JPS63213609A - Method for predicting furnace heat in blast furnace - Google Patents

Method for predicting furnace heat in blast furnace

Info

Publication number
JPS63213609A
JPS63213609A JP4859787A JP4859787A JPS63213609A JP S63213609 A JPS63213609 A JP S63213609A JP 4859787 A JP4859787 A JP 4859787A JP 4859787 A JP4859787 A JP 4859787A JP S63213609 A JPS63213609 A JP S63213609A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
value
term
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4859787A
Other languages
Japanese (ja)
Other versions
JPH0314886B2 (en
Inventor
Koichi Matsuda
浩一 松田
Naoki Tamura
直樹 田村
Shigehiko Tamura
田村 繁彦
Masami Konishi
正躬 小西
Nobuyuki Nagai
信幸 永井
Korehito Kadoguchi
維人 門口
Takeshi Yabata
矢場田 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4859787A priority Critical patent/JPS63213609A/en
Publication of JPS63213609A publication Critical patent/JPS63213609A/en
Publication of JPH0314886B2 publication Critical patent/JPH0314886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To accurately predict the variation of furnace heat in a blast furnace without any delaying, by adopting an ARMA model using solution loss carbon quantity or nitrogen content in top furnace gas component as a variable to an MA term. CONSTITUTION:The average value of the solution loss carbon quantity at each interval during a time by going back in a past time from the present time, is calculated and introduced as the variable to the MA term. Next, the predicting value of the molten iron temp. at each iron tapping hole at a time in the future, is found, to compare it with the control temp. In case some abnormality is recognized, warning is given and the above process is gone back to the original step, and in case any abnormality is not recognized, the predicting value of the molten iron temp. is outputted and also the ARMA model, which is gone back to the original step, is adopted. By this method, the effect of deviation of the molten iron temps. by difference of the iron tapping holes can be removed and the prediction accuracy of furnace heat in the blast furnace can be improved. Further, even in case the average value of the nitrogen content in the top furnace gas detected by a gas chromatography is used as the variable to the MA term, the same effect can be expected.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高炉の安定な操業を行なうための高炉炉熱
予測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a blast furnace furnace heat prediction method for stable operation of a blast furnace.

(従来の技術とその問題点) 高炉の安定操業の維持のためには、溶銑温度を一定にす
ることが必要であることが従来より知られている。この
ため、高炉操業者は常に高炉炉熱変化を予測する必要性
があった。
(Prior art and its problems) It has been known for a long time that in order to maintain stable operation of a blast furnace, it is necessary to keep the temperature of hot metal constant. For this reason, blast furnace operators have always needed to predict changes in blast furnace heat.

高炉炉熱変化において、特に温度低下によって溶銑が凝
固し、高炉から流出しなくなる可能性があるため、温度
低下の予測は極めて重要なものとなる。
Prediction of temperature drop is extremely important in blast furnace furnace thermal changes, especially since hot metal may solidify due to temperature drop and may no longer flow out of the blast furnace.

高炉炉熱の予測方法としては、高炉をブラックボックス
とみなし、統計的解析によるモデルを得る方法として、
A R(Auto −Rearessive) (自己
回帰)モデルによるものがある。
A method for predicting blast furnace heat is to consider the blast furnace as a black box and obtain a model through statistical analysis.
There is one based on the AR (Auto-Rearessive) model.

上記したARモデルは高炉の実際の炉熱レベルの時間的
変動を予測するモデルとして優れた特性を有するが、以
下に述べる問題点がある。
Although the AR model described above has excellent characteristics as a model for predicting temporal fluctuations in the actual furnace heat level of a blast furnace, it has the following problems.

第7図は溶銑温度の実績値と予測値の経時変化を示す図
であり、同図においてfllは実績値、12は予測値に
基づく曲線である。同図に示すように、実績値の変化に
対し、予測値の変化はτサンプリング時間(すなわちサ
ンプリング間隔をΔtとしてτ×Δを時間)程度遅れ、
その振幅も小さなものを示す傾向がみられる。このため
、予測機能を十分に果たせなく、しかもその予測値の精
度も十分には正確でないという問題点があった。
FIG. 7 is a diagram showing changes over time in actual values and predicted values of hot metal temperature, in which fl1 is a curve based on the actual value and 12 is a curve based on the predicted value. As shown in the figure, the change in the predicted value lags behind the change in the actual value by approximately τ sampling time (i.e., τ × Δ is time, where the sampling interval is Δt);
There is also a tendency for the amplitude to be small. For this reason, there was a problem in that the prediction function could not be fully fulfilled, and the accuracy of the predicted value was also not sufficiently accurate.

