JPS63210103A - Solid catalyst component for polymerizing olefins - Google Patents

Solid catalyst component for polymerizing olefins

Info

Publication number
JPS63210103A
JPS63210103A JP4247887A JP4247887A JPS63210103A JP S63210103 A JPS63210103 A JP S63210103A JP 4247887 A JP4247887 A JP 4247887A JP 4247887 A JP4247887 A JP 4247887A JP S63210103 A JPS63210103 A JP S63210103A
Authority
JP
Japan
Prior art keywords
catalyst component
solid catalyst
substance
component
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4247887A
Other languages
Japanese (ja)
Other versions
JP2630589B2 (en
Inventor
Atsushi Murai
村井 厚
Minoru Terano
稔 寺野
Kohei Kimura
公平 木村
Masuo Inoue
益男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP62042478A priority Critical patent/JP2630589B2/en
Publication of JPS63210103A publication Critical patent/JPS63210103A/en
Application granted granted Critical
Publication of JP2630589B2 publication Critical patent/JP2630589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To provide the title catalyst component which can produce a stereoregular polymer in a high yield, by contacting a liquid aromatic hydrocarbon in which diethoxymagnesium is suspended with TiCl4 in the presence of an aromatic dicarboxylic acid diester and CaO. CONSTITUTION:Diethoxymagnesium (A) and CaO (B) in an amount of 0.5-1.5pts. wt. ratio to component (A) are ground together, and the resulting composition is contacted with an aromatic hydrocarbon (D) (e.g., toluene) which is liquid at ordinary temperatures, and TiCl4 (E) in an amount of 1g or more for 1g of component (A) in the presence of a diester of an aromatic dicarboxylic acid (e.g., dimethyl terephthalate) in an amount of 0.05-10mol. for 1g of component (A) plus component (B) at 0-136 deg.C for 5min-100hr, and then contacted with component (E) in an amount of 1g or more for 1g of component (A) to produce a solid catalyst component for polymerizing olefins.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオレフィン類の重合用固体触媒成分に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a solid catalyst component for the polymerization of olefins.

さらに詳しく言えば、本発明は、オレフィン類の重合に
おいて、高活性に作用し。
More specifically, the present invention acts with high activity in the polymerization of olefins.

しかも立体規則性重合体を極めて高い収率で得ることが
できる触媒の固体触媒成分を提供するものであり、特に
触媒成分中のT1 当りの重合活性を驚異的に高めたオ
レフィン類重合用触媒の固体触媒成分に関するものでる
る。
Moreover, it provides a solid catalyst component for a catalyst that can obtain a stereoregular polymer in an extremely high yield, and in particular, it provides a catalyst for polymerizing olefins that has an amazingly high polymerization activity per T1 in the catalyst component. Related to solid catalyst components.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来高活性分有するオレフィン類重合用触媒としては、
触媒成分としての固体のチタンハロゲン化物と有機アル
ミニウム化合物とを組合せたものが周知であり広く用l
られているが触媒成分および触媒成分中のチタン当りの
重合体の収量が低く、それ等を高めるべくこれまでに、
数多くの研究がなされてきた。特に、チタン当りの重合
体の収量が低いと重合体中に残存するチタン成分による
強力な腐食作用により重合装置や後処理工程に使用され
る各種機器全損耗させるばかりでなく、生成重合体その
ものの劣化、黄変等種々の悪影響を及ぼすことも周知で
あり、当業界ではその解決が強く望まれていた。その手
段として触媒成分中のチタン含量?少なくすることや、
触媒成分当りの重合体の収量を高めるということでこの
問題を解決しようとする研究がなされてきたが、その両
者全十分に満足し得る成果は得られておらず、残留チタ
ン分ケ除去するための脱灰工程?必要とする場合が多か
った。この脱灰工程は多量のアルコールまたはキレート
剤を使用するために、それ等の回収装置または再生装置
が必要不可欠となり、資源、エネルギーその他の点にお
いて、付随する問題が多く、工業的規模で操業する場合
における重要な課題とされていた。
Conventional catalysts for polymerizing olefins with high activity content include:
A combination of a solid titanium halide and an organoaluminum compound as a catalyst component is well known and widely used.
However, the catalyst component and the yield of polymer per titanium in the catalyst component are low, and so far, efforts have been made to increase them.
Many studies have been conducted. In particular, if the yield of polymer per titanium is low, the titanium component remaining in the polymer will have a strong corrosive effect that will not only lead to total wear and tear of the polymerization equipment and various equipment used in the post-treatment process, but also damage to the produced polymer itself. It is well known that it causes various adverse effects such as deterioration and yellowing, and a solution to this problem has been strongly desired in the industry. Is the titanium content in the catalyst component a means of achieving this? To reduce or
Research has been carried out to solve this problem by increasing the yield of polymer per catalyst component, but none of these methods have yielded satisfactory results. Demineralization process? It was often necessary. Since this deashing process uses a large amount of alcohol or chelating agent, recovery equipment or regeneration equipment is indispensable, and there are many accompanying problems in terms of resources, energy, etc., and it cannot be operated on an industrial scale. This was considered an important issue in the case.

