JPS63210063A - Zirconia oxygen sensor element - Google Patents

Zirconia oxygen sensor element

Info

Publication number
JPS63210063A
JPS63210063A JP62040315A JP4031587A JPS63210063A JP S63210063 A JPS63210063 A JP S63210063A JP 62040315 A JP62040315 A JP 62040315A JP 4031587 A JP4031587 A JP 4031587A JP S63210063 A JPS63210063 A JP S63210063A
Authority
JP
Japan
Prior art keywords
zirconia
monoclinic
oxygen sensor
sensor element
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62040315A
Other languages
Japanese (ja)
Inventor
滋 田中
昭 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62040315A priority Critical patent/JPS63210063A/en
Publication of JPS63210063A publication Critical patent/JPS63210063A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、温度変化の激しい環境下で使われる酸素セン
サ素子に係り、特に、耐熱衝撃性を向上させたジルコニ
ア酸素センサ素子を提供するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an oxygen sensor element used in an environment with severe temperature changes, and particularly provides a zirconia oxygen sensor element with improved thermal shock resistance. It is.

〔従来の技術〕[Conventional technology]

ジルコニアセラミックスは、酸素イオン導電率が高いこ
とと機械的強度が大きいことから自動車排ガス中や溶鋼
炉中の酸素センサ素子として好んで用いられている。こ
のような酸素センサ素子の使用条件は、急激な熱変化を
伴うことが多く1例えば、自動車の排ガ、ス用酸素セン
サでは、約900℃から、−20℃(寒冷地)という厳
しい熱環境下におかれている。従って、この素子には、
上述二種の性質の他に高い耐熱衝撃性が要求される。
Zirconia ceramics are preferably used as oxygen sensor elements in automobile exhaust gas and steel melting furnaces because of their high oxygen ion conductivity and large mechanical strength. The usage conditions for such oxygen sensor elements are often accompanied by rapid thermal changes1.For example, oxygen sensors for automobile exhaust gas and gas require harsh thermal environments ranging from approximately 900°C to -20°C (in cold regions). It is placed below. Therefore, this element has
In addition to the above two properties, high thermal shock resistance is required.

ジルコニア(Z r Oz)は良く知られているように
温度によって、単斜晶(〜1100℃)、正方晶(11
00〜2300℃)、立方晶(2300〜2700℃)
の結晶相があり、単斜晶#正方晶変態の際に約9%の体
積変化を伴う、この大きな体積変化のため、焼結時の冷
却段階で自己破壊を起こしてしまい純粋な(単斜晶)ジ
ルコニア焼結体を得るのは困難である。そこで、カルシ
ア(Cab)、マグネシア(MgO)、イツトリア(Y
zOa)等を所定量添加し、本来高温相である立方晶を
室温で安定に存在させて用いるのが普通である。この立
方晶ジルコニアには酸素イオン導電性があり、この性質
から酸素センサ素子として使われている。しかし、立方
晶ジルコニアは、熱膨張係数が11〜12XIO−’℃
−” (20−1500℃)と無機材料の中では比較的
大きく、急熱急冷の条件下では、その際に生じる熱応力
に耐えられず、容易にクラックが進展し素子の割れを引
起こす。
As is well known, zirconia (ZrOz) changes into monoclinic (~1100℃) and tetragonal (1100℃) depending on the temperature.
00~2300℃), cubic crystal (2300~2700℃)
There is a crystal phase of about 9% during the monoclinic/tetragonal transformation. Because of this large volume change, self-destruction occurs during the cooling stage during sintering, resulting in pure (monoclinic) crystal phase. It is difficult to obtain a zirconia sintered body. Therefore, calcia (Cab), magnesia (MgO), ittria (Y
Usually, a predetermined amount of zOa) or the like is added to make the cubic crystal, which is originally a high-temperature phase, stably exist at room temperature. This cubic zirconia has oxygen ion conductivity, and because of this property, it is used as an oxygen sensor element. However, cubic zirconia has a thermal expansion coefficient of 11~12XIO-'℃
-'' (20-1500°C), which is relatively large among inorganic materials, and under conditions of rapid heating and cooling, it cannot withstand the thermal stress generated at that time, and cracks easily propagate, causing cracks in the element.