この問題点を解決するためA RM A (Auto−
Rearessive Moving Average
) (自己回帰移動平均)モデルによるものが、特開昭
60−248804゜T鉄と鋼J1984年、第1号、
54頁等に開示されているが、未だMA項に導入する変
数として決定的なものが見つけだせていないのが現状で
ある。
In order to solve this problem, ARM A (Auto-
Realistic Moving Average
) (autoregressive moving average) model is published in JP-A-60-248804°T Tetsu-to-Hagane J 1984, No. 1,
Although it is disclosed on page 54, etc., the current situation is that no definitive variable to be introduced into the MA term has been found yet.

〈発明の目的) この発明の目的は、上記従来技術の問題点を解消し、予
測が遅れることなく、しかも溶銑温度の変化を正確に予
測することのできる高炉炉熱予測方法を提供することで
ある。
(Objective of the Invention) The object of the present invention is to provide a method for predicting blast furnace heat that can accurately predict changes in hot metal temperature without delay in prediction by solving the problems of the prior art described above. be.

(目的を達成するための手段) 上記目的を達成するため、この発明による高炉炉熱予測
方法は、高炉の操業結果を用いて、高炉炉熱レベルの時
間的変動をARMAモデルにより予測するに際し、ソリ
ューションロスカーボン伍または炉頂ガス成分中の窒素
量をMA項に変数として導入している。
(Means for Achieving the Object) In order to achieve the above object, the blast furnace furnace heat prediction method according to the present invention uses the blast furnace operation results to predict temporal fluctuations in the blast furnace furnace heat level using the ARMA model. The amount of solution loss carbon or nitrogen in the top gas component is introduced as a variable into the MA term.

(実施例) 従来より、高炉の還元状態の良否を示すソリューション
ロスカーボンm(以下[ツルロスCff1Jと言う)の
増減は、高炉炉熱と強い相関があることが知られている
。すなわちツルロスCff1の増加は、以下に示すいわ
ゆるツルロス反応が促進することを示しており、 C+C02→ 2GO この反応は吸熱反応であるから、遅からず(実際には数
時間程度後に)炉熱は低下することになる。
(Example) It has been conventionally known that an increase or decrease in solution loss carbon m (hereinafter referred to as "Tru loss Cff1J"), which indicates the quality of the reduction state of a blast furnace, has a strong correlation with blast furnace heat. In other words, the increase in truss loss Cff1 indicates that the so-called tsuru loss reaction shown below is promoted, C+C02 → 2GO Since this reaction is an endothermic reaction, the furnace heat decreases sooner or later (in fact, after about a few hours). I will do it.

従って、ツルロスC量の増減は高炉炉熱の変化に対し先
見性があると言える・。
Therefore, it can be said that increases and decreases in the amount of truss loss C can be predicted with respect to changes in blast furnace heat.

そこで、MA項にツルロス0世の平均値を導入したAR
MAモデルが考えられる。
Therefore, AR which introduces the average value of Tsururos 0 into the MA term
An MA model can be considered.

第1図(a)、 (b)は各々溶銑温度の瞬時値、ツル
ロスC量の平均値との経時変化を示している。同図(a
)において、Llは実績値、L2は予測値である。ツル
ロスC量は炉頂ガス成分中のCO,C02、N2等の割
合、送風条件、原料装入条件などをもとに算出され、第
1図(b)のツルロスC■の平均値u (t)は、ツル
ロス0世(Ky/1−p)の瞬時値を例えばガスクロマ
トグラフィーのサンプリング時間ごとに譚出し、これを
時間幅Δt1ごとに平均して求められている。一方、溶
銑温度の瞬時flu(t)は、サンプリング時間Δt2
ごとに求められている。なおtは現在の時刻である。
FIGS. 1(a) and 1(b) show changes over time between the instantaneous value of the hot metal temperature and the average value of the amount of trunnion C, respectively. The same figure (a
), Ll is the actual value and L2 is the predicted value. The amount of vine loss C is calculated based on the proportions of CO, CO2, N2, etc. in the top gas components, ventilation conditions, raw material charging conditions, etc., and the average value of vine loss C■ shown in Fig. 1(b) u (t ) is obtained by calculating the instantaneous value of Tsuruloth 0 (Ky/1-p) at each sampling time of gas chromatography, for example, and averaging this at each time width Δt1. On the other hand, the instantaneous hot metal temperature flu(t) is the sampling time Δt2
It is required for each. Note that t is the current time.