また、上記の課題を解決するために種々の試みがなされ
ているが、一般に触媒成分中のチタン含量を低く抑える
と触媒成分当りの重合体の収量が低下し、触媒成分当り
の重合体の収量を高めようとすると触媒成分中のチタン
含量が高くなり、したがってチタン当りの重合体の収量
は低下するという因果関係から脱脚し得ないという実情
にあった。
In addition, various attempts have been made to solve the above problems, but in general, if the titanium content in the catalyst component is kept low, the yield of polymer per catalyst component decreases, and the yield of polymer per catalyst component decreases. Attempting to increase the titanium content in the catalyst component increases, and the yield of polymer per titanium therefore decreases.

例えば特公昭56−52041号公報においテハ、ハロ
ゲン化マグネシウムと周期律表11■、X[またhtv
族の無水化合物を接触させて触媒成分中のチタン含量を
低減させ、チタン当りの活性を高めようとする試みがな
されているが、触媒成分当りの重合活性が著しく低いた
めに結果としてチタン当りの重合活性も充分なものとは
いえない。また、本出願人が先に提案した特願昭61−
000045号においては、ジェトキシマグネシウムの
ようなジアルコキシマグネシウムを、芳香族炭化水素中
に懸濁させ、しかる後にハロゲン化チタンと接触させて
得られた生成物に、さらにハロゲン化チタンを接触させ
、この際いずれかの時点で芳香族ジカルボン酸のジエス
テル倉接触させることにより触媒成分当りの重合活性を
飛躍的に高めることに成功しているが、触媒成分中のチ
タン含量が高いためにチタン当りの重合活性では充分満
足すべき値を示していない。
For example, in Japanese Patent Publication No. 56-52041, Teha, magnesium halide and periodic table 11■,
Attempts have been made to reduce the titanium content in the catalyst component and increase the activity per titanium by contacting anhydrous compounds of the above group, but as a result, the polymerization activity per catalyst component is extremely low. The polymerization activity is also not sufficient. In addition, the applicant has previously proposed a patent application filed in 1986-
No. 000045, a dialkoxymagnesium, such as jetoxymagnesium, is suspended in an aromatic hydrocarbon and then contacted with a titanium halide, and the resulting product is further contacted with a titanium halide, At some point in this process, they succeeded in dramatically increasing the polymerization activity per catalyst component by contacting the aromatic dicarboxylic acid with a diester, but due to the high titanium content in the catalyst component, The polymerization activity does not show a fully satisfactory value.

ここでいう触媒成分中のチタン含量が高いということは
重合時に使用する有機アルミニウム化合物の量が、ht
/T1モル比で規定されることが多いため、実質的に多
量の有機アルミニウム化合物を使用することとなり、触
媒活性がある程度高い数値を示しても、有機アルミニウ
ム化合物を含んだ全触媒に換算すると触媒の原単位の上
昇につながること?意味している。
The high content of titanium in the catalyst component here means that the amount of organoaluminum compound used during polymerization is
/T1 molar ratio, a substantially large amount of organoaluminum compound is used, and even if the catalytic activity shows a somewhat high value, the catalyst is Will it lead to an increase in the basic unit of production? It means.

〔発明の目的〕[Purpose of the invention]

本発明は斯かる従来技術における課題を解決するため触
媒成分中のチタン含量を低くおさえ。
The present invention suppresses the titanium content in the catalyst component to solve the problems in the prior art.

しかも触媒成分当りの重合体の収量を高め、結果として
チタン当りの重合活性を飛躍的に高め得るオフフィン類
重合用触媒の固体触媒成分を提供せんとするものである
Moreover, it is an object of the present invention to provide a solid catalyst component of a catalyst for offfin polymerization that can increase the yield of polymer per catalyst component and, as a result, dramatically increase the polymerization activity per titanium.

〔発明の開示〕[Disclosure of the invention]

本発明によりジェトキシマグネシウム(a) t、常温
で液体の芳香族炭化水素中)に懸濁させ、しかる後に四
塩化チタン(c)と接触させて得られた生成物に、さら
に四塩化チタン(a) ?接触させ、この際、上記懸濁
および/または接触の際のいずれかの過程において芳香
族ジカルボン酸のジエステル(d)および酸化カルシウ
ム(e) を共存させ、上記酸化カルシウム(e)はジ
ェトキシマグネシウム(、)に対して重量比で(L5〜
t5になる割合で使用することによって得られるオレフ
ィン類重合用固体触媒成分が提供される。
According to the invention, the product obtained by suspending jetoxymagnesium (a) in an aromatic hydrocarbon which is liquid at room temperature) and subsequently contacting it with titanium tetrachloride (c) is added to a)? At this time, the aromatic dicarboxylic acid diester (d) and calcium oxide (e) are made to coexist in any of the steps of the suspension and/or contact, and the calcium oxide (e) is made to coexist with jetoxymagnesium. (,) in weight ratio (L5~
A solid catalyst component for polymerizing olefins obtained by using the catalyst at a ratio of t5 is provided.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