そこで、この欠点を補うために、特開昭59−4195
2号公報に記載のように、立方晶に適当な量の単斜晶を
混在させて素子そのものの熱膨張係数を下げ、これによ
り耐熱衝撃性を高めることがなされている。また特開昭
56−111456号公報に記載のように焼結体中のジ
ルコニア結晶粒を微細化し。
Therefore, in order to compensate for this drawback, Japanese Patent Application Laid-Open No. 59-4195
As described in Japanese Patent No. 2, an appropriate amount of monoclinic crystal is mixed with cubic crystal to lower the thermal expansion coefficient of the element itself, thereby improving thermal shock resistance. Furthermore, the zirconia crystal grains in the sintered body are refined as described in JP-A-56-111456.

素子強度を向上させ、これと合せて耐熱衝撃性の改善を
図る技術も公表されている。
Techniques for improving element strength and thermal shock resistance have also been published.

(発明が解決しようとする問題点〕 上記従来技術のうち、焼結体中立方晶ジルコニアに単斜
晶ジルコニア粒子を分散させる方法では、もともと焼結
性の悪い単斜晶ジルコニアが、かなり多くないと所期の
効果は得られない。そのため、焼結温度の増加、酸素イ
オン導電率の低下焼成冷却時の素子破壊を招く怖れがあ
る。また、単斜晶−正方品変態による体積変化が明僚に
あられれるため、酸素センサ素子のように栓体に組んで
用いる場合、その接合部に緩み等が生じて好ましくない
。一方、立方晶ジルコニア粒子を細かくするという技術
では1強度はやや高くなると考えられるが、熱膨張係数
に本質的な変化はなく、従って、耐熱衝撃性改善の効果
は期待できない。
(Problems to be Solved by the Invention) Among the above-mentioned conventional techniques, in the method of dispersing monoclinic zirconia particles in a sintered body of neutral cubic zirconia, a considerable amount of monoclinic zirconia, which originally has poor sinterability, is removed. As a result, the sintering temperature increases, the oxygen ion conductivity decreases, and there is a risk of element destruction during firing and cooling.Also, the volume change due to the monoclinic-tetragonal transformation When used in a plug body like an oxygen sensor element, the joints may become loose, which is undesirable.On the other hand, with the technology of making cubic zirconia particles finer, the strength is slightly higher. However, there is no essential change in the coefficient of thermal expansion, and therefore no effect of improving thermal shock resistance can be expected.

すなわち、酸素センサ素子としてのジルコニアの耐熱衝
撃性については、従来技術では、たとえば、ジルコニア
焼結体特性が大きく変化したり、高強度化には効果はみ
られても耐熱衝撃性についての考慮がなされていないと
いう問題があった。
In other words, with regard to the thermal shock resistance of zirconia as an oxygen sensor element, the conventional technology, for example, causes a large change in the characteristics of the zirconia sintered body, and although it is effective in increasing the strength, it does not take thermal shock resistance into consideration. The problem was that it had not been done.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、耐熱衝撃性に優れたジルコニア酸素セン
サ素子を得るために、種々の検討をしたところ1次のよ
うな事実があることを知った。すなわち、正方品ジルコ
ニアは、適当な熱処理を施すことで単斜晶ジルコニアに
変態すること、また、この変態深度は、焼結体表面から
50μm程度であることである。この表面が単斜晶ジル
コニアに変ったジルコニア焼結体の特性を調べたところ
、表面が何ら変化していないジルコニア焼結体にくらべ
て耐熱衝撃性が増していることを見出した。
The present inventors conducted various studies in order to obtain a zirconia oxygen sensor element with excellent thermal shock resistance, and found the following fact. That is, the tetragonal zirconia is transformed into monoclinic zirconia by applying an appropriate heat treatment, and the depth of this transformation is approximately 50 μm from the surface of the sintered body. When we investigated the characteristics of a zirconia sintered body whose surface had changed to monoclinic zirconia, we found that it had increased thermal shock resistance compared to a zirconia sintered body whose surface had not changed in any way.

