JPS6321313A - Method and equipment for recovering exhaust gas energy in internal combustion engine - Google Patents

Method and equipment for recovering exhaust gas energy in internal combustion engine

Info

Publication number
JPS6321313A
JPS6321313A JP61166089A JP16608986A JPS6321313A JP S6321313 A JPS6321313 A JP S6321313A JP 61166089 A JP61166089 A JP 61166089A JP 16608986 A JP16608986 A JP 16608986A JP S6321313 A JPS6321313 A JP S6321313A
Authority
JP
Japan
Prior art keywords
valve
output
internal combustion
combustion engine
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61166089A
Other languages
Japanese (ja)
Inventor
Noboru Oyama
尾山 昇
Kazumi Ito
和美 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP61166089A priority Critical patent/JPS6321313A/en
Publication of JPS6321313A publication Critical patent/JPS6321313A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To eliminate the discontinuity of the engine performance, by providing a valve between the scavenging part and a power turbine in an internal combustion engine and constituting the system in such a manner that the valve is kept full open for the output lower than the normal output, while it is gradually opened for the range of output higher than the normal output by the predetermined value. CONSTITUTION:A turbine 6 of a supercharger 3 and a power turbine 7 are connected in parallel to the scavenging part of an internal combustion engine 1. A by-pass valve 8 is provided between the scavenging part and the power turbine 7. The by-pass valve 8 is kept full open for the output lower than the normal output. The opening of the by-pass valve 8 is gradually varied in the range of output higher than the normal output by the predetermined value. With this contrivance, discontinuity of the engine performance caused by the on-off operation of the power turbine 7 can be eliminated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の排気部に過給機と、パワータービン
とを並列接続して排ガスエネルギを回収する方法と装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for recovering exhaust gas energy by connecting a supercharger and a power turbine in parallel to the exhaust section of an internal combustion engine.

[従来の技術] ディーゼル機関等の内燃機関においては、過給機を設け
て排気エネルギを回収することは、従来から広く行われ
ているが、この排気エネルギ(排ガス)の一部を抽出し
、軸流式もしくは遠心式のタービン(本明細書でこれを
パワータービンと称する。)により動力を回収すること
も行われている。
[Prior Art] In internal combustion engines such as diesel engines, it has been widely practiced to provide a supercharger to recover exhaust energy. Power is also recovered using axial or centrifugal turbines (herein referred to as power turbines).

第5図は、過給機とパワータービンとを排気部に並列接
続した従来の内燃機関の排ガスエネルギ回収方法及び装
置を説明するブロック図であり、内燃機関(本例ではデ
ィーゼル機関)の本体1には掃気レシーバ2を介して過
給機3のコンプレッサ部4が接続されている。また、デ
ィーゼル機関本体1の排気レシーバ5には、過給機3の
タービン部6と、パワータービン7とが並列接続されて
おり、排気レシーバ5とパワータービン7との間には弁
(バイパス弁8)が設置されている。符号9はディーゼ
ル機関本体1に接続されているプロペラスクリュを示す
FIG. 5 is a block diagram illustrating a conventional exhaust gas energy recovery method and device for an internal combustion engine in which a supercharger and a power turbine are connected in parallel to the exhaust section. A compressor section 4 of a supercharger 3 is connected to the scavenging receiver 2 . Further, the exhaust receiver 5 of the diesel engine body 1 is connected in parallel with a turbine section 6 of the supercharger 3 and a power turbine 7, and a valve (bypass valve) is connected between the exhaust receiver 5 and the power turbine 7. 8) is installed. Reference numeral 9 indicates a propeller screw connected to the diesel engine main body 1.

かかる従来例において、バイパス弁8は機関の出力状態
が所定の機関出力(以下、本明細書でこの出力を基準出
力という)以上のときには全開となり、該基準出力より
も低いときには、全閉となる、所謂オン−オフ的な開閉
制御がなされていた。
In such a conventional example, the bypass valve 8 is fully open when the output state of the engine is equal to or higher than a predetermined engine output (hereinafter, this output is referred to as a reference output), and is fully closed when it is lower than the reference output. , so-called on-off opening/closing control was performed.

