JPS63211611A - Manufacture of capacitor - Google Patents

Manufacture of capacitor

Info

Publication number
JPS63211611A
JPS63211611A JP4252487A JP4252487A JPS63211611A JP S63211611 A JPS63211611 A JP S63211611A JP 4252487 A JP4252487 A JP 4252487A JP 4252487 A JP4252487 A JP 4252487A JP S63211611 A JPS63211611 A JP S63211611A
Authority
JP
Japan
Prior art keywords
substrate
capacitor
conductor
laser beam
good conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4252487A
Other languages
Japanese (ja)
Inventor
高橋 行人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4252487A priority Critical patent/JPS63211611A/en
Publication of JPS63211611A publication Critical patent/JPS63211611A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミック基板を誘電体として用いたコンデ
ンサに係シ、特に基板の単位面積当りの容量値の高いコ
ンデンサに好適なコンデンサの製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a capacitor using a ceramic substrate as a dielectric, and in particular, a method for manufacturing a capacitor suitable for a capacitor having a high capacitance value per unit area of the substrate. Regarding.

〔従来の技術〕[Conventional technology]

従来、セラミック基板を誘電体として用いたコンデンサ
としては、たとえば1983年12月1日付発行の日本
マイクロエレクトロニクス協会編、工業調査会出版「厚
膜IC化技術第83頁乃至第85頁五3コンデンサーの
パターン設計Jにくシ形平面コンデンサすなわち、第8
図に平面図、第9図に断面斜視図を示すように、セラミ
ック基板1の表面に間隔をおいて平行に形成された部分
4a、4bと、これらの部分4a、4bから対向方向に
向って間隔をおいて交互に複数個の突出する部分4cと
からなる導体4を形成し、上記部分4a。
Conventionally, capacitors using a ceramic substrate as a dielectric material have been described, for example, in "Thick Film IC Technology, pp. 83-85, 53 Capacitors" edited by the Japan Microelectronics Association and published by Kogyo Chosenkai, published on December 1, 1983. Pattern design J wedge-shaped planar capacitor, i.e. No. 8
As shown in the plan view in FIG. 9 and in the cross-sectional perspective view in FIG. The conductor 4 is formed of a plurality of protruding portions 4c alternately spaced apart, and the portions 4a.

4b間長手方向断面4′を対向電極としたコンデンサが
紹介されている。
A capacitor is introduced in which a longitudinal section 4' between 4b and 4b is used as a counter electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、容量値を決める一つの係数である対向
電極面積が非常に小さくなシ、基板単位面積当りの容量
値も低く実用的でなかった。
In the above conventional technology, the area of the opposing electrode, which is one of the coefficients that determines the capacitance value, is extremely small, and the capacitance value per unit area of the substrate is also low, making it impractical.

本発明の目的は、上記従来技術の問題点を解決し、単純
な工程で、基板単位面積当υの容量値を高くかつその容
量化を調整可能とするコンデンサの製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art as described above, and to provide a method for manufacturing a capacitor that has a high capacitance value of υ per unit area of a substrate and can adjust the capacitance through a simple process. .

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記の目的は、電気絶縁性炭化硅素セラミック基板を誘
電体として用い、この基板の1部をレーザ光線で加熱・
溶融し、上記炭化硅素の電気絶縁性を破壊して基板の内
部にコンデンサの対向電極として用いる良導電体を形成
し、かつこの良導電体を上記基板の単位面積当りの容量
値が所定の値を保持するように形成することによって達
成される。
The above purpose uses an electrically insulating silicon carbide ceramic substrate as a dielectric, and heats a part of this substrate with a laser beam.
The silicon carbide is melted and the electrical insulation property of the silicon carbide is destroyed to form a good conductor used as a counter electrode of a capacitor inside the substrate, and this good conductor has a capacitance value per unit area of the substrate of a predetermined value. This is achieved by forming the structure to hold the .

