worden:The use of whiskers has already been proposed in the prior art for other substances:
So z.B. in der US-PS 3441 392 eine faserverstärkte Metallegierung, die auf pulvermetallurgischem Wege hergestellt worden ist und die bei¬ spielsweise Fasern aus <C-Aluminiumoxid und Siliciumcarbid enthält.So e.g. in US Pat. No. 3,441,392 a fiber-reinforced metal alloy which has been produced by powder metallurgy and which contains, for example, fibers made of <C-aluminum oxide and silicon carbide.
Die US-PS 4543345 beschreibt eine Keramik (AlpOg-Matrix) mit einge¬ lagerten SiC-Einkristallen.US Pat. No. 4,543,345 describes a ceramic (AlpOg matrix) with embedded SiC single crystals.
Aus der DE-3303295 A1 ist bekannt, daß die Festigkeits- und Bruchzä¬ higkeitseigenschaften einer siliciumcarbidfaserverstärkten Keramik besser als die der Keramikmatrix sind. Entsprechende Angaben werden auch in der DE-Z ZwF 83 (1988) 7, Seiten 354 bis 359 gemacht.From DE-3303295 A1 it is known that the strength and fracture toughness properties of a silicon carbide fiber reinforced ceramic are better than those of the ceramic matrix. Corresponding information is also given in DE-Z ZwF 83 (1988) 7, pages 354 to 359.
Die EP-0067584 B1 beschreibt ein Verfahren zur Herstellung eines Verbundwerkstoffes aus einem metallischen, keramischen Glas- oder Kunststoff-Grundmaterial und darin im wesentlichen homogen und gleich¬ mäßig verteilten desagglomerierten Siliciumcarbidwhiskern zur Verstär¬ kung des Grundmaterials, bei dem man Siliciumcarbidwhisker in einem polaren Lösungsmittel zur Bildung einer Aufschlämmung rührt und an¬ schließend die Aufschlämmung zur Bildung einer Aufschlämmung aus desagglomerierten Siliciumcarbidwhiskern vermahlt, die Aufschlä mung hieraus mit einem Grundmaterial zur Bildung einer homogenen Mischung vermischt, anschließend trocknet und zu einem Rohling formt. Schließlich sind aus der EP-0213615 A2 Verbundwerkstoffe bekannt, bei denen in einer Metallmatrix Siliciumcarbid- und Siliciu nitrid- whisker enthalten sind.EP-0067584 B1 describes a process for producing a composite material from a metallic, ceramic glass or plastic base material and therein substantially homogeneously and uniformly distributed deagglomerated silicon carbide whiskers for reinforcing the base material, in which silicon carbide whiskers are used in a polar solvent stirring to form a slurry and then grinding the slurry to form a slurry of deagglomerated silicon carbide whiskers, mixing the slurry therefrom with a base material to form a homogeneous mixture, then drying and shaping into a blank. Finally, composite materials are known from EP-0213615 A2, in which silicon carbide and silicon nitride whiskers are contained in a metal matrix.
Die Einbringung von nadel- oder plättchenförmigen Einkristallen bei Hartmetallen in größeren Mengen wurde jedoch nie durchgeführt, weil bisher eine Lösung der Einkristalle in der flüssigen Bindemittelphase befürchtet worden ist. In der Tat ist die Löslichkeit des WC in einem Bindemittel wie Cobalt groß, was bewirkt, daß die Verwendung von WC- Einkristallen - wie in der DE-PS 259242 vorgeschlagen - keine Verbes¬ serung der Verschleißeigenschaften bringt.However, the introduction of needle-like or platelet-shaped single crystals in hard metals in large quantities has never been carried out because a solution of the single crystals in the liquid binder phase has previously been feared. In fact, the solubility of the WC in a binder such as cobalt is high, which means that the use of WC single crystals - as proposed in DE-PS 259242 - does not improve the wear properties.