このような変数によりARMAモデルで、1時点先の溶
銑温度予測値V(t+Δt2)は次式により推定できる
Using such variables, the predicted hot metal temperature value V(t+Δt2) at one point in time can be estimated using the following equation using the ARMA model.

V(t+Δt2) ・・・(1) 右辺の第1項がAR項、第2項がMA項である。V(t+Δt2) ...(1) The first term on the right side is the AR term, and the second term is the MA term.

第2図は、(1)式に基づいた予測の処理手順を示すフ
ローチャートである。まず、ステップ$1においで、現
在時刻tから期間NΔt1過去に逆のぼり、区間Δt1
ごとのツルロスCff1の平均値u(t−にΔt1)(
k=1〜N)をN11lil算出する。なおこの処理は
サンプリング時間Δt2毎に行なう。次にステップS2
において、現在時刻tのΔt2前の溶銑温度実績値y(
t)より、これを過去の予測結果V(t)と比較するこ
とにより、(1)式の係数ajとす、をΔt2毎に逐次
決定する。
FIG. 2 is a flowchart showing a prediction processing procedure based on equation (1). First, in step $1, go backwards from the current time t to the past period NΔt1,
The average value u(Δt1 to t−) of the crane loss Cff1 for each
k=1 to N) is calculated by N11lil. Note that this process is performed every sampling time Δt2. Next step S2
, the hot metal temperature actual value y(
t), by comparing this with the past prediction result V(t), the coefficient aj of equation (1) is sequentially determined every Δt2.

そして、ステップS3において、上述のように求めた係
数a・、b・を用いた(1)式より1時点先の溶銑温度
予測値V(t+Δt2)を求め、次のステップS4でこ
の予測値V(t+Δt2)と管理温度11  との比較
を行ない、tcH≧VLTCH (t+Δt )≧tCLであれば、異常なしとみなしス
テップS1に戻り予測を続ける。一方、ステップS4に
おいてV(t+Δ1  )<1゜しあるいはV(t+Δ
1)>1c、、であれば、遅からず炉熱低下あるいは上
昇が起こるとみなし、予測値V(t+Δt2)を出力す
ることで、炉熱低下及び上昇を警告する。以降、ステッ
プS1に戻り、ステップ81〜S5を繰り返しながら炉
熱変化を予測する。
Then, in step S3, the predicted value V(t+Δt2) of the hot metal temperature one point in time is obtained from equation (1) using the coefficients a・, b・ obtained as described above, and in the next step S4, this predicted value V (t+Δt2) and the control temperature 11 are compared, and if tcH≧VLTCH (t+Δt)≧tCL, it is assumed that there is no abnormality and the process returns to step S1 to continue prediction. On the other hand, in step S4, V(t+Δ1)<1° or V(t+Δ1)
1) If >1c, it is assumed that a decrease or increase in the furnace heat will occur sooner or later, and a predicted value V (t+Δt2) is output to warn of the decrease or increase in the furnace heat. Thereafter, the process returns to step S1 and the furnace heat change is predicted while repeating steps 81 to S5.

第3図は、Δt1 =30 (min ) 、 N=2
とした実際の予測結果を示すグラフである。同図におい
て、Llは溶銑温度実績値×、L2は溶銑温度予測値・
に基づく経時変化を示しており、tCL’taftは管
理温度である。同図から明らかなように、管理温度t。
In Figure 3, Δt1 = 30 (min), N = 2
This is a graph showing actual prediction results. In the same figure, Ll is the actual hot metal temperature value×, L2 is the predicted hot metal temperature value・
tCL'taft is the control temperature. As is clear from the figure, the control temperature t.

Lより高い値を実績値が示している時点で、1時点先の
炉熱低下をほぼ予測することができ、時刻t1〜t4で
炉熱低下のアラーム(警告)を出力することが可能とな
る。なお、この間に管理温度t。11を越える炉熱上昇
は生じていない。
At the time when the actual value shows a value higher than L, it is possible to almost predict the decrease in furnace heat at one point in time, and it becomes possible to output an alarm (warning) of the decrease in furnace heat at times t1 to t4. . In addition, during this time, the control temperature t. No furnace heat rise exceeding 11 occurred.