即ち、機関出力が基準出力以上になると、掃気レシーバ
からの機関排ガスは、タービン部6とパワータービン部
7との双方へ供給され、パワータービン7で回収された
動力はプロペラスクリュ9のバックアップ動力として歯
車を経て(あるいは電気エネルギに変換された後、バッ
クアップ用電動機を経て)、機関本体の出力軸へ伝達さ
れており、それだけ燃料消費率が低下される。
That is, when the engine output exceeds the reference output, the engine exhaust gas from the scavenging receiver is supplied to both the turbine section 6 and the power turbine section 7, and the power recovered by the power turbine 7 is used as backup power for the propeller screw 9. The energy is transmitted to the output shaft of the engine via gears (or after being converted into electrical energy and via a backup electric motor), reducing fuel consumption accordingly.

以下、まずかかる動力回収システムの作動を具体的に説
明する。
Hereinafter, the operation of such a power recovery system will first be explained in detail.

過給機のタービン効率ηtは、タービン人口/出口の圧
力比πtの関数であり、一般に第7図のように、ある圧
力比で極大値を持つ特性となる。
The turbine efficiency ηt of the supercharger is a function of the turbine population/outlet pressure ratio πt, and generally has a characteristic that has a maximum value at a certain pressure ratio, as shown in FIG.

例えば、機関の出力として、100%負荷で14160
psxl 17rpmが要求されたとする。この場合に
おいて、パワータービンを設けないとぎには、機関自体
で14160psの出力を絞り出さなければならず、機
関の燃料消費率S FOC(g/p s −h)は第8
図の実線のようになる。
For example, the output of the engine is 14160 at 100% load.
Suppose psxl 17 rpm is requested. In this case, unless a power turbine is installed, the engine itself must generate an output of 14,160 ps, and the fuel consumption rate S FOC (g/p s - h) of the engine is 8
It will look like the solid line in the figure.

これに対して、パワータービンを設置すると、軸出力と
して、14160psを得るには、機関自体は、136
60psで良く、残りの500ps(機関出力の約37
%)はパワータービンで補える。
On the other hand, if a power turbine is installed, in order to obtain a shaft output of 14,160 ps, the engine itself will need 136 ps.
60 ps is enough, remaining 500 ps (approximately 37 of engine output)
%) can be supplemented with a power turbine.

従って、正味平均有効圧力(これは出力/回転数に比例
する。)が小さくなるほど燃料消費率か良くなることと
合わせて、軸出力14160psに対して機関自体は1
3660PSL/か必要ないために、軸出力換算ではさ
らに燃料消費率は小さくなる。
Therefore, the smaller the net average effective pressure (which is proportional to the output/rotational speed), the better the fuel consumption rate.
Since 3660PSL/ is not required, the fuel consumption rate becomes even smaller in terms of shaft output.

ところが、パワータービンによって取出せる有効出力は
、負荷が低くなるにつれて第8図の破線の如く、急激に
減少し、ある出力よりも小さくなると、パワータービン
によっては動力を取り出すことができなくなる。
However, as the load decreases, the effective output that can be extracted by the power turbine rapidly decreases as shown by the broken line in FIG. 8, and when the output becomes smaller than a certain level, the power turbine becomes unable to extract power.

そこで、第5図に示した従来の内燃機関の排ガスエネル
ギ回収方法及び装置では、基準出力を下回る出力状態の
ときには弁8を全閉とし、パワータービンを停止させて
いる。即ち、従来の内燃機関の排ガスエネルギ回収方法
及び装置の場合、排ガスの一部をパワータービンの方へ
流し、残りをエンジン本体用の過給機へ導いている状態
において、排ガス総量をG、過給機へのガス量をGT、
パワータービンへのガス量をGP とすると、G=GT
 +GP となり、ガス流量GTに対して、最適な過給機を選択す
る(マツチング)。これを第7図においてπ1点とする
。この場合、負荷が下がると、排カス量が減少し、圧力
比が小さくなるため、タービン効率が低下する。従って
、過給機によってなされる仕事が減少し、燃費も悪化す
る(π2点)。
Therefore, in the conventional exhaust gas energy recovery method and apparatus for an internal combustion engine shown in FIG. 5, when the output is lower than the reference output, the valve 8 is fully closed and the power turbine is stopped. In other words, in the case of the conventional exhaust gas energy recovery method and device for an internal combustion engine, a part of the exhaust gas is flowed toward the power turbine, and the rest is guided to the supercharger for the engine main body, and the total amount of exhaust gas is GT the amount of gas to the feeder,
If the amount of gas to the power turbine is GP, then G=GT
+GP, and the optimal supercharger is selected (matching) for the gas flow rate GT. This is designated as π1 point in FIG. In this case, when the load decreases, the amount of waste gas decreases and the pressure ratio decreases, resulting in a decrease in turbine efficiency. Therefore, the work done by the supercharger decreases, and fuel efficiency also deteriorates (π2 points).

しかしここで、弁8を全開にして、これまでパワーター
ビンの方へ流れていた排ガスft G Pも過給機の方
へ流すようにすれば、ガス量の増加した分、圧力比が上
がり、タービン効率も高くなり、過給機の仕事量が増し
、燃費が良くなる(π3)。
However, if the valve 8 is fully opened and the exhaust gas ftGP, which has been flowing towards the power turbine, is now also allowed to flow towards the supercharger, the pressure ratio will increase by the amount of gas increased. Turbine efficiency also increases, the workload of the supercharger increases, and fuel efficiency improves (π3).

[発明が解決しようとする問題点1 以上のように、従来の過給機とパワータービンとを並列
設置するようにした内燃機関の排ガスエネルギ回収方法
及び装置においては、第6図のバイパス弁開度に示すよ
うに、パワータービン7へ流し込む排気ガス流量は、燃
料消費率その他の条件が最適と考えられる負荷において
バイパス8を開閉(全開もしくは全閉)することによっ
て制御されている。従って、性能曲線は第6図の燃料消
費率5FOC等に示すように、全開の低負荷側ては一点
鎖線のようになり、全開の高負荷側では破線のようにな
って、両者の間に不連続部(太実線)が生じ、燃料消費
に無駄が生じると共に、この全閉−全開切換時に機関の
運転が不安定になるおそれがあった。
[Problem to be Solved by the Invention 1] As described above, in the conventional exhaust gas energy recovery method and device for an internal combustion engine in which a supercharger and a power turbine are installed in parallel, the bypass valve opening shown in FIG. As shown in the figure, the flow rate of exhaust gas flowing into the power turbine 7 is controlled by opening and closing the bypass 8 (fully open or fully closed) at a load where the fuel consumption rate and other conditions are considered optimal. Therefore, as shown in the fuel consumption rate 5FOC etc. in Figure 6, the performance curve looks like a dashed line on the low load side at full throttle, and like a broken line on the high load side at full throttle, and there is a gap between the two. A discontinuous portion (thick solid line) occurs, resulting in wasteful fuel consumption, and there is a risk that engine operation may become unstable during this full-close/fully-open switching.

[問題点を解決するための手段] 本発明の内燃機関の排ガスエネルギ回収方法及び装置は
、内燃機関の掃気部に過給機のタービン部とパワーター
ビンとを並列接続し、掃気部とパワータービンとの間に
弁(バイパス弁)を設けた排ガスエネルギ回収システム
において、基準出力以下において該弁を全閉とすると共
に、該基準出力から所要出力だけ高出力側の範囲におい
て弁開度を徐々に増大させるようにしたものである。
[Means for Solving the Problems] The exhaust gas energy recovery method and device for an internal combustion engine of the present invention connects a turbine section of a supercharger and a power turbine in parallel to a scavenging section of an internal combustion engine. In an exhaust gas energy recovery system that has a valve (bypass valve) between the It was designed to increase the number of people.

[実施例] 以下、図面に示す実施例を参照しながら、本発明につい
て更に詳細に説明する。
[Examples] Hereinafter, the present invention will be described in more detail with reference to examples shown in the drawings.

第1図は本発明の実施例に係る内燃機関の排ガスエネル
ギ回収方法及び装置の構成を示すブロック図、第2図は
同特性図である。また、第3図はバイパス弁の構成を示
す断面図である。
FIG. 1 is a block diagram showing the configuration of an exhaust gas energy recovery method and device for an internal combustion engine according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram thereof. Moreover, FIG. 3 is a sectional view showing the structure of the bypass valve.

本発明では、バイパス弁8として、開度を徐々に変える
ことができるものが採用されており、このバイパス弁8
の開度を機関出力の回転数等に応じて調整するためのセ
パレータ制御装置10が設けられている。符号11は機
関回転数の検出器であり、12は掃気部レシーバの掃気
圧力の検出器であり、それぞれセパレータ装置10にそ
の検出値が人力可能とされている。なお、本実施例では
、コンプレッサ4から掃気部2へ供給される経路に設け
られた過給空気の冷却器(図示せず)の冷却源たる海水
の温度や機関室内圧力、温度も入力可能とされている。
In the present invention, a valve whose opening degree can be gradually changed is adopted as the bypass valve 8.
A separator control device 10 is provided for adjusting the opening degree of the separator according to the engine output rotation speed and the like. Reference numeral 11 is a detector for the engine rotation speed, and 12 is a detector for the scavenging air pressure of the scavenging section receiver, and the detected values can be manually input to the separator device 10, respectively. In this embodiment, it is also possible to input the temperature, engine room pressure, and temperature of seawater, which is the cooling source for the supercharged air cooler (not shown) provided in the path supplied from the compressor 4 to the scavenging section 2. has been done.

また、バイパス弁8にはパルスモータ8aがイ」設され
ており、制御出力信号としてパルス信号が送られ、パル
ス数に応じた回転数だけパルスモータ8aが回転し、弁
開度を調節するようになっている。
Further, the bypass valve 8 is equipped with a pulse motor 8a, and a pulse signal is sent as a control output signal, and the pulse motor 8a rotates by the number of rotations corresponding to the number of pulses, thereby adjusting the valve opening degree. It has become.

第3図を参照して、バイパス弁8の構成を説明する。符
号20はバルブハウジングてあり、内部の通路21を遮
断可能に弁座22と弁体23が設けられている。この弁
体23はバルブスピンドル24の先端に設けられている
ものであり、上下の側面を円錐面とする流線形を有し、
上側の側面には弁座22へ当接するシート部23aが設
けられている。
The configuration of the bypass valve 8 will be explained with reference to FIG. Reference numeral 20 denotes a valve housing, which is provided with a valve seat 22 and a valve body 23 so as to be able to shut off an internal passage 21. The valve body 23 is provided at the tip of the valve spindle 24, and has a streamlined shape with conical upper and lower sides.
A seat portion 23a that contacts the valve seat 22 is provided on the upper side surface.

ハウジング20には、スピンドル24を摺動自在に支持
するスリーブ25が設けられており、スピンドル24は
スリーブ25を挿通すると共に、さらにその先端が延在
してガイド26に当接している。
The housing 20 is provided with a sleeve 25 that slidably supports the spindle 24. The spindle 24 is inserted through the sleeve 25, and the tip of the spindle 24 extends to come into contact with a guide 26.

このガイド26は、第3図IV −rV線断面図である
第4図にも示す如く、軸心方向に雌螺子穴か穿設される
と共に、側部にキー27が張り出されている。キー27
はハウジング20に設けられたキー溝28に係合し、雌
螺子穴は、パルスモータ8aの回転軸に固着された雌螺
子29に螺合している。
As shown in FIG. 4, which is a sectional view taken along the line IV-rV in FIG. 3, this guide 26 has a female screw hole bored in the axial direction, and a key 27 protruding from the side. key 27
is engaged with a keyway 28 provided in the housing 20, and the female screw hole is screwed into a female screw 29 fixed to the rotating shaft of the pulse motor 8a.

スピンドル24の途中にははね押え30が側方に弓長り
出ずように設けられており、ケーシング20に設けられ
たフランジ部31との間にコイルばね32が設けられ、
スピンドル24を図の上方に付勢している。
A spring presser 30 is provided in the middle of the spindle 24 so as not to protrude sideways, and a coil spring 32 is provided between it and a flange portion 31 provided on the casing 20.
The spindle 24 is urged upward in the figure.

符号33は、バイパス弁8を機関の掃気部に取り付ける
ためのフランジを示す。
Reference numeral 33 indicates a flange for attaching the bypass valve 8 to the scavenging section of the engine.

かかる構成においては、パルスモータ8aを正転させる
と、ガイド26が図の下方に押し出され、スピンドル2
4がばね32の反発力に対抗しながら下降し、弁体23
が弁座22から離反し、通路21が徐々に開放され、や
がて全開状態に到る。パルスモータ8aを逆転させると
、ばね32に蓄力されていた弾発力によってスピンドル
24が図の上方に引き上げられ、通路21の通気量か徐
々に絞られ、やがて弁体23が弁座22に着座して通路
21が全閉状態に到る。
In such a configuration, when the pulse motor 8a is rotated in the forward direction, the guide 26 is pushed downward in the figure, and the spindle 2
4 descends against the repulsive force of the spring 32, and the valve body 23
is separated from the valve seat 22, the passage 21 is gradually opened, and eventually reaches a fully open state. When the pulse motor 8a is reversed, the elastic force stored in the spring 32 pulls the spindle 24 upward in the figure, gradually reducing the amount of airflow in the passage 21, and eventually the valve body 23 is brought into contact with the valve seat 22. When the person is seated, the passage 21 reaches a fully closed state.

このように、このパルスモータ式バイパス弁は、パルス
モータ8aの回転運動を雄螺子29とガイド26との螺
合及びばね32により上下運動に変える。また、ばね3
2により、着座時の気密を確実にするものである。また
、通路21(バイパスライン)を流れようとする排気ガ
スは圧力も高く、流速が大きい。従フて、掃気圧によっ
て敏感にその開度を調整する必要があるため、パルプス
ピンドルの抵抗を小さくし、バルブが開ぎ易く、閉じ易
くしなければならないのであるが、本実施例ではバルブ
スピンドル24の先端の弁体23を図に示すような流線
形とし、これに対応している。なお、この先端形状は必
ずしも流線形でなくても、先がとがっている形状、また
は、先フラット部に棒状の突起物が下方に連なった形状
であっても良い。
In this way, this pulse motor bypass valve converts the rotational motion of the pulse motor 8a into vertical motion by the screw engagement between the male screw 29 and the guide 26 and by the spring 32. Also, spring 3
2 ensures airtightness when seated. Furthermore, the exhaust gas that is about to flow through the passage 21 (bypass line) has a high pressure and a high flow velocity. Therefore, it is necessary to adjust the opening degree sensitively depending on the scavenging pressure, so it is necessary to reduce the resistance of the pulp spindle and make the valve easy to open and close.In this example, the valve spindle The valve body 23 at the tip of the valve body 24 has a streamlined shape as shown in the figure, and corresponds to this. Note that the tip shape does not necessarily have to be streamlined, but may be a pointed shape, or a shape in which rod-shaped protrusions are connected downward to a flat tip portion.

なお、本発明において、制御装置10としては公知のコ
ンピュータ等を採用することができる。
Note that in the present invention, a known computer or the like can be employed as the control device 10.

周知の通り、このコンピュータは制御プログラムを記憶
するROMや諸データを一時的に記憶するRAM、中央
処理装置、入出力装置、これらを接続するデータバス等
を備えており、前記の機関室圧力、温度、海水温度等は
A/D変換器にてディジタル信号に変換されて人力され
る。
As is well known, this computer is equipped with a ROM that stores control programs, a RAM that temporarily stores various data, a central processing unit, an input/output device, a data bus that connects these, etc. Temperature, seawater temperature, etc. are converted into digital signals by an A/D converter and input manually.

上記の制御は、例えば第9図に示すフローチャート(ス
テップ91〜96)に則って行われる。次に上記実施例
装置の作動を説明する。
The above control is performed, for example, according to the flowchart (steps 91 to 96) shown in FIG. Next, the operation of the above embodiment device will be explained.

本発明は、バイパス弁8の開閉を全開から全閉までを連
続的に行うことによって、出力特性の不連続部(第6図
)を無くし、円滑に連続した出力特性になるようにする
ものである。そのために、まず、第2図に示すように、
バイパス弁8が全開の場合と全閉の場合の燃料消費率等
の機関性能からバイパス弁を全開にするポイントAと全
開にするポイントBを決定する。そこで、機関の掃気圧
力PSのポイントA、Bを滑らかに結び、機関の回転数
と掃気圧力の関係を示す曲線CABDをその機関の設定
掃気圧曲線とする(ステップ92.93)。ただし、掃
気圧力は、標準状態(例えば20℃、760mmHg、
海水温度10℃)に換算した値とする(ステップ91に
て読み込まれる機関圧力、温度、海水温度に基いて補正
する。)。
In the present invention, by continuously opening and closing the bypass valve 8 from fully open to fully closed, the discontinuous part (Fig. 6) in the output characteristics is eliminated and the output characteristics are smoothly continuous. be. To that end, first, as shown in Figure 2,
Point A at which the bypass valve is fully opened and point B at which the bypass valve is fully opened are determined from engine performance such as fuel consumption rate when the bypass valve 8 is fully open and when it is fully closed. Therefore, points A and B of the scavenging pressure PS of the engine are smoothly connected, and a curve CABD representing the relationship between the engine speed and the scavenging pressure is set as the set scavenging pressure curve for the engine (step 92.93). However, the scavenging pressure is under standard conditions (e.g. 20°C, 760mmHg,
(Seawater temperature: 10° C.) (corrected based on the engine pressure, temperature, and seawater temperature read in step 91).

そして、バイパス弁開度制御装置10の記憶装置に、こ
の設定掃気圧曲線を記憶させておく(ステップ94)。
Then, this set scavenging pressure curve is stored in the storage device of the bypass valve opening control device 10 (step 94).

運転中の掃気圧力ps及び機関回転数Neをバイパス弁
開度制御装置の主入力信号としくステップ95)、設定
掃気圧曲線との偏差より、バイパス弁の開度を求め、出
力する(ステップ96)。ステップ91〜96を繰り返
し行い掃気圧力をフィードバックしながら調整する。
The scavenging pressure ps and engine speed Ne during operation are used as the main input signals of the bypass valve opening control device (step 95), and the opening of the bypass valve is determined from the deviation from the set scavenging pressure curve and output (step 96). ). Steps 91 to 96 are repeated to adjust the scavenging pressure while giving feedback.

なお、標準状態換算のために、機関室圧力、温度、海水
入口温度も補正のための入力信号とする(ステップ91
)。
In addition, for standard state conversion, the engine room pressure, temperature, and seawater inlet temperature are also used as input signals for correction (step 91
).

これら入力データに基き、演算されたバイパス弁開度制
御装置により演算された弁開度は、電気信号(パルス信
号)としてパルスモータ8aへ伝えられる。
Based on these input data, the valve opening calculated by the bypass valve opening control device is transmitted to the pulse motor 8a as an electric signal (pulse signal).

そして、パルスモータ8aが所要回転数回転し、弁体が
全開、全閉間を連続的に開度調整するように制御され、
出力特性が第2図に示す如く全出力域において、滑らか
に連続したものとなる。
Then, the pulse motor 8a rotates at a required number of rotations, and the valve body is controlled to continuously adjust the opening between fully open and fully closed.
As shown in FIG. 2, the output characteristics are smoothly continuous over the entire output range.

これにより、従来に比ベハッチを付して示した領域Sの
分だけ、燃料消費量が減少されると共に、従来にみられ
た全開・全閉切換時の機関運転の不安定が解消される。
As a result, the fuel consumption is reduced by the area S shown with a comparison hatch in the prior art, and the instability of engine operation when switching between fully open and fully closed, which was seen in the prior art, is eliminated.

なお、機関室圧力、機関室温度及び海水温度は次の如く
補正因子として処理される。
Note that the engine room pressure, engine room temperature, and seawater temperature are processed as correction factors as follows.

(イ) 機関室圧力は、これが上昇すると掃気部属力を
高める作用をなすので、機関室圧力が上昇したときには
バイパス弁の弁開度を大きくする。
(a) When the engine room pressure increases, it acts to increase the force attributable to the scavenging section, so when the engine room pressure increases, the valve opening of the bypass valve is increased.

(ロ) 機関室温度は、これが上昇すると掃気部属力を
下げる作用をなすので、機関室温度が低下したときには
バイパス弁の開度を小さくする。
(b) When the engine room temperature rises, it acts to lower the scavenging force, so when the engine room temperature falls, the opening degree of the bypass valve is reduced.

(ハ) 海水温度は、これが上昇すると、掃気部属力を
上昇させる作用をなすので、海水温度が上昇したときに
は、バイパス弁の弁開度を大きくする。
(c) When the seawater temperature rises, it acts to increase the scavenging force, so when the seawater temperature rises, the valve opening of the bypass valve is increased.

(なお、(イ)〜(ハ)において、機関室圧力、温度及
び海水温度が逆の方向へ変化したときには、それぞれ上
記と逆方向へ弁開度を調整する。) [効果] 以上の通り、本発明では、機関掃気部とパワータービン
との間の弁の開度な徐々に増減させるようにしたので、
従来の弁の全開・全閉、即ちパワータービンのオン・オ
フによる機関性能の不連続が解消され、燃料消費率の改
善と、弁開度切換域での機関連動の安定化が図れる。
(In addition, in (a) to (c), when the engine room pressure, temperature, and seawater temperature change in the opposite direction, the valve opening degree is adjusted in the opposite direction to the above.) [Effect] As described above, In the present invention, since the opening degree of the valve between the engine scavenging section and the power turbine is gradually increased or decreased,
The conventional discontinuity in engine performance caused by fully opening and closing the valve, that is, turning the power turbine on and off, is eliminated, improving fuel consumption and stabilizing machine-related motion in the valve opening switching range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る内燃機関の排ガスエネル
ギ回収方法及び装置の構成を示すブロック図、第2図は
同出力特性図、第3図は流量調整弁の断面図、第4図は
第3図TV−rV線に沿う断面図、第5図は従来例の構
成を示すブロック図、第6図は同出力特性図、第7図及
び第8図は、パワータービンの特性説明図である。第9
図は実施例における制御プログラムを示すフローチャー
トである。 1・・・ディーゼル機関本体、2・・・掃気レシーバ、
3・・・過給機、       4・・・コンプレッサ
、5・・・排気レシーバ、    6・・・タービン、
7・・・パワータービン、   8・・・バイパス弁、
8a・・・パルスモータ、   22・・・弁座、23
・・・弁体、       26・・・ガイド。
Fig. 1 is a block diagram showing the configuration of an exhaust gas energy recovery method and device for an internal combustion engine according to an embodiment of the present invention, Fig. 2 is an output characteristic diagram thereof, Fig. 3 is a sectional view of a flow rate regulating valve, and Fig. 4 is a sectional view taken along the TV-rV line in FIG. 3, FIG. 5 is a block diagram showing the configuration of a conventional example, FIG. 6 is an output characteristic diagram of the same, and FIGS. 7 and 8 are explanatory diagrams of characteristics of the power turbine. It is. 9th
The figure is a flowchart showing a control program in an embodiment. 1...Diesel engine body, 2...Scavenging air receiver,
3...Supercharger, 4...Compressor, 5...Exhaust receiver, 6...Turbine,
7... Power turbine, 8... Bypass valve,
8a...Pulse motor, 22...Valve seat, 23
... Valve body, 26... Guide.

Claims (5)

【特許請求の範囲】[Claims] (1)タービン部が内燃機関の排気部に接続されており
、コンプレッサ部が内燃機関の掃気部に接続された過給
機と、該過給機と並列に前記排気部に弁を介して接続さ
れたパワータービンとを備え、エネルギ回収可能な基準
出力以上で前記弁を開くようにした内燃機関の排ガスエ
ネルギ回収方法において、前記基準出力以下にて前記弁
を全閉とし、該基準出力よりも所要出力だけ高出力側の
所定出力にて前記弁を全開とし、該基準出力と所定出力
との間にて前記弁の開度を徐々に変えることを特徴とす
る内燃機関の排ガスエネルギ回収方法。
(1) A supercharger whose turbine section is connected to the exhaust section of the internal combustion engine and whose compressor section is connected to the scavenging section of the internal combustion engine, and connected to the exhaust section in parallel with the supercharger through a valve. In the method for recovering exhaust gas energy of an internal combustion engine, the valve is fully closed at below the reference output, and the valve is fully closed at below the reference output, and the valve is opened at an output above the reference output capable of energy recovery. A method for recovering exhaust gas energy from an internal combustion engine, characterized in that the valve is fully opened at a predetermined output on the high output side by a required output, and the opening degree of the valve is gradually changed between the reference output and the predetermined output.
(2)前記所定出力は、弁全開時の掃気圧力が、弁全閉
時の基準出力における掃気圧力とほぼ等しくなる出力で
ある特許請求の範囲第1項に記載の方法。
(2) The method according to claim 1, wherein the predetermined output is an output at which the scavenging pressure when the valve is fully open is approximately equal to the scavenging pressure at the reference output when the valve is fully closed.
(3)タービン部が内燃機関の排気部に接続されると共
に、コンプレッサ部が内燃機関の掃気部に接続された過
給機と、該過給機と並列に前記排気部に弁を介して接続
されたパワータービンと、エネルギ回収可能な基準出力
の記憶手段及び基準出力以下では弁を全閉となすと共に
該基準出力から所要出力だけ高出力側に弁を全開となし
、その間で弁開度を徐々に変更する弁制御装置と、を備
えた内燃機関の排ガスエネルギ回収装置。
(3) A supercharger whose turbine section is connected to the exhaust section of the internal combustion engine and whose compressor section is connected to the scavenging section of the internal combustion engine, and connected to the exhaust section in parallel with the supercharger through a valve. a power turbine which has been stored, a storage means for a reference output capable of energy recovery, and a valve that is fully closed when the output is below the reference output and fully opened from the reference output by a required output to the high output side, and in which the valve opening degree is adjusted. An exhaust gas energy recovery device for an internal combustion engine, comprising a gradually changing valve control device.
(4)前記弁制御装置は、更に、前記内燃機関の機関出
力の検出手段、前記掃気部の圧力検出手段、前記基準出
力における前記全閉時の圧力Paの記憶手段、該基準出
力以上の出力において掃気圧力Pxと該Paとの比較を
なす比較手段及び弁全閉時と全開時の間にて掃気圧力P
xがPaとほぼ等しくなるように比較手段の比較結果に
基いて弁開度を調節する手段を有する特許請求の範囲第
3項に記載の装置。
(4) The valve control device further includes a means for detecting the engine output of the internal combustion engine, a means for detecting the pressure of the scavenging section, a means for storing the pressure Pa at the fully closed state at the reference output, and an output equal to or higher than the reference output. Comparison means for comparing the scavenging pressure Px and the Pa, and scavenging pressure P between when the valve is fully closed and when the valve is fully opened
4. The device according to claim 3, further comprising means for adjusting the valve opening degree based on the comparison result of the comparison means so that x becomes approximately equal to Pa.
(5)前記弁は、ガス流れ方向に流線形状とされた弁体
を備えることを特徴とする特許請求の範囲第3項又は第
4項に記載の装置。
(5) The device according to claim 3 or 4, wherein the valve includes a valve body having a streamlined shape in the gas flow direction.
JP61166089A 1986-07-15 1986-07-15 Method and equipment for recovering exhaust gas energy in internal combustion engine Pending JPS6321313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61166089A JPS6321313A (en) 1986-07-15 1986-07-15 Method and equipment for recovering exhaust gas energy in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166089A JPS6321313A (en) 1986-07-15 1986-07-15 Method and equipment for recovering exhaust gas energy in internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6321313A true JPS6321313A (en) 1988-01-28