Weiterentwicklungen der Erfindung sind in den Unteransprüchen 2 bis 10 dargelegt.Further developments of the invention are set out in subclaims 2 to 10.
Ein besonderer Vorteil einer inerten Whiskerbeschichtung liegt jedoch darin, daß eine gezielte Festigkeit der Bindung mit der Matrix einge¬ stellt werden kann. Insgesamt führt die Einlagerung von beschichteten Whiskern zu einer Härteerhöhung mit einer gleichzeitigen Zähigkeitssteigerung, und zwar auch bei Hochtemperaturbelastungen, wie sie z.B. bei Schneidwerkstoffeπ stattfinden. Vorteilhafterweise wird dies auch bei solchen Hartmetallen erreicht, die einen geringen Bindemittelgehalt aufweisen (weniger als 8 Volumen-%).A particular advantage of an inert whisker coating is, however, that a targeted strength of the bond with the matrix can be set. Overall, the storage of coated whiskers leads to an increase in hardness with a simultaneous increase in toughness, even under high-temperature loads, such as those e.g. take place at Schneidwerkstoffeπ. This is advantageously also achieved in the case of hard metals which have a low binder content (less than 8% by volume).
Darüber hinaus kommt der inerten Beschichtung eine gewissen Schutz¬ funktion für die umhüllten Einkristalle zu, d.h. die Einkristalle kön¬ nen nicht im Bindemittel gelöst werden, insbesondere lassen sich erst¬ malig WC-Einkristalle in einem bezogen auf die Hartmetallzusammenset¬ zung wirkungsvollen Anteil verwenden.In addition, the inert coating has a certain protective function for the coated single crystals, i.e. the single crystals cannot be dissolved in the binder; in particular, WC single crystals can be used for the first time in a proportion which is effective in relation to the hard metal composition.
Der auf das nach dem Stand der Technik bekannte Verfahren bezogene Aufgabenteil wird durch die im Anspruch 11 angegebenen Merkmale ge¬ löst, wobei insbesondere bei Gehalten bis zu 20 Volumen-3. dem normalen Sinter-, dem kombinierten Sinter/HIP-Prozeß oder dem Sintern mit einem nachfolgenden heißisostatischen Pressen in einer getrennten Anlage und bei höheren Verstärkungsmaterialgehalten dem Heißpressen der Vorzug gegeben wird. Die Herstellung der Whisker-Hartmetallverbundwerkstoffe lehnt sich grundsätzlich an bekannte pulvermetallurgische Verfahrensschritte an. So werden im Unterschied zum Stand der Technik die Verstärkungsmate¬ rialien (Whisker, Plättchen) zunächst aufbereitet, desagglomeriert und klassifiziert sowie vorzugsweise mittels eines CVD- oder PVD-Verfah- rens beschichtet, bevor sie den weiteren Verfahrensschritten unterzo¬ gen werden. Grundsätzlich unterscheidet man dabei zwischen vier Verdichtungsverfahren: Dem üblichen Sintern, einem kombinierten Sin¬ ter/HIP-Prozeß, bei dem unmittelbar auf den Sintervorgang in der Hitze ein heißisostatisches Pressen bei 20 bis 100 bar, maximal 200 bar, durchgeführt wird, dem Sintern mit nachfolgenden heißisostatischen Pressen bei Drücken um beispielsweise