そこで1種々の方法でジルコニア酸素センサ素子表面に
単斜晶ジルコニア層を付与させたところ、従来のジルコ
ニア酸素センサ素子よりも高い耐熱衝撃性を持たせるこ
とができた。すなわち、本発明では、ジルコニア酸素セ
ンサ素子に使われるジルコニアの結晶相は何でも良く、
たとえば、立方晶からのみなる安定化ジルコニアでも、
立方晶のほかに正方晶や単斜晶や菱面体晶などの結晶相
を含んでいても良く、要は表面部に内部よりも10%以
上多くの単斜晶を含んでいさえすれば良い。
Therefore, by applying a monoclinic zirconia layer to the surface of a zirconia oxygen sensor element using one of various methods, it was possible to provide a higher thermal shock resistance than the conventional zirconia oxygen sensor element. That is, in the present invention, any crystal phase of zirconia used in the zirconia oxygen sensor element may be used.
For example, even with stabilized zirconia consisting only of cubic crystals,
In addition to cubic crystal, it may contain crystal phases such as tetragonal, monoclinic, and rhombohedral, as long as the surface contains 10% or more more monoclinic than the inside. .

本発明のようなジルコニア酸素センサ素子を得るために
、次の様な方法を用いた。Y z Oa等の安定化剤を
2〜6mo 0%固溶させたジルコニア原料粉を、公知
のスプレードライ等の方法で造粒し。
In order to obtain the zirconia oxygen sensor element of the present invention, the following method was used. Zirconia raw material powder in which 2 to 6 mo 0% of a stabilizer such as Y z Oa is dissolved is granulated by a known method such as spray drying.

袋管状にセンサ素子を静水加圧等で成形する。この成形
体を1400〜1550℃で焼結後、白金電極を素子内
外表面にメッキで形成し、この後。
The sensor element is formed into a bag tube shape using hydrostatic pressure, etc. After sintering this molded body at 1400 to 1550°C, platinum electrodes were formed on the inner and outer surfaces of the element by plating.

大気中100〜350℃で十時間以上エージングする。Aging is performed in the atmosphere at 100 to 350°C for 10 hours or more.

このエージングによって素子表面の正方晶ジルコニアが
単斜晶ジルコニアに変態する。あるいは、ジルコニアグ
リーンシートを適宜積層し、平板形状の酸素センサ素子
を作る。これに、単斜晶ジルコニアグリーンシートを上
・下から熱圧着積層し、その後、1400〜1550℃
で焼結させることによって得られる。
This aging transforms the tetragonal zirconia on the element surface into monoclinic zirconia. Alternatively, zirconia green sheets are laminated as appropriate to make a flat oxygen sensor element. On top of this, monoclinic zirconia green sheets were laminated from above and below by thermocompression, and then heated to 1400 to 1550°C.
It can be obtained by sintering.

こうした酸素センサ素子を得るためのジルコニア原料粉
には、若干量のハフニア(HfOz)、チタニア(Ti
Oz)等が含まれており、そのため本発明のジルコニア
酸素センサ素子中にこれら不純物成分が含まれることは
許容されるものとする。
The zirconia raw material powder used to obtain such oxygen sensor elements contains a small amount of hafnia (HfOz) and titania (Ti).
Therefore, the inclusion of these impurity components in the zirconia oxygen sensor element of the present invention is allowed.

さらに、原料粉製造工程中でアルミナ(A Q zoa
)やシリカ(Si、Oz)等が混入してくるが、これら
の成分も本発明の効果には何ら影響を与えない。
Furthermore, alumina (A Q zoa
) and silica (Si, Oz), etc., but these components do not affect the effects of the present invention at all.

[作用] 表面部に単斜晶ジルコニア層を析出させることでセンサ
素子の耐熱衝撃性が向上するのは次の理由によるものと
考えられる。前述したようにジルコニアは単斜晶≠正方
品変態の際に約9%の体積変化があるが、これは、単斜
晶ジルコニア粒子が、正方品ジルコニア粒子にくらべて
大きいことに基づくものである。すなわち、素子表面部
に単斜晶を析出させるということは1表面に圧縮応力場
を生じさせることとなる。たとえば水中急冷という熱衝
撃を素子に与えた場合、素子表面には大きな引張り応力
が生じ、それによってクラックが入り、そのクラックが
伸展し最終的に素子の破壊に至る。ところが本発明のよ
うに表面に圧縮応力が働いていると、この熱衝撃による
引張り応力を緩和することとなる。そのためクラックが
入りづらく耐熱衝撃性が向上す、る、尚、単斜晶ジルコ
ニア層の厚さは2■以下が好適であり、これ以上では1
層が厚すぎ、体積変化に伴って自己破壊してしまい1表
面層が形成できない、また1表面層の単斜晶量を内部よ
り10%以上としたのは、これ以下では充分な圧縮応力
とならず、耐熱衝撃性の効果が期待できないためである
[Function] The reason why the thermal shock resistance of the sensor element is improved by depositing a monoclinic zirconia layer on the surface is considered to be as follows. As mentioned above, zirconia undergoes a volume change of about 9% when it transforms from monoclinic to tetragonal, but this is because monoclinic zirconia particles are larger than tetragonal zirconia particles. . That is, precipitating monoclinic crystals on the surface of the element produces a compressive stress field on one surface. For example, when a device is subjected to a thermal shock such as quenching in water, a large tensile stress is generated on the surface of the device, which causes cracks, which propagate and eventually lead to destruction of the device. However, when compressive stress is applied to the surface as in the present invention, the tensile stress caused by this thermal shock is alleviated. Therefore, it is difficult for cracks to form and the thermal shock resistance is improved.The thickness of the monoclinic zirconia layer is preferably 2cm or less;
The layer is too thick and self-destructs as the volume changes, making it impossible to form one surface layer.Also, the monoclinic content of the first surface layer was set to be 10% or more than the interior because if it was less than this, there would be sufficient compressive stress. This is because the effect of thermal shock resistance cannot be expected.