ところで、通常高炉は2箇所以上の出銑口により交互に
出銑を行なうため、異なる出銑口では第4図の1出銑ご
との溶銑温度の経時変化に示すように溶銑温度に偏差が
生じることが多く、この様な場合には予測精度に影響が
生じてしまう。そこで、出銑口A、B別にARMAモデ
ルを立てて溶銑温度を予測する方法が考えられる。1時
点先の出銑が出銑口Aによる出銑の場合、出銑口△から
出銑された溶銑温度yA (t)を用い、yA (t+
Δt3) により1時点先の溶銑温r!3yAを予測し、出銑口B
による出銑の場合、出銑口Bから出銑された溶銑温度y
8 (t)を用い、 y、、(t+Δt3) により1時点先の溶銑温度y8を予測する。なお、aA
j、bAi、a8j、b81は各々係数であり、Δt3
が溶銑温度のサンプリング時間となる。
By the way, since a blast furnace normally taps pig iron alternately through two or more tap holes, there is a deviation in the hot metal temperature at different tap holes, as shown in the change in hot metal temperature over time for each tap in Figure 4. In many cases, prediction accuracy is affected. Therefore, a method of predicting the hot metal temperature by setting up an ARMA model for each of tapholes A and B can be considered. If the tapping at one point in time is through taphole A, using the temperature yA (t) of the hot metal tapped from taphole △, yA (t+
Δt3), the hot metal temperature r! Predict 3yA, taphole B
In the case of tapping, the temperature y of hot metal tapped from taphole B
8 (t), predict the hot metal temperature y8 at one point in time using y, , (t+Δt3). In addition, aA
j, bAi, a8j, b81 are coefficients, and Δt3
is the sampling time of the hot metal temperature.

第5図は出銑日別ARMAモデルによる予測の処理手順
を示すフローチャートである。同図においてステップ3
11で、現在時刻tから期間NΔt1過去に逆のぼり、
区間Δt1ごとのツルロスlの平均値u(t−にΔt1
)(k=1〜N)をN個算出する。
FIG. 5 is a flowchart showing the processing procedure for prediction using the ARMA model for each tapping date. In the same figure, step 3
11, going backwards from the current time t to the past by a period NΔt1,
Average value u of crane loss l for each interval Δt1 (Δt1 in t-
) (k=1 to N).

次にステップ812において、1時点先の出銑口の区別
を行ない、1時点先の出銑が出銑口Aであれば、ステッ
プ813,814で(2)式に基づき出銑口Aの溶銑温
度予測値V  (t+Δt3)を求め、ステップS15
で管理温度11  とcL′cl 比較し、V  (を十Δ13)<1゜しあるいはyA八 (を十Δ1)>1oHであれば、ステップS16におい
てV (t+Δt3)を出力し、炉熱低下又は上昇を警
告し、ステップS11に戻る。ステップ315において
t ≧y (t+Δt3)≧cll   A tcLであれば、異常なしとみなし、ステップS11に
戻る。
Next, in step 812, the taphole that is one point ahead is distinguished, and if the taphole that is one point ahead is taphole A, then in steps 813 and 814, the hot metal of taphole A is changed based on equation (2). Calculate the predicted temperature value V (t+Δt3) and proceed to step S15.
If the control temperature 11 and cL'cl are compared, and if V(1Δ13)<1° or yA8(1Δ1)>1oH, V(t+Δt3) is output in step S16, and the furnace heat decreases or A warning is given for the rise, and the process returns to step S11. If t≧y (t+Δt3)≧cllA tcL in step 315, it is assumed that there is no abnormality, and the process returns to step S11.

一方、ステップ812において、1時点先の出銑が出銑
口Bであれば、ステップS17.S18で(3)式に基
づき出銑口Bの溶銑温度予測値V8(t+Δt3)を求
め、続くステップS19.S20で、このy (t+Δ
t3)に基づき、上述のステップ315,816と同様
の処理を行う。
On the other hand, in step 812, if the tap point one point ahead is tap hole B, step S17. In step S18, the predicted value V8 (t+Δt3) of the hot metal temperature at the taphole B is determined based on equation (3), and in the subsequent step S19. In S20, this y (t+Δ
Based on step t3), processing similar to steps 315 and 816 described above is performed.

このように出銑日別にARMAモデルを設けることによ
り、出銑口の違いによる溶銑温度偏差の影響を取り除く
ことができ、予測精度がかなり向上する。
By providing an ARMA model for each tap date in this manner, the influence of hot metal temperature deviation due to the difference in the tap hole can be removed, and the prediction accuracy is considerably improved.