〔作用〕[Effect]

電気絶縁性炭化硅素セラミック基板においては、100
0℃以上の高温で加熱すると炭化硅素の絶縁性を破壊し
て良導電体となる性質がある。本発明はこの性質を利用
して上記基板の一部をレーザ光線で加熱・溶融すること
によシ基板内部にも導体を形成することができ、この良
導体を平行に形成して対向電極として用いることによシ
対向電極面積が広くなって基板単位面積当りの容量値を
高くすることができる。
For electrically insulating silicon carbide ceramic substrates, 100
When heated at a high temperature of 0° C. or higher, silicon carbide has the property of breaking down its insulation properties and becoming a good conductor. The present invention utilizes this property to heat and melt a part of the substrate with a laser beam, thereby making it possible to form a conductor inside the substrate.This good conductor is formed in parallel and used as a counter electrode. In particular, the area of the opposing electrode becomes larger, and the capacitance value per unit area of the substrate can be increased.

また上記良導体を形成するさい、その容量を測定し、所
定の値に達したとき上記良導体の形成を停止することに
より対向電極の形成と容量値の調整とを同時に行うこと
ができこれによって工程の単純化をはかることができる
Furthermore, when forming the above-mentioned good conductor, by measuring its capacitance and stopping the formation of the above-mentioned good conductor when it reaches a predetermined value, it is possible to form the counter electrode and adjust the capacitance value at the same time. It can be simplified.

〔実施例〕〔Example〕

以下、本発明の実施例を示す第1図乃至第3図について
説明する。
1 to 3 showing embodiments of the present invention will be described below.

第1図に示す如く、電気絶縁性炭化硅素セラミック基板
(以下SiC基板という)1上に間隔をおいて平行に2
個の導体4a、4bを形成する。
As shown in FIG.
conductors 4a, 4b are formed.

ついで、上記2個の導体4a 、 4 b間の容量を測
定しながら、一方の導体4aから他方の導体4bに向っ
てレーザ光線を上記SiC基板1に照射し、このSiC
基板1を順次加熱・溶融して良導電体部3を形成してい
く。このとき、上記レーザ光線は上記良導電体部3が他
方の導体4bから一定距離a一方の導体4a側の位置で
止まる。
Next, while measuring the capacitance between the two conductors 4a and 4b, the SiC substrate 1 is irradiated with a laser beam from one conductor 4a to the other conductor 4b, and the SiC
The substrate 1 is sequentially heated and melted to form a good conductor portion 3. At this time, the laser beam stops at a position where the good conductor portion 3 is a certain distance a from the other conductor 4b on the one conductor 4a side.

ついで、他方の導体4bから一方の導体4aに向つてレ
ーザ光線をSiC基板1に照射して良導電体部3を形成
していく。このとき、形成される良導電体3は、一方の
導体4aから他方の導体4bに向って形成される良導電
体部3と重ならないようにしなければならないし、かつ
レーザ光線は良導電体部3が一方の導体4aから一定距
離a′、他方の導体4b側の位置で止めなくてはならな
い。
Next, the SiC substrate 1 is irradiated with a laser beam from the other conductor 4b toward the one conductor 4a to form a good conductor portion 3. At this time, the formed good conductor 3 must not overlap with the good conductor part 3 formed from one conductor 4a to the other conductor 4b, and the laser beam should not be directed to the good conductor part 3. 3 must be stopped at a certain distance a' from one conductor 4a and at a position on the other conductor 4b side.

ついで、上記一方の導体4aから他方の導体4bに向っ
て良導電体部3を形成して行き、これを繰シ返し行って
これら2個の導体4a、4b間にて所定の容量値に達し
たとき、レーザ光の照射を停止すると、コンデンサは第
1図に示す形状に形成される。
Next, a good conductor portion 3 is formed from the one conductor 4a to the other conductor 4b, and this is repeated until a predetermined capacitance value is reached between these two conductors 4a and 4b. When the laser beam irradiation is then stopped, the capacitor is formed into the shape shown in FIG.

また上記レーザ光の照射の停止は、上記レーザ光が初め
に一方の導体4aから他方の導体4bに向って照射して
いるとき、たとえ上記良導電体部3を形成している途中
であっても、これら2個の導体4a、4b間にて所定の
容量値に達した場合にはこれを行なう。
Further, the irradiation of the laser beam is stopped when the laser beam is initially irradiated from one conductor 4a to the other conductor 4b, even when the good conductor portion 3 is being formed. This is also done when a predetermined capacitance value is reached between these two conductors 4a and 4b.

このようにして形成されたコンデンサは、その断面を第
2図および第3図に示すように対向電極面積が広くなっ
て基板1の単位面積当りの容量値を高くすることができ
る。
The capacitor thus formed has a large opposing electrode area, as shown in cross section in FIGS. 2 and 3, and can have a high capacitance value per unit area of the substrate 1.

なお、本実施例においては上記良導電体部3の上面に細
いレーザ光の加工軌跡2が残存する。これはレーザ光の
パワーが比較的弱い場合に発生する。
In this embodiment, a thin laser beam machining trajectory 2 remains on the upper surface of the good conductor portion 3. This occurs when the power of the laser beam is relatively weak.

また、本実施例においては良導電体部3の相互の接続部
に2個の導体4a 、 4 bを用いたが、これに限定
されるものでなく、たとえばレーザ光線で良導電体部3
を接続することも可能である。
Further, in this embodiment, two conductors 4a and 4b are used for the mutual connection of the good conductor portion 3, but the present invention is not limited to this. For example, the good conductor portion 3 may be
It is also possible to connect

さらに本実施例においては、良導電体部3を直線のみで
形成されているが、これに限定されるものでなく、L形
状あるいは曲線状に形成することも可能である。
Further, in this embodiment, the good conductor portion 3 is formed only in a straight line, but is not limited to this, and may be formed in an L shape or a curved shape.

つぎに本発明の他の一実施例を示す第4図について説明
する。
Next, FIG. 4 showing another embodiment of the present invention will be described.

第4図においては、レーザ光線のパワーを前記第1図乃
至第3図に示す場合よりも強くした場合であって、レー
ザ光のパワーを強くするのに伴なって基板1の炭化硅素
の絶縁性の破壊量が大きくなって対向電極面積が広くな
9、遂には本発明の他の一実施例を示す第5図に示すよ
うに基板1を貫通することになジ、この場合には対向電
極面積が最も広く、基板1の厚さを最も有効に活用する
ことができる。
In FIG. 4, the power of the laser beam is made stronger than the cases shown in FIGS. 1 to 3, and as the power of the laser beam is increased, the insulation of silicon carbide of the substrate The amount of damage caused by the electrolyte is increased, and the area of the opposing electrode is increased.9, as shown in FIG. The electrode area is the widest, and the thickness of the substrate 1 can be used most effectively.

つぎに本発明のさらに他の一実施例を示す第6図につい
て説明する。
Next, FIG. 6 showing still another embodiment of the present invention will be described.

第6図においては、前記第4図に示す良導電体部5を基
板1の両面に位置をずらして形成した場合である。
FIG. 6 shows a case where the good conductor portions 5 shown in FIG. 4 are formed on both sides of the substrate 1 at different positions.

また本発明の他の一実施例を示す第7図は前記第6図に
示すものと、前記第3図に示す良導電体3を基板1の両
面に形成したものとを組合せたものであシ、このように
組合せることによシさらに高容量または複合形のコンデ
ンサを作成することができる。
FIG. 7, which shows another embodiment of the present invention, is a combination of the one shown in FIG. 6 and the one shown in FIG. By combining in this way, even higher capacitance or composite capacitors can be created.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、つぎに述べるような効果を有する。す
なわち、 (1)  セラミック基板を誘電体として用いたコンデ
ンサとしては、基板単位面積当りの容量値を従来の数倍
〜数十倍(レーザ加工条件や形状によって変わる)に高
くできる。
According to the present invention, the following effects are achieved. That is, (1) As a capacitor using a ceramic substrate as a dielectric, the capacitance value per unit area of the substrate can be increased several times to several tens of times (depending on laser processing conditions and shape) compared to the conventional capacitor.

(2)基板をレーザ加工するだけであシ単純な工程でで
きる。
(2) It can be done in a simple process by just laser processing the substrate.

(3)加工をレーザ光線で行っているので、形状の自由
度が高い。
(3) Since processing is performed using a laser beam, there is a high degree of freedom in shape.

(4)電極形成と容量値の調整が同時に行えるので、作
業性が良い。
(4) Since electrode formation and capacitance value adjustment can be performed at the same time, workability is good.