尚、製造方法に関して正方晶ジルコニアを含む素子をエ
ージングによって単斜晶ジルコニアに変態させるときに
、温度範囲を限定したのは、100℃以下でも350℃
以上でも表面部の正方晶は安定に存在し、本発明の効果
はあられれないためである。
Regarding the manufacturing method, when an element containing tetragonal zirconia is transformed into monoclinic zirconia by aging, the temperature range is limited to 350°C even if it is below 100°C.
Even with the above, the tetragonal crystals in the surface portion remain stable, and the effect of the present invention cannot be obtained.

〔実施例〕〔Example〕

〈実施例1〉 (1)中和共沈法によって合成されたY2O3の安定化
度の異なるジルコニア粉末(東洋曹達工業(株)製、純
度99.9%、平均粒径0.03μm)を三種(YzO
a安定化安定化度3繁oQmon%、5moQ%)用意
し、ラバープレス(圧力68.6MPa)で袋管状に成
形・研削した後、トンネル炉で1500℃一時間焼結し
た。この袋管状素子に無電解メッキで内外表面に白金電
極を形成した。こうして得た素子を電気炉中。
<Example 1> (1) Three types of zirconia powders (manufactured by Toyo Soda Kogyo Co., Ltd., purity 99.9%, average particle size 0.03 μm) with different degrees of stabilization of Y2O3 synthesized by the neutralization coprecipitation method (YzO
A (stabilization degree of 3%, 5%) was prepared, formed into a bag tube shape using a rubber press (pressure 68.6 MPa) and ground, and then sintered at 1500° C. for 1 hour in a tunnel furnace. Platinum electrodes were formed on the inner and outer surfaces of this bag tubular element by electroless plating. The element obtained in this way is placed in an electric furnace.

250℃で百時間二一ジングした。It was incubated at 250°C for 100 hours.

これらの試料について次の熱衝撃試験を行なった。The following thermal shock test was conducted on these samples.

試験1:袋管状試料を850℃のバーナ炎中に三十秒間
入れた後、冷風を送りながら急冷した。
Test 1: A bag tubular sample was placed in a burner flame at 850° C. for 30 seconds, and then rapidly cooled while blowing cold air.

その後、栄進製原子力機器用染色浸透傷創を吹付はクラ
ックの発生を調べた。
Afterwards, we sprayed dyed penetration wounds for nuclear equipment made by Eishin to investigate the occurrence of cracks.

試験2:袋管状試料を500℃の電気炉中で十分量保持
後、水中投下した。その後、試験1と同じ方法でクラッ
クの発生の有無を調べた。
Test 2: A sufficient amount of the bag tubular sample was kept in an electric furnace at 500°C and then dropped into water. Thereafter, the presence or absence of cracks was examined using the same method as Test 1.

試験3:袋管状試料を電気炉中で室温から1000℃ま
で二時間で昇温し、三十分保持後ヒータを切り、約3.
5時間で350℃まで炉冷する。そして再び一千℃まで
昇温する。このサイクルを五目繰返す、その後、試験1
と同じ方法でクラック発生の有無を調べた。
Test 3: The bag tubular sample was heated in an electric furnace from room temperature to 1000°C in 2 hours, held for 30 minutes, then the heater was turned off.
Cool in the oven to 350°C in 5 hours. The temperature is then raised to 1,000 degrees Celsius again. Repeat this cycle five times, then test 1
The presence or absence of cracks was examined using the same method.