Family

ID=15824786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166089A Pending JPS6321313A (en) 1986-07-15 1986-07-15 Method and equipment for recovering exhaust gas energy in internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6321313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083271A (en) * 2013-02-04 2013-05-09 Mitsubishi Heavy Ind Ltd Engine exhaust energy recovery method
JP2014015944A (en) * 2013-10-31 2014-01-30 Mitsubishi Heavy Ind Ltd Power generation method, turbine generator, control method of turbine generator, and ship equipped with turbine generator
WO2020170647A1 (en) * 2019-02-21 2020-08-27 ジャパン マリンユナイテッド株式会社 Energy recovery device, method for controlling same, and ship provided with same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083271A (en) * 2013-02-04 2013-05-09 Mitsubishi Heavy Ind Ltd Engine exhaust energy recovery method
JP2014015944A (en) * 2013-10-31 2014-01-30 Mitsubishi Heavy Ind Ltd Power generation method, turbine generator, control method of turbine generator, and ship equipped with turbine generator
WO2020170647A1 (en) * 2019-02-21 2020-08-27 ジャパン マリンユナイテッド株式会社 Energy recovery device, method for controlling same, and ship provided with same
JP2020133531A (en) * 2019-02-21 2020-08-31 ジャパンマリンユナイテッド株式会社 Energy recovery device, control method of the same, and ship including the same
CN113286936A (en) * 2019-02-21 2021-08-20 日本日联海洋株式会社 Energy recovery device, control method thereof, and ship provided with same
CN113286936B (en) * 2019-02-21 2023-02-21 日本日联海洋株式会社 Control method of energy recovery device

Similar Documents

Publication Publication Date Title
US5996347A (en) Variable-nozzle type turbo charger
US6922995B2 (en) Supercharging device for internal combustion engine
JPS595775B2 (en) Boost pressure control device for supercharged engines
JPH0343449B2 (en)
EP0136541A2 (en) System controlling variable capacity turbine of automotive turbocharger
JPS6353364B2 (en)
JPS61164042A (en) Supercharging pressure controller of turbo charger
JPS6321313A (en) Method and equipment for recovering exhaust gas energy in internal combustion engine
JPS61155624A (en) Supercharging pressure control device of turbo charger
JPS6053166B2 (en) Boost pressure control device for supercharged engines
JPH09317485A (en) Supercharged engine system and control method therefor
JPS62113829A (en) Control device for supercharge pressure in engine with two-stage supercharger
JP2513496B2 (en) Control device for turbocharger
JPS5960029A (en) Supercharger system
JP4582335B2 (en) Control device for internal combustion engine with electric supercharger
JPS635572B2 (en)
JPS5855330B2 (en) Boost pressure control device for supercharged engines
KR101180792B1 (en) Variable stoper device for VGT
JPH0666151A (en) Supercharger for internal combustion engine
CN209781047U (en) Waste gas door automatic regulating mechanism of engine
JP3073401B2 (en) Highest speed control method for supercharged engine
JPS5846654B2 (en) Boost pressure control device for supercharged engines
JP2645631B2 (en) Supercharging pressure control method for sequential turbo engine
JPH0861074A (en) Supercharging pressure controlling method
JPS6036763A (en) Control of secondary throttle valve for two-stage carburettor