(5)電極構成方法によシ、複合コンデンサも形成でき
る。
(5) Composite capacitors can also be formed by the electrode construction method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すコンデンサの平面図、
第2図は第1図の断面斜視図、第3図は第2図の一部拡
大断面斜視図、第4図乃至第7図は本発明の他の実施例
を示すコンデンサの拡大断面斜視図、第8図は従来のコ
ンデンサの平面図、第9図は第8図の断面斜視図である
。 1・・・基板 2・・・レーザ加工跡 3・・・良導電体部 第1図         系22 1 基才反、  2 し−サ゛’fta x &が  
3良4を体aS4α、+b導沫 ヌ′r口    1翫扱 IAs口 C
FIG. 1 is a plan view of a capacitor showing one embodiment of the present invention;
2 is a sectional perspective view of FIG. 1, FIG. 3 is a partially enlarged sectional perspective view of FIG. 2, and FIGS. 4 to 7 are enlarged sectional perspective views of capacitors showing other embodiments of the present invention. , FIG. 8 is a plan view of a conventional capacitor, and FIG. 9 is a cross-sectional perspective view of FIG. 8. 1...Substrate 2...Laser processing trace 3...Good conductor part Figure 1 System 22
3 good 4 body aS4α, +b guide nu'r mouth 1 rod handling IAs mouth C

Claims (1)

【特許請求の範囲】[Claims] 1、電気絶縁性炭化硅素セラミック基板を誘電体として
用い、この基板の1部をレーザ光線で加熱・溶融し、上
記炭化硅素の電気絶縁性を破壊して基板にコンデンサの
対向電極として用いる良導電体を、上記基板の単位面積
当りの容量値が所定の値を保持するように形成すること
を特徴とするコンデンサの製造方法。
1. Using an electrically insulating silicon carbide ceramic substrate as a dielectric, a portion of this substrate is heated and melted with a laser beam to destroy the electrical insulation properties of the silicon carbide and make the substrate a good conductor that can be used as a counter electrode of a capacitor. A method for manufacturing a capacitor, characterized in that the capacitor is formed so that a capacitance value per unit area of the substrate is maintained at a predetermined value.
JP4252487A 1987-02-27 1987-02-27 Manufacture of capacitor Pending JPS63211611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4252487A JPS63211611A (en) 1987-02-27 1987-02-27 Manufacture of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4252487A JPS63211611A (en) 1987-02-27 1987-02-27 Manufacture of capacitor

Publications (1)

Publication Number Publication Date
JPS63211611A true JPS63211611A (en) 1988-09-02

Family

ID=12638470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4252487A Pending JPS63211611A (en) 1987-02-27 1987-02-27 Manufacture of capacitor

Country Status (1)

Country Link
JP (1) JPS63211611A (en)

Similar Documents

Publication Publication Date Title
DE19927046B4 (en) Ceramic-metal substrate as a multi-substrate
US4310571A (en) Process for producing a calibrated resistance element
WO1996016435A3 (en) Semiconductor device provided with a microcomponent having a fixed and a movable electrode
JPS63211611A (en) Manufacture of capacitor
JPS6185844A (en) Integrated circuit and making thereof
JPS5895862A (en) Semiconductor device having laminated structure
JPS6345834A (en) Integrated circuit
JPH04170016A (en) Manufacture of laminated ceramic electronic parts
JPH01120878A (en) Josephson effect element
JPH0396294A (en) Electronic component
JPS63237483A (en) Manufacture of photovoltaic element
JPS63249355A (en) Package of integrated circuit
JPS60257192A (en) Hybrid integrated circuit board
JPS5877019A (en) Thin film magnetic head
JPS59117146A (en) Semiconductor integrated circuit
JPS59104101A (en) Chip resistor
JPS5895863A (en) Manufacture of semiconductor device using laminated structure
JPH02272770A (en) Semiconductor device
JPH1032135A (en) Method of manufacturing chip-type electronic part
JPS63128701A (en) Chip film resistance element
JPH0360147A (en) Manufacture of semiconductor device
JPS6185849A (en) Hybrid integrated circuit
JPH02119228A (en) Semiconductor device
JPH02284450A (en) Electronic ceramic substrate and manufacture thereof
JPS62137852A (en) Manufacture of semiconductor device