前記(a)のジアルコキシマグネシウム(以下単に(a
)物質という)としてはジェトキシマグネシウム、ジブ
トキシマグネシウム、ジフェノキシマグネシウム、ジプ
ロポキシマグネシウム、ジー5ea−ブトキシマグネシ
ウム、ジーterをブトキシマグネシウムおよびジイソ
プロポキシマグネシウムがめげられるが中でもジェトキ
シマグネシウムおよびジプロポキシマグネシウムが好ま
しい。
The dialkoxymagnesium of (a) (hereinafter simply referred to as (a)
) Substances) include jetoxymagnesium, dibutoxymagnesium, diphenoxymagnesium, dipropoxymagnesium, di-5ea-butoxymagnesium, di-butoxymagnesium and diisopropoxymagnesium, among which jetoxymagnesium and dipropoxymagnesium is preferred.

前記(b)の常温で液体の芳香族炭化水素(以下単に(
b)物質という)としてはベンゼン、トルエン、キシレ
ン% 1.2− ジクロルエタン、オルトジクロルベン
ゼン等があげられる。中でもトルエンは、好ましい物質
である。
Aromatic hydrocarbons (hereinafter simply referred to as ()) that are liquid at room temperature (b) above
Examples of the substance b) include benzene, toluene, xylene%1.2-dichloroethane, orthodichlorobenzene, and the like. Among these, toluene is a preferred substance.

前記(d)の芳香族ジカルボン酸のジエステル(以下単
に(d)物質という)としてはフタル酸またはテンフタ
ル酸のジエステルが好ましく、例えばジメチルフタレー
ト、ジメチルテレフタレート、ジエチルフタレート、ジ
エチルテレフタレート、ジプロピルフタレート、ジプロ
ピルテレフタレート、ジブチルフタレート、ジブチルテ
ンフタ”  )% ジイソブチルフタレート、シアミル
フタレート、ジインアミルフタレート、エチルブチルフ
タレート、エチルイソブチルフタレートおよびエチルブ
チルフタレートケあ本発明に係る固体触媒成分倉調製す
る際の各原料物質の使用割合は前記(e)の酸化カルシ
ウム(以下単に(θ)物質という)は(a)物質に対し
て重量比で(15〜t5になるように使用する。他の各
物質については、得られる固体触媒成分の性能に悪影響
ケ及ぼすことの無い限り特定されるものではないが1通
常前記(C)の四塩化チタンC以下単に(c)物質とい
う)の(a)物質とのまたは(a)物質と(6)物質と
の最初の接触の際は、(a)物質1fVC対し、12以
上、好ましくは2F以上の範囲である。(b)物質は、
(a)物質との懸濁液又は(a)物質と(θ)物質との
懸濁液を形成し得る範囲であれば任意である。また、(
d)物質は(a)物質と(8)物質との合計1tに対し
105〜10mmO4%好ましくはα2 mmot〜5
 mmotの範囲でめる◎(c)物質の再接触の際に使
用する量は最初の接触の場合と同様に、(a)物質1f
に対して1f以上、好ましくは22以上である。
The diester of aromatic dicarboxylic acid (hereinafter simply referred to as (d) substance) is preferably a diester of phthalic acid or thenphthalic acid, such as dimethyl phthalate, dimethyl terephthalate, diethyl phthalate, diethyl terephthalate, dipropyl phthalate, dimethyl phthalate, etc. Propyl terephthalate, dibutyl phthalate, dibutyl tenphthalate)% Diisobutyl phthalate, cyamyl phthalate, diynamyl phthalate, ethyl butyl phthalate, ethyl isobutyl phthalate, and ethyl butyl phthalate Each raw material when preparing the solid catalyst component storage according to the present invention The ratio of the substances to be used is that the calcium oxide (hereinafter simply referred to as (θ) substance) in (e) is used at a weight ratio of (15 to t5) to the substance (a).For each other substance, Although not specified as long as it does not adversely affect the performance of the solid catalyst component obtained, 1 usually the above (C) titanium tetrachloride C (hereinafter simply referred to as (c) substance) with (a) substance or ( During the initial contact between the a) substance and the (6) substance, the range is 12 or more, preferably 2F or more, relative to 1 fVC of the (a) substance. (b) The substance is
It is arbitrary as long as it can form a suspension with the substance (a) or a suspension between the substance (a) and the substance (θ). Also,(
d) The substance is 105 to 10 mmO4%, preferably α2 mmot to 5 per 1 ton of the (a) substance and (8) substance.
mmot ◎(c) The amount to be used for re-contacting the substance is the same as for the first contact, (a) 1f of the substance
1f or more, preferably 22 or more.