さらにツルロスCff1の区間Δt1ごとの平均を求め
るに際し、ツルロスCff1の瞬時値が第6図(a)に
示すようにノイズ等の原因で異常値E1.E2を発生す
る場合がある。ここで、時刻jのツルロスCff1をX
・、1サンプリング時間Δを前のツルロスCff1をX
・ とすると、ツルロスCff1の差分値の絶対値Δx
jは ΔX、==lX、−x−1=(4) J      J     J−1 となる。このΔX・を閾値ε2と同図(b)のように比
較することで異常値E1.E2を児つけだし、同図(C
)に示すよう−に直前の値と置きかえることにより平滑
化をはかる方法が考えられる。
Furthermore, when calculating the average of the trail loss Cff1 for each section Δt1, the instantaneous value of the trail loss Cff1 becomes an abnormal value E1 due to noise or the like as shown in FIG. 6(a). E2 may occur. Here, the truss loss Cff1 at time j is expressed as
・, 1 sampling time Δ is the previous true loss Cff1 as X
・ Then, the absolute value Δx of the difference value of the true loss Cff1
j is ΔX, ==lX, -x-1=(4) J J J-1. By comparing this ΔX· with the threshold value ε2 as shown in FIG. 2(b), the abnormal value E1. I gave birth to E2, and the same figure (C
), a method of smoothing can be considered by replacing - with the previous value.

この方法を適用することにより、より正確なツルロスC
堡の平均値が求まり、その結果さらに精度の高い予測が
可能となる。
By applying this method, more accurate truss C
The average value of the barriers is determined, and as a result, more accurate predictions are possible.

また、ガスクロマトグラフィーにより検出される炉頂ガ
ス中の窒素母(%)(以下、[ガスクロN2ff1Jと
言う。)はツルロスCff1と強い負の相関があり、ガ
スクロN2囲をツルロスCmの代りにMA項に用いるこ
とによっても同様の効果が期待できる。
In addition, the nitrogen base (%) in the furnace top gas detected by gas chromatography (hereinafter referred to as [gas chromatography N2ff1J) has a strong negative correlation with truss loss Cff1. A similar effect can be expected by using it in the term.

なお、この実施例ではツルロスCff1の区間Δt1ご
との平均値をMA項に用いたが、ツルロスCmの瞬時値
でも代用できる。しかしながら、ノイズ成分が含まれや
すい欠点があるため、平均値の方が望ましい。
In this embodiment, the average value of the trail loss Cff1 for each section Δt1 is used as the MA term, but an instantaneous value of the trail loss Cm can also be used instead. However, since it has the disadvantage that noise components are likely to be included, the average value is more desirable.

(発明の効果) 以上説明したように、この発明によればMA項にツルロ
スC量またはガスクロN2mを変数として用いたARM
Aモデルにより、高炉炉熱変化を遅れることなく、しか
も正確に予測できる。
(Effects of the Invention) As explained above, according to the present invention, an ARM using the amount of turret loss C or gas chromatography N2m as a variable in the MA term.
The A model allows for accurate prediction of blast furnace heat changes without delay.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は各々溶銑温度の瞬時値とツル
ロスCff1平均値の経時変化を示すグラフ、第2図は
この発明の一実施例における予測方法の処理手順を示す
フローチャート、第3図は実際の予測結果を示すグラフ
、第4図は出銑口の違いにより、溶銑温度に違いが生じ
る場合の溶銑温度の経時変化を示すグラフ、第5図はこ
の発明の他の実施例である出銑日別ARMA法による予
測方法の処理手順を示すフローチャート、第6図(a)
、 (b)、 (りは各々異常値を含んだツルロスCf
f1の瞬時値、ツルロスC量の差分値の絶対値、異常値
を取り除いたツルロスCff1の瞬時値を示すグラフ、
第7図は従来のAR法に基づく溶銑温度実績値による予
測結果を示すグラフである。
1(a) and 1(b) are graphs showing changes over time in the instantaneous value of hot metal temperature and the average value of trunnion loss Cff1, respectively; FIG. Figure 3 is a graph showing actual prediction results, Figure 4 is a graph showing changes in hot metal temperature over time when the temperature of hot metal varies depending on the tap hole, and Figure 5 is another embodiment of the present invention. Flowchart showing the processing procedure of the prediction method using the ARMA method by tapping date, FIG. 6(a)
, (b), (respectively, the true loss Cf including abnormal values
A graph showing the instantaneous value of f1, the absolute value of the difference value of the amount of trailing loss C, and the instantaneous value of trailing loss Cff1 after removing abnormal values,
FIG. 7 is a graph showing prediction results based on actual hot metal temperature values based on the conventional AR method.