実施例1によって得られた試料、試験1〜3の結果をま
とめて示す、結晶相の同定はX線回折で表面層の厚さは
X線回折及びSEM写真から判断した。
The results of the sample obtained in Example 1 and Tests 1 to 3 are summarized. The crystal phase was identified by X-ray diffraction, and the thickness of the surface layer was determined from X-ray diffraction and a SEM photograph.

表1から、エージング処理し、表面層に単斜晶ジルコニ
アを多く析出させた試料の耐熱衝撃性は。
From Table 1, the thermal shock resistance of the sample subjected to aging treatment and with a large amount of monoclinic zirconia precipitated on the surface layer is as follows.

いずれの試料も向上している。尚、単斜晶に変態してい
るのは、表面部の正方品粒子であり、これにより、素子
表面に圧縮応力場が生じるのである。
All samples have improved. Note that it is the tetragonal particles on the surface that are transformed into monoclinic crystals, and this causes a compressive stress field to occur on the element surface.

第1図に、素子断面の模擬図を示す、また、表面に圧縮
応力場を生じさせるには、熱膨張係数がジルコニアより
小さい材料を貼り合わせる技術も考えられるが、このよ
うな方法では、たとえば、試験3のような熱サイクルを
かけた時には、ハクリ等が起こる可能性が高い。しかし
本発明では、同種物質の体積変化を利用しているところ
に特徴があり、試験3後の試料についてもハクリ等は全
くwt察されなかった。
Figure 1 shows a simulated cross-section of the element.Also, in order to generate a compressive stress field on the surface, a technique for bonding materials with a coefficient of thermal expansion smaller than that of zirconia can be considered, but in such a method, for example, When heat cycles such as those in Test 3 are applied, there is a high possibility that peeling or the like will occur. However, the present invention is characterized in that it utilizes the volume change of similar substances, and no peeling or the like was observed in the sample after Test 3.

〈実施例2〉 Y2O3を3mo 0%含んだジルコニア粉でグリーン
シートを作成した。このグリーンシートに白金電極を印
刷後、第2図に示す短冊形状に切出し、熱圧着積層、1
500℃、一時間保持で焼結させた。その後、250℃
でエージングした0次いで、この素子を所定温度に設定
した電気炉中に二十分間保持し、その後、水中に投下し
、その素子の四点曲げ強度を測った。そして水中投下す
る前にくらべて曲げ強度が激減す名温度で、耐熱衝撃性
を評価した。第2図、表2にその結果を示す、第1図で
横軸は所定温度、縦軸は横軸に示した温度から水中に投
下した後の素子の室温曲げ強度である。
<Example 2> A green sheet was created using zirconia powder containing 3 mo 0% of Y2O3. After printing platinum electrodes on this green sheet, it was cut into strips as shown in Fig. 2, laminated by thermocompression, and 1
Sintering was carried out at 500°C for one hour. After that, 250℃
The element was aged at 0. The element was then kept in an electric furnace set at a predetermined temperature for 20 minutes, and then dropped into water to measure the four-point bending strength of the element. Thermal shock resistance was then evaluated at a temperature at which the bending strength was drastically reduced compared to before being dropped into water. The results are shown in FIG. 2 and Table 2. In FIG. 1, the horizontal axis represents the predetermined temperature, and the vertical axis represents the room temperature bending strength of the element after being dropped into water from the temperature indicated on the horizontal axis.

尚、試料番号は、250℃でエージングしたと恭のエー
ジング時間の違いを示すものであり5表2で示す。
The sample numbers indicate the difference in aging time between those aged at 250°C and those aged at 250°C, and are shown in Table 2.