固体触媒成分を得るための各物質の接触順序および接触
方法は特定されないが、以下に好ましい態様例を述べる
。第1の好ましい態様として(a)物質と(e)物質と
倉振動ミル等で共粉砕した後、得られた組成物を(a)
物質の存在下で(b)物質および(c)物質と接触させ
、次いで新たに(c)物質と接触させる方法があげられ
る。第2の好ましい態様としては(a)物質と(e)物
質とを(b)物質中で懸濁状態とし、しかる後にa)物
質の存在下で(c)物質と接触させ、次いで、新たに(
c)物質と接触させる方法があげられる。
Although the order and method of contacting each substance to obtain a solid catalyst component are not specified, preferred embodiments will be described below. In a first preferred embodiment, after co-pulverizing the (a) substance and (e) substance with a Kurura vibration mill or the like, the resulting composition is (a)
Examples include a method of contacting the substance (b) and the substance (c) in the presence of the substance, and then contacting the substance anew with the substance (c). In a second preferred embodiment, (a) the substance and (e) the substance are suspended in the (b) substance, and then brought into contact with the (c) substance in the presence of the a) substance, and then freshly (
c) A method of contacting with a substance is mentioned.

(a)物質と(b)物質および(c)物質との接触の温
度は通常、Ω℃〜136℃の温度範囲であり、接触の時
間は、5分〜100時間、好ましくハ5分〜10時間の
範囲である。その接触の後、生成物は、必要に応じて(
b)物質および他の有機溶媒で繰り返し洗浄することが
可能である。引続き行なわれる(c)物質との接触処理
は前記の最初の接触処理と同様の条件で行なわれる。前
記の(b)物質は、単独で用いても、他の有機溶媒と共
に用いてもよい。これらの処理を終了した後生成物は、
必要に応じて、n−へブタン等の有機溶媒で洗浄するこ
とが可能である。
The temperature of contact between (a) substance, (b) substance and (c) substance is usually in the temperature range of Ω°C to 136°C, and the contact time is 5 minutes to 100 hours, preferably 5 minutes to 10 hours. It is a range of time. After that contact, the product (
b) Repeated washing with substances and other organic solvents is possible. The subsequent contact treatment with the substance (c) is carried out under the same conditions as the first contact treatment. The above substance (b) may be used alone or in combination with other organic solvents. After completing these treatments, the product is
If necessary, it is possible to wash with an organic solvent such as n-hebutane.

以上の如くして調製された固体触媒成分は有機アルミニ
ウム化合物と組合され、オレフィン類重合用触媒として
用いられる。重合に際しては有機ケイ素化合物等の電子
供与性化合物を用いることも好ましい態様である。
The solid catalyst component prepared as described above is combined with an organoaluminum compound and used as a catalyst for polymerizing olefins. It is also a preferred embodiment to use an electron-donating compound such as an organosilicon compound during polymerization.

重合反応は有機溶媒の存在下でも或いは不存在下でも行
なうことができる。使用するオレフィン単量体は気体ま
たは液体のいずれの状態でも用いることができる。重合
温度は200C以下好ましくは100℃以下であり、重
合圧力は100ゆ7cm”・G以下好ましくは50ゆ/
倒3・G以下である。
The polymerization reaction can be carried out in the presence or absence of an organic solvent. The olefin monomer used can be used in either gas or liquid state. The polymerization temperature is 200C or less, preferably 100C or less, and the polymerization pressure is 100Y7cm".G or less, preferably 50YU/G or less.
The fall is 3.G or less.

本発明に係る固体触媒成分を用いて単独重合または共重
合されるオレフィン類としてはエチレン、プロピレン、
1−ブテン等があげられる。
Olefins to be homopolymerized or copolymerized using the solid catalyst component according to the present invention include ethylene, propylene,
Examples include 1-butene.

〔発明の効果〕〔Effect of the invention〕

本発明に係るオレフィン類固体触媒成分による触媒を用
いてオレフィン類の重合を行なう場合、固体触媒成分中
のチタン含量(チタレ担持率)が極めて低いにもかかわ
らず、固体触媒成分当りの重合体の収量(触媒成分当り
の重合活性)が極めて高く、生成重合体中の残留チタン
含量が全く無視し得る程度なので脱灰工程をほとんど必
要とせず、生成重合体の劣化、黄変等の問題もほとんど
生じない。
When polymerizing olefins using the catalyst of the olefin solid catalyst component according to the present invention, the amount of polymer per solid catalyst component is The yield (polymerization activity per catalyst component) is extremely high, and the residual titanium content in the produced polymer is completely negligible, so there is almost no need for a deashing process, and there are almost no problems such as deterioration or yellowing of the produced polymer. Does not occur.

また、通常オレフィン類の重合においては用いられる有
機アルミニウム化合物中のAtと。
Also, At in organoaluminum compounds normally used in the polymerization of olefins.

固体触媒成分中のT10モル比すなわちht7’rxモ
ル比をある範囲内に定めて行なう場合が多いが、そのよ
うな場合本発明に係る固体触媒成分は該固体触媒成分量
のチタン含量が極めて低いにもかかわらず、A4/T1
モル比を変えることなく触媒成分当りの重合体の収量が
極めて高く得られるので使用する有機アルミニウム化合
物の量を低減することができ、全触媒当りで考慮する場
合コストの低減になる。
In many cases, the T10 molar ratio, that is, the ht7'rx molar ratio in the solid catalyst component is set within a certain range, but in such cases, the solid catalyst component according to the present invention has an extremely low titanium content. Despite this, A4/T1
Since a very high yield of polymer per catalyst component can be obtained without changing the molar ratio, the amount of organoaluminum compound used can be reduced, leading to a reduction in cost when considered per total catalyst.