Claims (3)

【特許請求の範囲】[Claims] (1)高炉の操業結果を用いて、高炉炉熱レベルの時間
的変動をARMAモデルにより予測するに際し、 ソリューションロスカーボン量または炉頂ガス成分中の
窒素量をMA項に変数として導入したことを特徴とする
高炉炉熱予測方法。
(1) When predicting temporal fluctuations in the blast furnace heat level using the ARMA model using blast furnace operation results, it is important to note that the amount of solution loss carbon or the amount of nitrogen in the top gas component is introduced as a variable in the MA term. Features of blast furnace furnace heat prediction method.
(2)前記ソリューションロスカーボン量または炉頂ガ
ス成分中の窒素量の所定期間ごとの平均値をMA項に変
数として導入する、特許請求の範囲第1項記載の高炉炉
熱予測方法。
(2) The blast furnace furnace heat prediction method according to claim 1, wherein the average value of the solution loss carbon amount or the nitrogen amount in the furnace top gas component for each predetermined period is introduced into the MA term as a variable.
(3)前記ARMAモデルは、出銑口によって各々異な
るものである特許請求の範囲第1項または第2項記載の
高炉炉熱予測方法。
(3) The blast furnace furnace heat prediction method according to claim 1 or 2, wherein the ARMA model is different depending on the tap hole.
JP4859787A 1987-03-02 1987-03-02 Method for predicting furnace heat in blast furnace Granted JPS63213609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4859787A JPS63213609A (en) 1987-03-02 1987-03-02 Method for predicting furnace heat in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4859787A JPS63213609A (en) 1987-03-02 1987-03-02 Method for predicting furnace heat in blast furnace

Publications (2)

Publication Number Publication Date
JPS63213609A true JPS63213609A (en) 1988-09-06
JPH0314886B2 JPH0314886B2 (en) 1991-02-27

Family

ID=12807816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4859787A Granted JPS63213609A (en) 1987-03-02 1987-03-02 Method for predicting furnace heat in blast furnace

Country Status (1)

Country Link
JP (1) JPS63213609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350431A (en) * 1989-07-14 1991-03-05 Nikken Sekkei Ltd Load estimating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350431A (en) * 1989-07-14 1991-03-05 Nikken Sekkei Ltd Load estimating method

Also Published As

Publication number Publication date
JPH0314886B2 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
JP5582105B2 (en) Converter blowing control method
CA2894813C (en) Method and device for predicting, controlling and/or regulating steelworks processes
JP2017066510A (en) Molten iron temperature calculation method in blast furnace
JPS63213609A (en) Method for predicting furnace heat in blast furnace
JP2012087345A (en) Blowing control method in converter
Schlueter et al. A novel data-driven prediction model for BOF endpoint
Terpák et al. Endpoint prediction of basic oxygen furnace steelmaking based on gradient of relative decarburization rate
JPS63213610A (en) Method for predicting furnace heat in blast furnace
Kornet et al. Non-parametric algorithms of identification and control of group of technological processes in low-carbon steel production
JPS63213611A (en) Method for predicting furnace heat in blast furnace
JPS6324044B2 (en)
KR100286651B1 (en) Method for controlling temperature of strip in direct fired furnace of continuous galvanizing line
JPS63297515A (en) Method for predicting lowering of furnace heat in blast furnace
JPS63266011A (en) Method for predicting furnace heat in blast furnace
JPH03236422A (en) Method for controlling sheet temperature in continuous annealing furnace
JPS61141787A (en) Control of oven temperature in coke oven
JPH02170905A (en) Method for predicting furnace heat in blast furnace
Johansson et al. Model-based estimation of metal analysis in steel converters
JP4110780B2 (en) Estimation method of hot metal temperature and disturbance in blast furnace
RU2652663C2 (en) Method of controlling purge process of converter melting with use of waste gas information
RU2252263C1 (en) Device of formation of a converter process control
JPH04187709A (en) End point control for converter
Mittal et al. Development of a Predictive Model for Minimizing Ladle Desulfurization Cycle Time and Associated Costs
Govindsamy et al. Leak Detection at Anglo Platinum Converting Process Using Digital Twins
JPH046209A (en) Method for controlling manganese in molten steel in converter