表  2 第2図、表2から、何もエージング処理をして、1ない
試料(&1)やエージング時間が五時間と旺い試料(&
2)では、200℃からの水中投下e、初めの強度は全
く保持せず、わずか数M P a主で激減している。こ
れに対し十時間以上二一ジングした試料(&3〜5)で
は、300℃付近まC初めの強度を維持し、耐熱衝撃性
が改善されたことを示している。エージング時間と、表
面に出きる単斜晶含有率の関係を第3図に示す。この図
上り1表面の単斜晶が内部にくらべて10%以上多くな
れば、素子の耐熱衝撃性は向上するものと言える。
Table 2 From Figure 2 and Table 2, we can see that there is a sample with no aging process (&1) and a sample with a strong aging time of 5 hours (&1).
In case 2), when dropped into water from 200°C, the initial strength was not maintained at all, and the strength was drastically reduced by only a few MPa. On the other hand, the samples (&3 to 5) that were subjected to aging for more than 10 hours maintained the strength at the beginning of C up to around 300°C, indicating that the thermal shock resistance was improved. FIG. 3 shows the relationship between aging time and monoclinic content on the surface. If the number of monoclinic crystals on the surface of this figure increases by 10% or more compared to the inside, it can be said that the thermal shock resistance of the element improves.

〈実施例3〉 Y2O3を6モル%含んだジルコニア粉でグリーンシー
トを作成し、第3図に示した短冊状センサ素子を作った
。さらに、単斜晶ジルコニア粉末でグリーンシー1−を
作り、この素子の上・下から既定枚数積層した。こうし
て出来た未焼成酸素センサ素子を1000℃、一時間保
持で焼結し、表面に単斜晶層を形成した酸素センサ素子
を得た6表3に、焼結後の単斜晶層の厚さと、単斜晶層
の割れの有無を示す。
<Example 3> A green sheet was prepared from zirconia powder containing 6 mol % of Y2O3, and the strip-shaped sensor element shown in FIG. 3 was made. Furthermore, Green Sea 1- was made from monoclinic zirconia powder, and a predetermined number of sheets were laminated from above and below this element. The unfired oxygen sensor element thus produced was sintered at 1000°C for one hour to obtain an oxygen sensor element with a monoclinic layer formed on the surface.Table 3 shows the thickness of the monoclinic layer after sintering. It shows the presence or absence of cracks in the monoclinic layer.

表   3 表3かられかるように、単斜晶層の厚さが1m以下(N
αl−4)では、クラックは生じないが。
Table 3 As seen from Table 3, the thickness of the monoclinic layer is 1 m or less (N
Although no cracks occur in αl-4).

これを越えると(Nα5)1表面部に大きなりラックが
発生し、健全な酸素センサ素子にならない。
If this value is exceeded (Nα5), a large rack will occur on the 1 surface portion, and a healthy oxygen sensor element will not be obtained.

単斜晶層が厚くなるということは、それだけジルコニア
粒子が増え、焼結冷却時の体積変化の効果が大きくなり
すぎ、自己破壊してしまうものと考えられる。尚、単斜
晶層が形成された試料&1〜Na4の耐熱衝撃性は、実
施例2の熱衝撃試験をおこなったところいずれも良好で
あった。
It is thought that when the monoclinic layer becomes thicker, the number of zirconia particles increases accordingly, and the effect of volume change during sintering and cooling becomes too large, resulting in self-destruction. In addition, the thermal shock resistance of the samples &1 to Na4 in which the monoclinic layer was formed was all good when the thermal shock test of Example 2 was conducted.

〈実施例4〉 実施例1で製造したエージング前の酸素センサ素子(Y
zOa5mo Q%含有ジルコニア)を種々の温度で五
十時間エージングした。その後1M子表面の単斜晶をX
線図折で調べた。その後、試験2の方法で熱衝撃試験を
行なった結果を表4に示す。
<Example 4> Oxygen sensor element (Y
zOa5mo Q% containing zirconia) was aged for 50 hours at various temperatures. Then, the monoclinic crystal on the surface of the 1M element is
It was investigated by line diagram folding. Thereafter, a thermal shock test was conducted using the method of Test 2, and the results are shown in Table 4.