また1本発明に係る固体触媒成分による触媒は、従来公
知の触媒に比較し、触媒中に含有される塩素量が少ない
ために生成重合体中の残留塩素量を極めて低くおさえる
ことができる。此の残留塩素けT1と同様強烈な腐食作
用を持つために当業者に忌避されているが、本発明によ
れば斯かる課題をも解決することができる。
Furthermore, since the catalyst using the solid catalyst component according to the present invention contains a smaller amount of chlorine than conventionally known catalysts, the amount of residual chlorine in the produced polymer can be kept extremely low. This residual chlorine, like T1, is avoided by those skilled in the art because it has a strong corrosive effect, but the present invention can also solve this problem.

さらに、本発明に係る固体触媒成分による触媒を用いて
オレフィン類の重合を行なった場合、重合の経過に伴な
う活性の低下も極めて小さく、また立体規則性重合体の
収率も高く、水素共存下における活性および立体規則性
重合体の収率の低下という問題tも併せて解決するとい
う格別の効果が得られる。
Furthermore, when olefins are polymerized using the catalyst of the solid catalyst component according to the present invention, the decrease in activity over the course of polymerization is extremely small, the yield of stereoregular polymer is high, and hydrogen The special effect of solving the problem of a decrease in the yield of active and stereoregular polymers in coexistence can also be obtained.

〔実施例および比較例〕[Examples and comparative examples]

以下本発明を実施例訃よび比較例によりさらに具体的に
説明する。
The present invention will be explained in more detail below with reference to Examples and Comparative Examples.

実施例1 1)固体触媒成分の調製 酸化カルシウム309およびジェトキシマグネシウム4
511(、窒素ガスで充分に置換され、25■φのステ
ンレスボールを全容量の%充填した容量t2tの振動ミ
ルポットに装入し、振動数1430 v−p−mおよび
振巾五5■で5時間室温で粉砕処理ケ行なった。窒素ガ
スで充分に置換され、攪拌機を具備した容量500−の
丸底フラスコに2前記粉砕処理によって得られた組成物
9tおよびトルエン50−をとり、攪拌下に5分混合接
触させた。次いでTiet、 50 dを加え、90℃
に昇温し、フタル酸−n−ジプチルL9 fを加え、さ
らに115℃に昇温して2時間攪拌しながら反応させた
。得られた固体状生成物をF別し、新たにトルエン10
0−を用いて90℃にて洗浄し、次いで、 Ti0t4
40−およびトルエン6O−を加え、115℃で2時間
攪拌しながら反応させた。反応終了後、4゜cjで冷却
し、n−へブタンによる洗浄を繰返し行ない、洗浄廃液
中に塩素が検出されなくなった時点で洗浄終了として固
体触媒成分を得た。
Example 1 1) Preparation of solid catalyst components Calcium oxide 309 and Jetoxymagnesium 4
511 (, fully purged with nitrogen gas, charged into a vibrating mill pot with a capacity of t2t filled with 25 φ stainless steel balls % of the total capacity, and heated at a vibration frequency of 1430 vpm and a shaking width of 55cm). The pulverization treatment was carried out at room temperature for an hour. In a 500-capacity round bottom flask, which was sufficiently purged with nitrogen gas and equipped with a stirrer, 9 tons of the composition obtained by the above pulverization treatment and 50 tons of toluene were placed, and the mixture was stirred. Mix and contact for 5 minutes. Then add Tiet, 50 d, and heat at 90°C.
The temperature was raised to 115°C, and n-dipyl phthalate L9f was added thereto, and the mixture was further heated to 115°C and reacted with stirring for 2 hours. The obtained solid product was separated by F, and freshly added 10% of toluene.
0- at 90°C, then Ti0t4
40- and toluene 6O- were added, and the mixture was reacted with stirring at 115° C. for 2 hours. After the reaction was completed, the reactor was cooled to 4°cj and washed repeatedly with n-hebutane. When chlorine was no longer detected in the washing waste liquid, the washing was completed and a solid catalyst component was obtained.

なお、この際該固体触媒成分中の固液を分離して固体分
中の元素分析を行なったところそれぞれ重31%テoa
25、?、Mg11.9、Ol 5a6、TiLllで
あった。
At this time, when the solid and liquid in the solid catalyst component were separated and elemental analysis of the solid content was performed, it was found that the weight of each component was 31% Teoa.
25,? , Mg11.9, Ol 5a6, TiLll.