ca. 1000 bar in einer getrennten Anlage und schließlich dem erwähnten Heißpressen.The part of the task relating to the method known from the prior art is achieved by the features specified in claim 11, in particular with contents of up to 20 volume -3. the normal sintering process, the combined sintering / HIP process or the sintering with a subsequent hot isostatic pressing in a separate plant and, in the case of higher reinforcing material contents, the hot pressing is preferred. The production of whisker hard metal composites is basically based on known powder metallurgical process steps. In contrast to the prior art, the reinforcing materials (whiskers, platelets) are first prepared, deagglomerated and classified and preferably coated using a CVD or PVD process before they are subjected to the further process steps. A basic distinction is made between four compression processes: the usual sintering, a combined sintering / HIP process, in which hot isostatic pressing at 20 to 100 bar, maximum 200 bar, is carried out immediately after the sintering process in the heat, with the sintering subsequent hot isostatic presses at pressures of, for example, approx. 1000 bar in a separate system and finally the hot pressing mentioned.
In einem konkreten Ausführungsbeispiel der Erfindung sind in einer Mi¬ schung aus 4 Volumen-% Co, Rest WC im Anschluß an das Naßmahleπ 21 Volumen-% TiC-Whisker in desagglomerierter und klassifizierter Form zugegeben worden.In a concrete exemplary embodiment of the invention, in a mixture of 4% by volume of Co and the remainder of the WC, 21% by volume of TiC whiskers were added in a disagglomerated and classified form following the wet grinding step.
In einem weiteren Ausführungsbeispiel der Erfindung sind in einer Mi¬ schung aus 4 Volumen-% Co, Rest WC im Anschluß an das Naßmahlen 21 Volumen-% WC-whisker in desagglomerierter und klassifizierter Form, die mittels des im Prinzip nach dem Stand der Technik bekannten CVD- Prozesses mit TiC beschichtet worden sind, zugegeben worden. Die ge¬ samte Mischung wurde jeweils anschließend getrocknet, granuliert und kaltisostatisch zu einem Grünling vorgepreßt, bevor über das Heißpres¬ sen der Whisker-Verbundwerkstoff fertiggestellt wurde.In a further exemplary embodiment of the invention, in a mixture of 4% by volume of Co, the remainder of the WC following the wet grinding, there are 21% by volume of WC whiskers in a disagglomerated and classified form which are known from the prior art in principle CVD processes have been coated with TiC. The entire mixture was then dried, granulated and cold-isostatically pressed into a green compact before the whisker composite was finished by hot pressing.
Insgesamt besitzt der erfindungsgemäße Hartmetallverbundwerkstoff eine größere Härte und höhere Festigkeitswerte als nach dem Stand der Tech¬ nik bekannte Verbundwerkstoffe. Die Zähigkeitsbelastbarkeit ist bei vermindertem Bruchrisiko höher, ohne daß höhere Bindegehalte einge¬ stellt werden mußten. Overall, the hard metal composite material according to the invention has greater hardness and higher strength values than composite materials known from the prior art. The toughness resilience is higher with a reduced risk of breakage, without having to set higher binding contents.

Claims

Patentansprüche Claims
1. Hartmetallverbundkörper bestehend aus Hartstoffphasen, wie Wolf¬ ramcarbid und/oder Carbiden bzw. Nitriden der Elemente der IVa- oder Va-Gruppe des Periodensystems, aus Verstärkungsmaterialien und aus einer Bindemetallphase, wie Cobalt und/oder Eisen und/oder Nickel, dadurch gekennzeichnet, daß einkristallines na- del- und/oder plättchenförmiges Verstärkungsmaterial aus Boriden und/oder Carbiden und/oder Nitriden und/oder Carbonitriden der Elemente der Gruppe IVa (Ti, Zr, Hf) oder Va (V, Nb, Ta) oder Mischungen hiervon und/oder einkristallines Verstärkungsmaterial aus SiC, Si3N4, Si^O, A1203, Zr02, A1N und/oder BN eingebaut ist, wobei der Anteil des Verstärkungsmaterials jeweils 2 bis1. Carbide composite body consisting of hard material phases, such as tungsten carbide and / or carbides or nitrides of the elements of the IVa or Va group of the periodic table, of reinforcing materials and of a binder metal phase, such as cobalt and / or iron and / or nickel, characterized that single-crystal needle and / or platelike reinforcing material made of borides and / or carbides and / or nitrides and / or carbonitrides of the elements of group IVa (Ti, Zr, Hf) or Va (V, Nb, Ta) or mixtures thereof and / or monocrystalline reinforcing material made of SiC, Si 3 N 4 , Si ^ O, A1 2 0 3 , Zr0 2 , A1N and / or BN is installed, the proportion of the reinforcing material being 2 to
40 Volumen-%, vorzugsweise 10 bis 20 Volumen-% beträgt.40% by volume, preferably 10 to 20% by volume.
2. Hartmetallverbundkörper nach Anspruch 1, dadurch gekennzeichnet, daß die nadeiförmigen Einkristalle (Whisker) eine Länge von 3 μm bis 100 μm aufweisen.2. Carbide composite body according to claim 1, characterized in that the needle-shaped single crystals (whiskers) have a length of 3 microns to 100 microns.
3. Hartmetallverbundkörper nach einem der Ansprüche 1 oder 2, da¬ durch gekennzeichnet, daß die nadeiförmigen Einkristalle einen Durchmesser von 0,1 bis 10 μm haben.3. Carbide composite body according to one of claims 1 or 2, da¬ characterized in that the needle-shaped single crystals have a diameter of 0.1 to 10 microns.
4. Hartmetallverbundkörper nach Anspruch 1, dadurch gekennzeichnet, daß die plättchenförmigen Einkristalle (Plättchen) eine Dicke von 0,5 μm bis 10 μm und einen Durchmesser 3 μm bis 100 μm auf¬ weisen.4. Carbide composite body according to claim 1, characterized in that the platelet-shaped single crystals (platelets) have a thickness of 0.5 microns to 10 microns and a diameter of 3 microns to 100 microns.
5. Hartmetallverbundkörper nach einem der Ansprüche 1 bis 4, da¬ durch gekennzeichnet, daß SiC-nadel- oder plättchenförmige Ein¬ kristalle vorliegen und zu mehr als 90 % die ß -SiC-Struktur aufweisen. 5. Carbide composite body according to one of claims 1 to 4, da¬ characterized in that SiC needle or plate-shaped single crystals are present and have more than 90% of the β-SiC structure.
6. Hartmetallverbundkörper nach einem der Ansprüche 1 bis 5, da¬ durch gekennzeichnet, daß das Verstärkungsmaterial mit einer ge¬ genüber der Bindemetallphase inerten Beschichtung versehen ist.6. Carbide composite body according to one of claims 1 to 5, da¬ characterized in that the reinforcing material is provided with a coating ge inert to the binder metal phase.
7. Hartmetallverbundkörper nach Anspruch 6, dadurch gekennzeichnet, daß das Verstärkungsmaterial ganz oder teilweise durch Boride und/oder Carbide und/oder Nitride und/oder Carbonitride der Ele¬ mente der Vla-Gruppe des Periodensystems oder Mischungen hiervon ersetzt ist.7. Carbide composite body according to claim 6, characterized in that the reinforcing material is replaced in whole or in part by borides and / or carbides and / or nitrides and / or carbonitrides of the elements of the Vla group of the periodic table or mixtures thereof.
8. Hartmetallverbundkörper nach Anspruch 6 oder 7, gekennzeichnet durch eine inerte Beschichtung aus Carbiden, Nitriden und/oder Carbonitriden der IVa-Gruppe (Ti, Zr, Hf) und/oder aus Zr02, A1203 und/oder BN.8. hard metal composite body according to claim 6 or 7, characterized by an inert coating of carbides, nitrides and / or carbonitrides of the IVa group (Ti, Zr, Hf) and / or Zr0 2 , A1 2 0 3 and / or BN.
9. Hartmetallverbundkörper nach einem der Ansprüche 6 bis 8, da¬ durch gekennzeichnet, daß die Dicke der Beschichtung mindestens 0,02 μm und maximal 2/10 des Nadeldurchmessers bzw. der Plätt¬ chendicke, vorzugsweise 1/10 hiervon bzw. mindestens 0,05 μm, beträgt.9. hard metal composite body according to one of claims 6 to 8, da¬ characterized in that the thickness of the coating at least 0.02 microns and a maximum of 2/10 of the needle diameter or the platelet thickness, preferably 1/10 thereof or at least 0, 05 μm.
10. Hartmetallverbundkörper nach einem der Ansprüche 6 bis 9, da¬ durch gekennzeichnet, daß die inerte Beschichtung der nadel- und/oder plättchenförmigen Einkristalle mittels des CVD- (chemical vapour deposition)Verfahrens oder des PVD-(physical vapour deposition)Verfahrens auf die Einkristalle aufgebracht ist.10. Carbide composite body according to one of claims 6 to 9, characterized in that the inert coating of the needle and / or platelet-shaped single crystals by means of the CVD (chemical vapor deposition) method or the PVD (physical vapor deposition) method on the Single crystals is applied.
11. Verfahren zur Herstellung des Hartmetallverbundkörpers nach Ansprüchen 1 bis 5 auf pulvermetallurgischem Weg, dadurch ge¬ kennzeichnet, daß das Verstärkungsmaterial in desagglomerierter und klassifizierter Form mit der gemahlenen Mischung aus Hart¬ stoffen und Binder vermischt, dann getrocknet, granuliert, uni¬ axial oder kaltisostatisch gepreßt und der Verbundkörper durch Sintern, durch einen kombinierten Sinter/HIP-Prozeß, durch Sin¬ tern mit einem HIP-Prozeß nach zwischenzeitiger Abkühlung oder durch Axial-Heißpressen hergestellt wird.11. The method for producing the hard metal composite body according to claims 1 to 5 by powder metallurgy, characterized ge indicates that the reinforcing material in deagglomerated and classified form mixed with the ground mixture of hard materials and binder, then dried, granulated, pressed uniaxially or cold isostatically and the composite body by sintering, by a combined sintering / HIP process, by sintering using a HIP process after cooling in the meantime or by axial hot pressing.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Ver¬ stärkungsmaterial in desagglomerierter und klassifizierter Form mittels des CVD- oder PVD-Verfahrens mit Carbiden, Nitriden und/oder Carbonitriden der IVa-Gruppe, Va-Gruppe oder Vla-Gruppe oder Mischungen hiervon und/oder SiC, S N., S N^O, A1203> Zr02, A1N und/oder BN beschichtet wird, bevor es mit der gemah¬ lenen Mischung aus Hartstoffen und Binder vermischt, dann ge¬ trocknet, granuliert, uniaxial oder kaltisostatisch gepreßt und der Verbundkörper durch Sintern, durch einen kombinierten Sin¬ ter/HIP-Prozeß, durch Sintern mit einem HIP-Prozeß nach zwi¬ schenzeitiger Abkühlung oder durch Axial-Heißpressen hergestellt wird.12. The method according to claim 11, characterized in that the reinforcing material in deagglomerated and classified form by means of the CVD or PVD process with carbides, nitrides and / or carbonitrides from the IVa group, Va group or Vla group or mixtures of this and / or SiC, S N., SN ^ O, A1 2 0 3> Zr0 2 , A1N and / or BN is coated before it is mixed with the ground mixture of hard materials and binder, then dried, granulated , uniaxially or cold isostatically pressed and the composite body is produced by sintering, by a combined sintering / HIP process, by sintering with a HIP process after interim cooling or by axial hot pressing.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß bei Verstärkungsmaterial-Gehalten bis zu 20 Volumen-3. das nor¬ male Sintern, das Sintern mit einem nach Abkühlung erfolgenden heißisostatischen Pressen oder der kombinierte Sinter-HIP-Prozeß und bei Gehalten oberhalb von 20 Volumen-5. das Axial-Heißpressen durchgeführt wird bzw. werden. 13. The method according to claim 11 or 12, characterized in that with reinforcing material contents up to 20 volume-3. normal sintering, sintering with a hot isostatic press after cooling or the combined sintering-HIP process and at contents above 20 volume-5. the axial hot pressing is carried out.
EP89913058A 1988-12-16 1989-11-27 Hard metal composite body and process for producing it Expired - Lifetime EP0448572B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89913058T ATE90399T1 (en) 1988-12-16 1989-11-27 CARBIDE COMPOSITE AND PROCESS FOR ITS MANUFACTURE.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19883842439 DE3842439A1 (en) 1988-12-16 1988-12-16 Hard cemented composite and process for the production thereof
DE3842439 1988-12-16
DE19883843219 DE3843219A1 (en) 1988-12-22 1988-12-22 Hard cemented composite and process for the production thereof
DE3843219 1988-12-22

Publications (2)

Publication Number Publication Date
EP0448572A1 true EP0448572A1 (en) 1991-10-02
EP0448572B1 EP0448572B1 (en) 1993-06-09

Family

ID=25875237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89913058A Expired - Lifetime EP0448572B1 (en) 1988-12-16 1989-11-27 Hard metal composite body and process for producing it

Country Status (5)

Country Link
US (1) US5173107A (en)
EP (1) EP0448572B1 (en)
JP (1) JPH04502347A (en)
DE (1) DE58904666D1 (en)
WO (1) WO1990007017A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436080A (en) * 1991-09-13 1995-07-25 Tsuyoshi Masumoto High strength structural member and process for producing the same
US5376466A (en) * 1991-10-17 1994-12-27 Mitsubishi Materials Corporation Cermet blade member
US5579532A (en) * 1992-06-16 1996-11-26 Aluminum Company Of America Rotating ring structure for gas turbine engines and method for its production
CH686888A5 (en) * 1993-11-01 1996-07-31 Ufec Universal Fusion Energy C composite metal-ceramic high tenacity and process for its manufacture.
US5672435A (en) * 1994-12-12 1997-09-30 The Dow Chemical Company Hard disk drive components and methods of making same
US5580666A (en) * 1995-01-20 1996-12-03 The Dow Chemical Company Cemented ceramic article made from ultrafine solid solution powders, method of making same, and the material thereof
US5842107A (en) * 1995-08-31 1998-11-24 National Science Council Sintering process for AIN powder coated with Al film
WO1998040525A1 (en) 1997-03-10 1998-09-17 Widia Gmbh Hard metal or cermet sintered body and method for the production thereof
JP4945814B2 (en) * 1997-05-13 2012-06-06 アロメット コーポレイション Tough-coated hard powder and its sintered product
US20040052984A1 (en) 1997-05-13 2004-03-18 Toth Richard E. Apparatus and method of treating fine powders
WO2003042419A1 (en) * 2001-11-13 2003-05-22 Fundacion Inasmet Method of producing products made from carbide-reinforced, structural metal materials
CA2570671C (en) * 2004-06-10 2013-01-08 Allomet Corporation Method for consolidating tough coated hard powders
US7682557B2 (en) * 2006-12-15 2010-03-23 Smith International, Inc. Multiple processes of high pressures and temperatures for sintered bodies
CA2640206A1 (en) * 2008-10-02 2010-04-02 Hydro-Quebec Composite materials for wettable cathodes and use of same for aluminum production
US20100104874A1 (en) * 2008-10-29 2010-04-29 Smith International, Inc. High pressure sintering with carbon additives
CN102373357B (en) * 2010-08-19 2013-09-18 比亚迪股份有限公司 Composition composed of metal and ceramic and its preparation method, cermet and Raymond mill
CN111471942A (en) * 2020-03-25 2020-07-31 成都美奢锐新材料有限公司 Nanocrystalline composite material for 3C product and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139672A (en) * 1961-02-10 1964-07-07 Bendix Corp Rocket nozzles and the like
AT259242B (en) * 1964-11-23 1968-01-10 Boehler & Co Ag Geb Sintered carbide consisting of hard materials and binding metal and process for its production
US4007049A (en) * 1968-08-06 1977-02-08 The United States Of America As Represented By The Secretary Of The Air Force Thermal shock resistant ceramic composite
DE2461801C3 (en) * 1974-12-30 1979-01-04 Fisitscheskij Institut Imeni P.N. Lebedeva Akademii Nauk Ssr Refractory material
US4259112A (en) * 1979-04-05 1981-03-31 Dwa Composite Specialties, Inc. Process for manufacture of reinforced composites
JPS6031799B2 (en) * 1979-11-30 1985-07-24 黒崎窯業株式会社 SiC-Si↓3N↓4-based composite heat-resistant ceramic material and its manufacturing method
US4268314A (en) * 1979-12-21 1981-05-19 Union Carbide Corporation High density refractory composites and method of making
JPS57205364A (en) * 1981-06-08 1982-12-16 Ngk Spark Plug Co Manufacture of cutting tool ceramics
US4463058A (en) * 1981-06-16 1984-07-31 Atlantic Richfield Company Silicon carbide whisker composites
JPS59121196A (en) * 1982-12-25 1984-07-13 Tokai Carbon Co Ltd Preparation of whisker preform for composite material
SE451581B (en) * 1984-04-06 1987-10-19 Sandvik Ab CERAMIC MATERIAL MAINLY BASED ON SILICON NITRIDE, ALUMINUM NITRIDE AND ALUMINUM OXIDE
US4732779A (en) * 1985-05-21 1988-03-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Fibrous material for composite materials, fiber-reinforced metal produced therefrom, and process for producing same
DE3662782D1 (en) * 1985-06-10 1989-05-18 Ngk Spark Plug Co Fiber-reinforced compositie material for tools
CA1285582C (en) * 1986-08-04 1991-07-02 Joseph G. Ii Baldoni Ceramic based composites with improved fracture toughness
US4756791A (en) * 1986-08-25 1988-07-12 Gte Laboratories Incorporated Chemical vapor deposition process for producing metal carbide or nitride whiskers
DE3706000A1 (en) * 1987-02-25 1988-09-08 Feldmuehle Ag Cutting tip (cutting insert, cutting tool)
SE8701791D0 (en) * 1987-04-29 1987-04-29 Sandvik Ab CEMENTED CARBONITRIDE ALLOY WITH IMPROVED TOUGHNESS BEHAVIOUR
EP0295228B1 (en) * 1987-06-09 1992-03-25 Sandvik Aktiebolag Whisker reinforced ceramic cutting tool
JPH01103205A (en) * 1987-10-15 1989-04-20 Toshiba Ceramics Co Ltd Tool for working carbon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9007017A1 *

Also Published As

Publication number Publication date
US5173107A (en) 1992-12-22
EP0448572B1 (en) 1993-06-09
WO1990007017A1 (en) 1990-06-28
DE58904666D1 (en) 1993-07-15
JPH04502347A (en) 1992-04-23

Similar Documents

Publication Publication Date Title
EP0448572A1 (en) Hard metal composite body and process for producing it.
DE60110237T2 (en) METHOD FOR PRODUCING A DIAMOND-CONTAINING ABRASIVE PRODUCT
DE69531948T2 (en) AMORPHOUS METAL COMPOSITE AND REINFORCEMENT
DD283368A5 (en) PROCESS FOR THE PREPARATION OF A SELF-SUPPORTING BODY
DE3812266C1 (en)
EP0531378B1 (en) Reaction-bonded mullite-containing ceramic, its formation and use
EP0902771B1 (en) Metal-ceramic shaped body and process for manufacturing the same
EP0433856A1 (en) Mixed hard metal materials based on borides, nitrides and iron group matrix metals
DE3329250A1 (en) FIREPROOF SILICON NITRIDE COMPOSITE
DE19623425A1 (en) Reaction bonded mullite-based ceramic article
DE4133351C2 (en) Sintered ceramic / metal composites and process for their manufacture
EP0247528B1 (en) Polycrystalline sintered articles based on silicon nitride with high rupture strength and hardness
DE10133209A1 (en) Non-oxide ceramic coating powder and layers made therefrom
DE3842420A1 (en) Hard cemented composite and process for the production thereof
DE3603191C2 (en)
DD295106A5 (en) HARD METAL COMPOSITE BODY AND METHOD FOR THE PRODUCTION THEREOF
DE3843219A1 (en) Hard cemented composite and process for the production thereof
DE3842439A1 (en) Hard cemented composite and process for the production thereof
DE3714240C1 (en) Sintered body made of silicon nitride with an outer ceramic wear layer based on aluminum nitride
US5352533A (en) Ceramic composite body, process for producing a ceramic composite
DE3706000C2 (en)
DE3603331A1 (en) SILICON CARBIDE SINTER PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
DE4136744C2 (en) Reinforced materials, processes for their production and their use
JPS61113738A (en) Low density whisker forming body for composite material, and its production
DE19806203C2 (en) Composite material and method for its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19910328

17Q First examination report despatched

Effective date: 19921103

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930609

Ref country code: NL

Effective date: 19930609

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930609

REF Corresponds to:

Ref document number: 90399

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58904666

Country of ref document: DE

Date of ref document: 19930715

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930623

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19931127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931130

Ref country code: CH

Effective date: 19931130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;WIDIA GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011008

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011129

Year of fee payment: 13

Ref country code: DE

Payment date: 20011129

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051127