表4から明らかなように、エージング温度が100℃未
満(試料Na1)’、350℃より上(覧6゜Na 7
 )では、単斜晶の析出量が少なく、素子の耐熱衝撃性
は向上していないことがわかる。この結果より、エージ
ング温度は100〜350℃が最適であると言える。
As is clear from Table 4, the aging temperature was less than 100°C (Sample Na1) and above 350°C (Sample Na7).
), it can be seen that the amount of precipitated monoclinic crystals is small and the thermal shock resistance of the device is not improved. From this result, it can be said that the optimum aging temperature is 100 to 350°C.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐熱衝撃性の高い酸素センサが得られ
るので、測定雰囲気の過酷化に対応できる。
According to the present invention, an oxygen sensor with high thermal shock resistance can be obtained, so that it can cope with harsher measurement atmospheres.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で作成したジルコニア酸素センサ素
子の表面近傍の断面模式図、第2図は。 実施例2でおこなった耐熱衝撃性試験結果を示す図、第
3図は、実施例2.3で作成した短冊状の酸素センサ素
子の組立図、第4図は実施例2でおこなったエージング
時間と表面部の単斜晶含有率の関係を示す図である。 1・・・立方晶ジルコニア粒子、2・・・単斜晶ジルコ
ニ、i!1th11図 ′$2121 第 41!l
FIG. 1 is a schematic cross-sectional view near the surface of the zirconia oxygen sensor element prepared in Example 1, and FIG. Figure 3 shows the results of the thermal shock resistance test conducted in Example 2. Figure 3 is an assembly diagram of the strip-shaped oxygen sensor element prepared in Example 2.3. Figure 4 shows the aging time conducted in Example 2. FIG. 3 is a diagram showing the relationship between the monoclinic crystal content of the surface portion and the monoclinic crystal content of the surface portion. 1... Cubic zirconia particles, 2... Monoclinic zirconia, i! 1th11 Figure'$2121 No. 41! l

Claims (1)

【特許請求の範囲】 1、安定化剤としてY_2O_3、MgO、CaO、C
eO_2、Sc_2O_3,Bi_2O_3、Yb_2
O_3のうちの少なくとも一種を含むジルコニア酸素セ
ンサ素子において、 その表面部に単斜晶ジルコニア層を設けたことを特徴と
するジルコニア酸素センサ素子。 2、特許請求の範囲第1項において、 表面層の単斜晶量が内部にくらべて下記の式の計算値で
10%以上多くあることを特徴とするジルコニア焼結体
。 (式);単斜晶割合(%) =(IM(111)+IM(11■)/ITC(111
)+IM(111)+IM(11■))×100ただし
、IM(■11)は単斜晶ジルコニアのX線回折による
(11■)面からのピーク強度、IM(111)は単斜
晶ジルコニアのX線回折による(111)面からのピー
ク強度、ITC(111)は、正方晶及び立方晶ジルコ
ニアの(111)面から重なりあつたX線回折ピーク強
度である。 3、特許請求の範囲第1項において、 前記表面部の前記単斜晶ジルコニア層の厚さが2mm以
下であることを特徴とするジルコニア酸素センサ素子。
[Claims] 1. Y_2O_3, MgO, CaO, C as a stabilizer
eO_2, Sc_2O_3, Bi_2O_3, Yb_2
A zirconia oxygen sensor element containing at least one type of O_3, characterized in that a monoclinic zirconia layer is provided on the surface thereof. 2. A zirconia sintered body according to claim 1, characterized in that the amount of monoclinic crystals in the surface layer is 10% or more greater than the amount of monoclinic crystals in the interior, as calculated by the following formula. (Formula); Monoclinic proportion (%) = (IM(111)+IM(11■)/ITC(111
)+IM(111)+IM(11■))×100 However, IM(■11) is the peak intensity from the (11■) plane by X-ray diffraction of monoclinic zirconia, and IM(111) is the peak intensity of monoclinic zirconia. The peak intensity from the (111) plane by X-ray diffraction, ITC (111), is the overlapping X-ray diffraction peak intensity from the (111) plane of tetragonal and cubic zirconia. 3. The zirconia oxygen sensor element according to claim 1, wherein the monoclinic zirconia layer on the surface portion has a thickness of 2 mm or less.
JP62040315A 1987-02-25 1987-02-25 Zirconia oxygen sensor element Pending JPS63210063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62040315A JPS63210063A (en) 1987-02-25 1987-02-25 Zirconia oxygen sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040315A JPS63210063A (en) 1987-02-25 1987-02-25 Zirconia oxygen sensor element

Publications (1)

Publication Number Publication Date
JPS63210063A true JPS63210063A (en) 1988-08-31

Family

ID=12577181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040315A Pending JPS63210063A (en) 1987-02-25 1987-02-25 Zirconia oxygen sensor element

Country Status (1)