2)重合 窒素ガスで完全に置換された内容積ZOtの攪拌装置付
オートクレーブに、n−ヘプタン700dを装入し、窒
素ガス雰囲気を保ちつつトリエチルアルミニウム181
!、フェニルトリエトキシシラン38り、次いで前記固
体触媒成分をチタン原子として[13q装入した。その
後水素ガス120dl−装入し、70℃に昇温しでプロ
ピレンガスを導入しつつ6 klil/a+” 6 G
の圧力を維持して2時間の重合反応を行なった。
2) Charge 700 d of n-heptane into an autoclave with a stirrer and an internal volume of ZOt that has been completely purged with polymerized nitrogen gas, and add 181 d of triethylaluminum while maintaining a nitrogen gas atmosphere.
! , phenyltriethoxysilane 38 and then the solid catalyst component was charged as titanium atoms [13q]. After that, 120 dl of hydrogen gas was charged, the temperature was raised to 70°C, and while propylene gas was introduced, 6 kli/a+" 6 G
The polymerization reaction was carried out for 2 hours while maintaining the pressure of .

重合反応終了後得られた固体重合体tF別し、80℃に
加温して減圧乾燥した。一方ろ液を凝縮して重合溶媒に
溶存する重合体の量It (A)とし。
After the polymerization reaction was completed, the obtained solid polymer tF was separated, heated to 80° C., and dried under reduced pressure. On the other hand, the amount of polymer dissolved in the polymerization solvent after condensing the filtrate is defined as It (A).

固体重合体の量をφ)とする。また得られた固体重合体
を沸騰n−へブタンで6時間抽出しn−ヘプタンに不溶
解の重合体を得、この量t (c)とする。
Let the amount of solid polymer be φ). Further, the obtained solid polymer was extracted with boiling n-heptane for 6 hours to obtain a polymer insoluble in n-heptane, and this amount was defined as t (c).

固体触媒成分中のT1 当りの重合活性@を式で表わす
The polymerization activity per T1 in the solid catalyst component is expressed by the formula.

また結晶性重合体の収率(至))を式 で表わし、全結晶性重合体の収率(IF) t一式より
求めた。また生成重合体のM工を(G)で表わす。得ら
れた結果は第1表に示す通りである。
Further, the yield (total) of the crystalline polymer was expressed by a formula and determined from the total yield (IF) of the crystalline polymer. Moreover, the M process of the produced polymer is represented by (G). The results obtained are shown in Table 1.

実施例2 フタル酸−n−ジプチルの量を2.2fにした以外は実
IIIB列1と同様にして、固体触媒成分の調製を行な
った。なお、固体触媒成分中の固液全分離して固体分生
の元素分析を行なったところそれぞれ重[1でOa  
248. Mg  12.1、Ol  37.9、Ti
1.18であった。
Example 2 A solid catalyst component was prepared in the same manner as in Example IIIB column 1 except that the amount of n-diptylphthalate was 2.2f. In addition, when the solid and liquid in the solid catalyst component were completely separated and elemental analysis of the solid fraction was performed, it was found that the weight [1 and Oa
248. Mg 12.1, Ol 37.9, Ti
It was 1.18.

重合に際しては実M例1と同様にして実験を行なった。During polymerization, an experiment was conducted in the same manner as in Example M.

得られた結果は第1表に示す通りである。The results obtained are shown in Table 1.

実施例3 重合に際してフェニルトリエトキシシランの代りにジフ
ェニルジメトキシシラン59 wg f使用した以外は
実施例1と同様にして実験を行なった。得られた結果は
第1表に示す通りである。
Example 3 An experiment was carried out in the same manner as in Example 1 except that diphenyldimethoxysilane 59 wg f was used instead of phenyltriethoxysilane during polymerization. The results obtained are shown in Table 1.

実施例4 1)固体触媒成分の調製 窒素ガスで充分に置換され攪拌機を具備し念容量500
−の丸底フラスコに酸化カルシウムSat、ジェトキシ
マグネシウム4.5fおよびトルエン50−をとり、5
0℃で1時間攪拌下に接触させ念。次いでTiO450
al を加え、90℃に昇温し、フタル酸−n−ブチル
t9Fを加え、さらに115Cに昇温して2時間攪拌し
ながら反応させた。得られた固体状生成物をF別シ、新
りにトルエン100−を用いて90℃にて洗浄し、さら
にT10440−およびトルエン60−を加え、115
Cで2時間攪拌しながら反応させた。反応終了後40℃
まで冷却し、n−へブタンによる洗浄を繰返し行ない、
洗浄廃液中に塩素が検出されなくなった時点で洗浄終了
として固体触媒成分を得た。なお、この際該固体触媒成
分中の固液を分離して固体分生の元素分析を行々つたと
こるそれぞれ重量係の0a2Fk、2、Mg12..5
.0t31L2、’l’ii、07であった。
Example 4 1) Preparation of solid catalyst component A reactor with a capacity of 500, sufficiently purged with nitrogen gas and equipped with a stirrer.
- Take calcium oxide Sat, jetoxymagnesium 4.5f and toluene 50- in a round bottom flask,
Leave in contact with stirring for 1 hour at 0°C. Then TiO450
al was added, the temperature was raised to 90°C, n-butyl phthalate t9F was added, the temperature was further raised to 115C, and the mixture was reacted with stirring for 2 hours. The obtained solid product was washed separately with F at 90°C using 100° of toluene, and further added with 10440° of T10440 and 60° of toluene.
The reaction was carried out at C for 2 hours with stirring. 40℃ after completion of reaction
cooled to
When chlorine was no longer detected in the washing waste liquid, the washing was completed and a solid catalyst component was obtained. At this time, the solid and liquid in the solid catalyst component were separated and elemental analysis of the solid fraction was performed, and the weight ratios of 0a2Fk, 2, Mg12. .. 5
.. It was 0t31L2, 'l'ii, 07.

2)重合 重合に際しては、実施例1と同様にして実験を行なった
。得られた結果は第1表に示す通りである。
2) Polymerization For polymerization, an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

比較例1 固体触媒成分調製時に酸化カルシウムを用いず、ジェト
キシマグネシウムf9t、フタル酸−n−ジブチルを2
,5F使用した以外は実施例4と同様にして実験を行な
つ九。なお、この際該固体触媒成分中の固液を分離して
固体分生の元素分析を行なったところそれぞれ重量係で
Mg18、Ot 62、T1  五12でめつ九。
Comparative Example 1 When preparing the solid catalyst component, calcium oxide was not used, and jetoxymagnesium f9t and n-dibutyl phthalate were used at 2
, 5F was used, but the experiment was conducted in the same manner as in Example 4. At this time, when the solid and liquid in the solid catalyst component was separated and elemental analysis of the solid fraction was performed, the weights of each were 18 Mg, 62 Ot, and 512 T1, which was 9.

重合に際しては使用する固体触媒成分tチタン原子とし
て0.5q、)リエチルアルミニウムを301qおよび
フェニルトリエトキシシランを64xgとした以外は実
施例1と同様にして実験を行なった。得られ九結果は第
1表に示す通りである。
An experiment was carried out in the same manner as in Example 1, except that the solid catalyst components used in the polymerization were 0.5q as titanium atoms, 301q of ethylaluminum, and 64xg of phenyltriethoxysilane. The results obtained are shown in Table 1.

比較例2 1)固体触媒成分の調製 無水のMg0J4 +i 5 ?、無水のLi0t40
 fおよびTi0t4 !L 4 f を窒素雰囲気下
で25−一のステンレスボールを全容積の%充填した容
量1.0tの振動ミルポットに装入し、振動数1460
 V−p−m、振巾五5−で16時間の粉砕処理を行な
った。
Comparative Example 2 1) Preparation of solid catalyst component Anhydrous Mg0J4 +i 5 ? , anhydrous Li0t40
f and Ti0t4! L 4 f was placed in a vibrating mill pot with a capacity of 1.0 t filled with 25-1 stainless steel balls in % of the total volume under a nitrogen atmosphere, and the vibration frequency was 1460.
Grinding was carried out for 16 hours at Vpm and shaking width of 55mm.

窒素ガスで充分に置換され、攪拌機倉具備した容量50
0−の丸底フラスコに前記粉砕物5rt12G−の無水
ノルマルヘプタンに懸濁し、ついでαB41のN、 N
; N? N−テトラメチルエチレンジアミンを添加す
る。ついで混合物を室温で攪拌下で45分間放置し、つ
いで300−のn−へブタンで希釈し触媒成分とした。
Capacity 50, fully purged with nitrogen gas and equipped with a stirrer tank
The pulverized product 5rt12G- was suspended in anhydrous normal heptane in a 0-round bottom flask, and then αB41 N, N
;N? Add N-tetramethylethylenediamine. The mixture was then left under stirring at room temperature for 45 minutes and then diluted with 300-helbutane to give the catalyst component.

尚、該触媒成分中の固液を分離し、固体分生のT1 含
有率を測定したところ1.02重量優であった。
When the solid and liquid in the catalyst component was separated and the T1 content of the solid fraction was measured, it was found to be over 1.02 weight.

2)重合 重合に際してはトリエチルアルミニウムを120q、触
媒成分をT1 原子としてa511F使用し、フェニル
トリエトギシシランを用いなかった以外は実施例1と同
様にして実験を行なった。得られ九結果は第1表に示す
通りである。
2) Polymerization During polymerization, an experiment was carried out in the same manner as in Example 1, except that 120q of triethylaluminum and a511F were used as the catalyst component with T1 atoms, and phenyltriethoxysilane was not used. The results obtained are shown in Table 1.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

(1)  第1図は本発明の理解を助けるための模式的
図面である。 (2)*1のOaO,*2の芳香族ジカルボン酸のジエ
ステルはそれぞれ懸濁、接触(1)、接触(2)のいず
れの時点で共存させてもよい。 (3)  壷1のOaOn Mg ((4H@O)t 
 に対して重量比でα5以上の割合で使用する。
(1) FIG. 1 is a schematic drawing to help understand the present invention. (2) OaO (*1) and diester of aromatic dicarboxylic acid (*2) may be allowed to coexist at any time of suspension, contact (1), and contact (2), respectively. (3) OaOn Mg ((4H@O)t of pot 1
It is used at a weight ratio of α5 or more.