Country Link
JP (1) JPS63210063A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192518A (en) * 2008-01-17 2009-08-27 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
WO2010067669A1 (en) * 2008-12-11 2010-06-17 旭硝子株式会社 Molten glass carrier facility element and glass production system
JP2011242145A (en) * 2010-05-14 2011-12-01 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
JP2017078679A (en) * 2015-10-22 2017-04-27 日本特殊陶業株式会社 Gas sensor element and gas sensor mounted with the same
DE112020001517T5 (en) 2019-03-26 2021-12-16 Denso Corporation SOLID ELECTROLYTE AND GAS SENSOR
WO2022254989A1 (en) * 2021-06-01 2022-12-08 株式会社デンソー Solid electrolyte and gas sensor
WO2023189687A1 (en) * 2022-03-28 2023-10-05 京セラ株式会社 Heat-resistant member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192518A (en) * 2008-01-17 2009-08-27 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
WO2010067669A1 (en) * 2008-12-11 2010-06-17 旭硝子株式会社 Molten glass carrier facility element and glass production system
CN102245519A (en) * 2008-12-11 2011-11-16 旭硝子株式会社 Molten glass carrier facility element and glass production system
JPWO2010067669A1 (en) * 2008-12-11 2012-05-17 旭硝子株式会社 Molten glass conveying equipment element and glass manufacturing apparatus
JP5500077B2 (en) * 2008-12-11 2014-05-21 旭硝子株式会社 Molten glass conveying equipment element and glass manufacturing apparatus
JP2011242145A (en) * 2010-05-14 2011-12-01 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
JP2017078679A (en) * 2015-10-22 2017-04-27 日本特殊陶業株式会社 Gas sensor element and gas sensor mounted with the same
DE112020001517T5 (en) 2019-03-26 2021-12-16 Denso Corporation SOLID ELECTROLYTE AND GAS SENSOR
WO2022254989A1 (en) * 2021-06-01 2022-12-08 株式会社デンソー Solid electrolyte and gas sensor
WO2023189687A1 (en) * 2022-03-28 2023-10-05 京セラ株式会社 Heat-resistant member

Similar Documents

Publication Publication Date Title
JPS591232B2 (en) Manufacturing method of zirconia sintered body
JPS6116125B2 (en)
US4272500A (en) Process for forming mullite
Gao et al. Influence of Y2O3 on microstructure, crystallization, and properties of MgO-Al2O3-SiO2 glass-ceramics
Du et al. Ultrahigh room temperature electrocaloric response in lead-free bulk ceramics via tape casting
Khalid et al. Microwave hybrid sintering of Al2O3 and Al2O3–ZrO2 composites, and effects of ZrO2 crystal structure on mechanical properties, thermal properties, and sintering kinetics
US6284692B1 (en) t′-phase zirconias for high temperature applications
CN103626503A (en) Longevous mullite brick for hot blast stove and preparation method thereof
JPS63210063A (en) Zirconia oxygen sensor element
US3268349A (en) Stabilized zirconia composition
Macaigne et al. Sintering paths and mechanisms of pure MgAl2O4 conventionally and microwave sintered
CN114031297A (en) Cordierite-based porous glass ceramic and preparation method thereof
Mahmoud et al. Effect of processing conditions on (Ba1-xCax)(Ti0. 9Sn0. 1) O3 lead-free ceramics for the enhancement of structural, humidity sensing and dielectric properties
JP2002316866A (en) Member for heat treatment consisting of alumina sintered compact having excellent durability
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4507148B2 (en) Heat treatment member made of mullite sintered body
RAONICA et al. Lithium-Niobium-Titanium-Oxide Ceramics with ZnO as a Functional Additive: Structural and Impedance Characterization with Humidity Properties.
Deshpande et al. Synthesis and characterization of lithium niobate ceramics with glass additions
Lashkari et al. Microwave sintering of Al2 (1− x) MgxTi (1+ x) O5 ceramics obtained from mixture of nano-sized oxide powders
TW201628994A (en) Batch for the production of a refractory product, a process for the production of a refractory product, a refractory product as well as the use of a refractory product
JPH10236844A (en) Sealing composition
Winnubst et al. Superplastic deep drawing of tetragonal zirconia ceramics at 1160° C
Lin et al. An influence of a Glass Braze Composition on the Properties of Li-Ti Ferrite Joints
WO2024053619A1 (en) Ceramic substrate, and semiconductor device substrate provided with same
Hulse et al. Effect of Temperature on the Mechanical Properties of Solid Pressure‐Transmitting Media. II. Pyrophyllite