Claims (2)

【特許請求の範囲】[Claims] (1)ジエトキシマグネシウム(a)を、常温で液体の
芳香族炭化水素(b)に懸濁させ、しかる後に四塩化チ
タン(c)と接触させて得られた生成物に、さらに四塩
化チタン(c)を接触させ、この際、上記懸濁および/
または接触の際のいずれかの過程において芳香族ジカル
ボン酸のジエステル(d)および酸化カルシウム(e)
を共存させ、上記酸化カルシウム(e)はジエトキシマ
グネシウム(a)に対して重量比で0.5〜1.5にな
る割合で使用することによって得られるオレフィン類重
合用固体触媒成分。
(1) Diethoxymagnesium (a) is suspended in an aromatic hydrocarbon (b) that is liquid at room temperature, and then brought into contact with titanium tetrachloride (c). (c) in contact with the suspension and/or
or diester of an aromatic dicarboxylic acid (d) and calcium oxide (e) in any step during contacting
A solid catalyst component for polymerizing olefins obtained by coexisting calcium oxide (e) with diethoxymagnesium (a) in a weight ratio of 0.5 to 1.5.
(2)ジエトキシマグネシウム(a)と酸化カルシウム
(e)とを予め共粉砕し、得られた粉砕組成物を常温で
液体の芳香族炭化水素(b)に懸濁させ、しかる後に四
塩化チタン(c)と接触させて得られた生成物に、さら
に四塩化チタン(c)を接触させ、この際、上記懸濁お
よび/または接触の際に芳香族ジカルボン酸のジエステ
ル(d)を共存させて得られる特許請求の範囲第(1)
項記載のオレフィン類重合用固体触媒成分。
(2) Diethoxymagnesium (a) and calcium oxide (e) are co-pulverized in advance, the resulting pulverized composition is suspended in a liquid aromatic hydrocarbon (b) at room temperature, and then titanium tetrachloride is The product obtained by contacting with (c) is further contacted with titanium tetrachloride (c), and at this time, a diester of an aromatic dicarboxylic acid (d) is allowed to coexist during the suspension and/or contact. Claim No. (1) obtained by
A solid catalyst component for polymerizing olefins as described in .
JP62042478A 1987-02-27 1987-02-27 Solid catalyst component for olefins polymerization Expired - Fee Related JP2630589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62042478A JP2630589B2 (en) 1987-02-27 1987-02-27 Solid catalyst component for olefins polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62042478A JP2630589B2 (en) 1987-02-27 1987-02-27 Solid catalyst component for olefins polymerization

Publications (2)

Publication Number Publication Date
JPS63210103A true JPS63210103A (en) 1988-08-31
JP2630589B2 JP2630589B2 (en) 1997-07-16

Family

ID=12637171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62042478A Expired - Fee Related JP2630589B2 (en) 1987-02-27 1987-02-27 Solid catalyst component for olefins polymerization

Country Status (1)

Country Link
JP (1) JP2630589B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162607A (en) * 1982-03-19 1983-09-27 Mitsui Toatsu Chem Inc Polymerization of alpha-olefin
JPS62119204A (en) * 1985-11-20 1987-05-30 Idemitsu Petrochem Co Ltd Production of olefin polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162607A (en) * 1982-03-19 1983-09-27 Mitsui Toatsu Chem Inc Polymerization of alpha-olefin
JPS62119204A (en) * 1985-11-20 1987-05-30 Idemitsu Petrochem Co Ltd Production of olefin polymer

Also Published As

Publication number Publication date
JP2630589B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JPH0832737B2 (en) Solid catalyst component for olefin polymerization
JPS62158704A (en) Catalyst for polymerization of olefin
JPS6155104A (en) Olefin polymerization catalyst component and catalyst
JP2514015B2 (en) Solid catalyst component for olefin polymerization
JPS633010A (en) Catalyst for polymerization of olefin
JPS63210103A (en) Solid catalyst component for polymerizing olefins
JP2571057B2 (en) Solid catalyst component for olefin polymerization
JP3210724B2 (en) Solid catalyst component for olefin polymerization
JPS62252404A (en) Catalyst for polymerization of olefin
JP2525196B2 (en) Solid catalyst component for olefin polymerization
JPS59142206A (en) Production of catalyst component for alpha-olefin polymerization
JPS62292805A (en) Catalyst for polymerization of olefin
JP3330164B2 (en) Olefin polymerization method
JPS63301A (en) Catalyst for polymerization of olefin
JPS62177003A (en) Catalytic component for olefin polymerization and catalyst therefrom
JPS62508A (en) Catalyst component for polymerization of olefin
JPH0446283B2 (en)
JPH01245002A (en) Catalyst for polymerizing olefins
JPS5912904A (en) Preparation of catalytic component for polymerizing alpha-olefin
JPS62179511A (en) Catalyst for olefin polymerization
JPS62121703A (en) Catalyst component and catalyst for polymerization of olefin
JPH0425284B2 (en)
JPS62184005A (en) Catalyst for olefin polymerization
JPS62209105A (en) Production of catalyst component for polymerizing olefin
JPS61276806A (en) Production of catalyst component for polymerization of olefin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees