JPS6321000Y2 - - Google Patents

Info

Publication number
JPS6321000Y2
JPS6321000Y2 JP13883783U JP13883783U JPS6321000Y2 JP S6321000 Y2 JPS6321000 Y2 JP S6321000Y2 JP 13883783 U JP13883783 U JP 13883783U JP 13883783 U JP13883783 U JP 13883783U JP S6321000 Y2 JPS6321000 Y2 JP S6321000Y2
Authority
JP
Japan
Prior art keywords
curved
measured
measuring machine
contact
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13883783U
Other languages
Japanese (ja)
Other versions
JPS6046578U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13883783U priority Critical patent/JPS6046578U/en
Publication of JPS6046578U publication Critical patent/JPS6046578U/en
Application granted granted Critical
Publication of JPS6321000Y2 publication Critical patent/JPS6321000Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Instructional Devices (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【考案の詳細な説明】 本考案は、三次元測定機のテスト用モデルワー
クに関する。
[Detailed Description of the Invention] The present invention relates to a model work for testing a coordinate measuring machine.

今日、タツチ信号プローブを三次元方向へ移動
自在に設け、定盤上に固定されたワークの測定対
象面に順次当接させ、これの繰返しによつてワー
クの形状や寸法を測定する、いわゆる三次元測定
機は、高精度測定が要求される時代にあつて、
益々普及、拡大しつつある。
Today, touch signal probes are installed to be movable in three-dimensional directions, and are brought into contact with the surface to be measured of a workpiece fixed on a surface plate, and by repeating this process, the shape and dimensions of the workpiece can be measured. The original measuring machine was used in an era where high precision measurement was required.
It is becoming more and more popular and expanding.

この種の測定機は、測定能率の向上或いは具体
的データの把握のため、所望の演算処理を行なう
電算機等のデータ処理装置と一体的に構成されて
いる。従つて、真にワークの座標、寸法、形状等
測定の高精度化や省力化を達成するためには、そ
の高度化されたプログラムの理解と運用が要求さ
れる。
This type of measuring device is integrally constructed with a data processing device such as a computer that performs desired arithmetic processing in order to improve measurement efficiency or grasp specific data. Therefore, in order to truly achieve high accuracy and labor savings in measuring the coordinates, dimensions, shape, etc. of a workpiece, it is necessary to understand and operate the sophisticated program.

ところが、三次元測定機において、そのプログ
ラムを理解するには相当の日数を要する等困難性
を伴なう。これは、高精度化のためのタツチ信号
プローブを用いた測定実際と密接に関連させなけ
ればならないので、一般的キー操作のみの電算機
運用と異なるからである。
However, with a three-dimensional measuring machine, it is difficult to understand the program, as it takes a considerable number of days. This is because it must be closely related to actual measurement using a touch signal probe for high accuracy, and is different from general computer operation using only key operations.

ここに、本考案者等は、この点に関し幾多の納
入教育を通し、その問題を次の如く分析した。即
ち、三次元測定機の研修に当つては、その搬入工
場内の製品、例えばエンジン本体等をワークとし
た使用している結果、 そのワークは、基本測定対象面および高次測
測定対象面の両者が混在する物、または基本測
定対象面のほとんどがない物が多い。
Here, the inventors of the present invention analyzed the problem as follows through numerous training sessions regarding this point. In other words, when training on three-dimensional measuring machines, the workpieces used are products in the factory, such as engine bodies, and the workpieces are used for both basic and high-order measuring surfaces. There are many cases where both are mixed, or where most of the basic measurement target surfaces are missing.

逆に、必要以上の突出箇所や穴箇所が多数あ
り、どれを選択してよいか迷う。これは、繰返
し測定テストに過大な労力を必要とする。
On the other hand, there are a large number of protrusions and holes that are more than necessary, making it difficult to decide which one to choose. This requires excessive effort in repeated measurement testing.

ワークが重すぎ、定盤上に固定する段取りが
長時間かかる。また、長寸の場合には、一箇所
においてテスト測定することができない。
The workpiece is too heavy and it takes a long time to set it up on the surface plate. Furthermore, in the case of long dimensions, test measurements cannot be made at one location.

測定箇所が使用プローブに合う寸法、例えば
測定穴が小さすぎる場合がある。
The measurement location may have dimensions that are too small for the probe used, for example the measurement hole.

表面アラサやうねり等定量的な基準値が不明
な場合がある。
Quantitative standard values such as surface roughness and waviness may not be known.

形状を満足する物でも、軟弱物の場合があ
る。
Even items that satisfy the shape may be soft and weak.

従つて、研修段階に応じて基本コースから応用
コースへ順次スライドすることができず、また1
コース内にあつても基本テキスト順に実行するこ
とができず、全体として研修に長時間必要とされ
る上、測定できない項目を多く含む結果、三次元
測定機の機能をフルに利用できない原因となつて
いる。
Therefore, it is not possible to slide sequentially from the basic course to the advanced course depending on the training stage, and
Even within the course, the training cannot be carried out in the order of the basic text, requiring a long time for training as a whole, and including many items that cannot be measured, resulting in the inability to fully utilize the functions of the coordinate measuring machine. ing.

ここにおいて、本考案の目的は、このような不
都合を解消し、三次元測定機における輪郭形状の
測定操作を修得できるテスト用モデルワークを提
供することにある。
An object of the present invention is to eliminate such inconveniences and to provide a test model work that allows the user to learn contour measurement operations using a three-dimensional measuring machine.

そのため、本考案では、三次元方向へ移動可能
なタツチ信号プローブを測定対象面に順次当接さ
せ、この当接時点のタツチ信号プローブの位置か
ら測定対象物の形状や寸法等を測定する三次元測
定機の取扱い教育用のモデルワークであつて、底
部が水平面とされ、上部に、前記水平面と平行す
る平面部と、この平面部と直交しかつ異なる曲率
半径の曲面を組合せた曲線起立面と、この曲線起
立面が囲む形状の基準位置を定める垂直穴とをそ
れぞれ有する形態とすることにより、上記目的を
達成しようとするものである。
Therefore, in the present invention, touch signal probes movable in three-dimensional directions are sequentially brought into contact with the surface to be measured, and the shape and dimensions of the object are measured from the position of the touch signal probe at the time of contact. This is a model work for teaching how to use a measuring machine, and the bottom part is a horizontal plane, and the upper part has a curved upright surface that is a combination of a plane part parallel to the horizontal plane and a curved surface orthogonal to this plane part and having a different radius of curvature. , and a vertical hole defining the reference position of the shape surrounded by the curved upright surface, thereby attempting to achieve the above object.

以下、本考案の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本実施例のモデルワークを示す斜視
図、第2図はその平面図、第3図はその底面図で
ある。これらの図において、ワーク本体1は、比
較的軽量な材料により取扱いに適した大きさの偏
平直方体形状に成形されている。つまり、底部1
Aおよび上部1Bが互いに平行な水平面に、周面
部を構成する正面1C、左側面1D、右側面1E
および背面1Fが隣接するもの同志で互いに直交
しかつ底部1Aおよび上部1Bと直交する垂直面
にそれぞれ成形されている。
FIG. 1 is a perspective view showing the model work of this embodiment, FIG. 2 is a plan view thereof, and FIG. 3 is a bottom view thereof. In these figures, the workpiece body 1 is formed from a relatively lightweight material into a flat rectangular parallelepiped shape of a size suitable for handling. In other words, bottom 1
A and the upper part 1B are on a horizontal plane parallel to each other, and the front side 1C, the left side side 1D, and the right side side 1E forming the peripheral surface part
Adjacent back surfaces 1F are formed into vertical planes that are perpendicular to each other and perpendicular to the bottom portion 1A and the top portion 1B.

前記モデルワーク本体1の上部1Bの平面部に
は、第2図に示す如く、の三隅略中央に瓢箪形状
の溝12が、上部1Bの三隅および溝12が囲む
凸部13の略中央に前記溝12の形状の基準位置
を定める垂直な円形穴11,14が、両側中央に
前記ワーク本体1の両側面1D,1Eから前記溝
3に連通する挿入溝15が、それぞれ形成されて
いる。前記溝12の両側面は、互いに平行で、前
記上部1Bの平面部に対して直交しかつ異なる曲
率半径の曲面が組合わされた無端状の曲線起立面
12A,12Bに形成されている。
As shown in FIG. 2, the planar part of the upper part 1B of the model work body 1 has gourd-shaped grooves 12 at approximately the center of the three corners, and the grooves 12 in the shape of a gourd at the three corners of the upper part 1B and approximately the center of the protrusion 13 surrounded by the grooves 12. Vertical circular holes 11 and 14 that define the reference position of the shape of the groove 12 are formed at the center of both sides, and an insertion groove 15 that communicates with the groove 3 from both side surfaces 1D and 1E of the work body 1 is formed, respectively. Both side surfaces of the groove 12 are formed into endless curved upright surfaces 12A and 12B, which are a combination of curved surfaces parallel to each other, orthogonal to the flat surface of the upper portion 1B, and having different radii of curvature.

前記一方の曲線起立面12Aは、前記円形穴1
4の中心点P0から−X軸方向へ距離L1だけ移動
した点P1を中心とする半径R1の曲面C1と、前記
中心点P0から+X軸方向へ距離L2だけ移動した
点P2を中心とする半径R2の曲面C2と、この両曲
面C1,C2の一端間を連結する曲面C3と、両曲面
C1,C2の他端間を連結する曲面C4とから構成さ
れている。また、他方の曲線起立面12Bは、前
記点P1を中心とする半径r1の曲面c1と、前記点P2
を中心とする半径rの曲面c2と、この両曲面c1
c2の一端間を連結する曲面c3と、両曲面c1,c2
他端間を連結する曲面c4とから構成されている。
The one curved upright surface 12A is connected to the circular hole 1.
A curved surface C 1 with a radius R 1 centered on a point P 1 that has been moved a distance L 1 from the center point P 0 of 4 in the -X axis direction, and a curved surface C 1 that has been moved a distance L 2 from the center point P 0 in the +X axis direction. A curved surface C 2 with radius R 2 centered on point P 2 , a curved surface C 3 connecting one end of both curved surfaces C 1 and C 2 , and both curved surfaces
It is composed of a curved surface C 4 connecting the other ends of C 1 and C 2 . The other curved upright surface 12B has a curved surface c 1 with a radius r 1 centered on the point P 1 and a curved surface c 1 with a radius r 1 centered on the point P 2 .
A curved surface c 2 with radius r centered at , and both of these curved surfaces c 1 ,
It is composed of a curved surface c 3 that connects one end of c 2 and a curved surface c 4 that connects the other ends of both curved surfaces c 1 and c 2 .

次に、本モデルワークを用いて三次元測定機の
操作手順を研修する際の一例を述べる。研修に当
つては、ワーク本体1の底部1Aを例えば上部1
Bから底部1Aへ貫通した円形穴11を利用して
三次元測定機の定盤上に1度セツトすれば、主と
して曲面輪郭形状の測定を実施できる。
Next, we will describe an example of training on operating procedures for a coordinate measuring machine using this model work. During the training, the bottom part 1A of the work body 1 should be replaced with the upper part 1, for example.
Once set on the surface plate of a coordinate measuring machine using the circular hole 11 penetrating from B to the bottom 1A, it is possible to mainly measure the contour shape of a curved surface.

曲面輪郭形状を測定するには、それに対応する
測定モードを指定つまりプログラムを選択した
後、三次元測定機のタツチ信号プローブの測定子
をワーク本体1の円形穴11,14内のいずれか
に挿入した後、その円形穴11,14の内周面の
3点に当接させる。すると、三次元測定機のデー
タ処理装置において、測定子が当接した3点の座
標位置から円形穴11,14の中心座標P0が演
算され、その中心座標P0が原点として登録され
る。
To measure the contour of a curved surface, specify the corresponding measurement mode, or select the program, and then insert the probe of the touch signal probe of the coordinate measuring machine into either of the circular holes 11 or 14 in the workpiece body 1. After that, it is brought into contact with three points on the inner peripheral surfaces of the circular holes 11 and 14. Then, in the data processing device of the three-dimensional measuring machine, the center coordinates P 0 of the circular holes 11 and 14 are calculated from the coordinate positions of the three points in contact with the tracing stylus, and the center coordinates P 0 are registered as the origin.

この後、タツチ信号プローブの測定子をワーク
本体1の挿入溝15を通して溝12内に位置させ
た後、溝12のいずれか一方の曲線起立面12
A,12Bに当接させた状態または所定ピツチ毎
に当接させながら溝12にならつて移動させる
と、測定子が当接した位置の座標が順次取込ま
れ、それらの位置座標が連続した曲線として求め
られる。ここで、曲線起立面12A,12Bの垂
直方向への測定を組合せれば、曲線起立面12
A,12Bの円筒度をも測定することができる。
このようにして、曲面輪郭形状の測定操作が行な
われる。なお、上部1Bの平面部を利用すれば、
その平面部の輪郭形状の測定を実施できる。
After that, after positioning the measuring tip of the touch signal probe in the groove 12 through the insertion groove 15 of the workpiece body 1, the curved upright surface 12 of either one of the grooves 12
When the contact point is moved along the groove 12 while in contact with A and 12B or at predetermined pitches, the coordinates of the contact points are sequentially captured, and these position coordinates form a continuous curve. It is required as. Here, if measurements in the vertical direction of the curved upright surfaces 12A and 12B are combined, the curved upright surface 12
The cylindricity of A and 12B can also be measured.
In this way, the measurement operation of the curved surface contour shape is performed. In addition, if you use the flat part of the upper part 1B,
The contour shape of the flat portion can be measured.

なお、穴測定の測定モードを指定した後、ワー
ク本体1のいずれかの円形穴11,14内にタツ
チ信号プローブの測定子を挿入し、その穴の内周
面の3点に当接させれば、測定子が当接した3点
の座標位置から穴の内径および中心座標を測定で
きる。ここで、2つの円形穴の中心座標の距離を
求めるモードを指定しておけば、2つの円形穴の
芯間距離を求めることができる。
After specifying the measurement mode for hole measurement, insert the probe of the touch signal probe into one of the circular holes 11 and 14 in the workpiece body 1, and make it contact three points on the inner peripheral surface of the hole. For example, the inner diameter and center coordinates of the hole can be measured from the coordinate positions of the three points in contact with the probe. Here, if the mode for determining the distance between the center coordinates of the two circular holes is specified, the distance between the centers of the two circular holes can be determined.

このほか、ワーク本体1の正面1Cと背面1F
間或いは両側面1D,1E間を利用すればそれら
の外側面間寸法を、定盤と上面1B間を利用すれ
ば高さをも測定できる。
In addition, the front 1C and back 1F of the work body 1
By using the gap or between the two side surfaces 1D and 1E, the dimension between the outer surfaces can be measured, and by using the space between the surface plate and the top surface 1B, the height can also be measured.

従つて、本実施例によれば、上述した形態に構
成したので、ワーク本体1を三次元測定機に1度
セツトするだけで、三次元測定機における内側曲
面および外側曲面の輪郭形状の測定を実施でき
る。
Therefore, according to this embodiment, since it is configured as described above, the contour shape of the inner curved surface and the outer curved surface can be measured by the coordinate measuring machine by simply setting the work body 1 on the coordinate measuring machine once. Can be implemented.

しかも、ワーク本体1の面間寸法、曲線起立面
12A,12Bの形状等は予め判つているので、
これらの測定によつて得られた値との比較によつ
てそれまでの測定手順が正しいか否かを確認する
ことができる。
Moreover, since the face-to-face dimensions of the workpiece body 1 and the shapes of the curved upright surfaces 12A and 12B are known in advance,
By comparing with the values obtained by these measurements, it can be confirmed whether the measurement procedure up to that point is correct.

また、ワーク本体1は、アクリル樹脂等の比較
的軽量な材料により適当な大きさに構成されてい
るので、ワーク本体1の取付け、取外し等の取扱
が容易で、かつ定位置において全ての測定を行な
うことができる上、安価に製作することができ
る。
In addition, since the workpiece body 1 is made of a relatively lightweight material such as acrylic resin and has an appropriate size, the workpiece body 1 can be easily attached and removed, and all measurements can be carried out in a fixed position. Not only can this be done, but it can also be manufactured at low cost.

なお、上記実施例では、曲線起立面12A,1
2Bを無端状としたが、必ずしも無端状でなくて
もよい。また、本考案のテスト用モデルワーク
は、上記実施例の形態に限られるものでなく、少
なくとも輪郭形状が測定できるものであればよ
い。
In addition, in the above embodiment, the curved upright surfaces 12A, 1
Although 2B is made endless, it does not necessarily have to be endless. Further, the test model work of the present invention is not limited to the form of the above-mentioned embodiments, but may be any model work as long as it can measure at least the contour shape.

以上の通り、本考案によれば、三次元測定機に
おける曲面輪郭形状の測定操作を修得できるテス
ト用モデルワークを提供することができる。
As described above, according to the present invention, it is possible to provide a test model work that allows the user to learn how to measure curved surface contours using a coordinate measuring machine.

【図面の簡単な説明】[Brief explanation of drawings]

図は本考案の一実施例を示すもので、第1図は
斜視図、第2図は平面図、第3図は底面図、第4
図は第2図の−線断面図、第5図は第2図の
−線断面図、第6図は第2図の−線断面
図である。 1……ワーク本体、1A……底部、1B……上
部、12……軸、12A,12B……曲線起立
面、13……凸部、14……円形穴。
The figures show one embodiment of the present invention, in which Figure 1 is a perspective view, Figure 2 is a top view, Figure 3 is a bottom view, and Figure 4 is a bottom view.
5 is a sectional view taken along the line -- in FIG. 2, FIG. 5 is a sectional view taken along the line -- in FIG. 2, and FIG. 1...Work body, 1A...Bottom, 1B...Top, 12...Shaft, 12A, 12B...Curved upright surface, 13...Protrusion, 14...Circular hole.

Claims (1)

【実用新案登録請求の範囲】 三次元方向へ移動可能なタツチ信号プローブを
測定対象面に順次当接させ、この当接時点のタツ
チ信号プローブの位置から測定対象物の形状や寸
法等を測定する三次元測定機の取扱い教育用のモ
デルワークであつて、 底部が水平面とされ、上部に、前記水平面と平
行する平面部と、この平面部と直交しかつ異なる
曲率半径の曲面を組合せた曲線起立面と、この曲
線起立面が囲む形状の基準位置を定める垂直穴と
をそれぞれ有する ことを特徴とする三次元測定機のテスト用モデ
ルワーク。
[Claims for Utility Model Registration] Touch signal probes movable in three-dimensional directions are sequentially brought into contact with the surface to be measured, and the shape, dimensions, etc. of the object to be measured are measured from the position of the touch signal probes at the time of contact. This is a model work for teaching how to use a three-dimensional measuring machine, in which the bottom part is a horizontal plane, and the top part is a curved erected plane that combines a plane part parallel to the horizontal plane and a curved surface perpendicular to this plane part and with a different radius of curvature. A model work for testing a three-dimensional measuring machine characterized by having a surface and a vertical hole that defines a reference position of a shape surrounded by the curved upright surface.
JP13883783U 1983-09-07 1983-09-07 Model work for testing a coordinate measuring machine Granted JPS6046578U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13883783U JPS6046578U (en) 1983-09-07 1983-09-07 Model work for testing a coordinate measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13883783U JPS6046578U (en) 1983-09-07 1983-09-07 Model work for testing a coordinate measuring machine

Publications (2)

Publication Number Publication Date
JPS6046578U JPS6046578U (en) 1985-04-02
JPS6321000Y2 true JPS6321000Y2 (en) 1988-06-10

Family

ID=30311386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13883783U Granted JPS6046578U (en) 1983-09-07 1983-09-07 Model work for testing a coordinate measuring machine

Country Status (1)

Country Link
JP (1) JPS6046578U (en)

Also Published As

Publication number Publication date
JPS6046578U (en) 1985-04-02

Similar Documents

Publication Publication Date Title
US4945501A (en) Method for determining position within the measuring volume of a coordinate measuring machine and the like and system therefor
CA1286382C (en) Method for calibrating a coordinate measuring machine and the like and system therefor
US5208995A (en) Fixture gauge and method of manufacturing same
CA2331906C (en) Method for evaluating measurement error in coordinate measuring machine and gauge for coordinate measuring machine
US5134781A (en) Geometric simulator for coordinate measuring machine
CN101424506B (en) Method for precision measurement of point on space surface and the space surface by utilizing point gage sphere centre coordinate
CN101750044A (en) Method for precisely measuring 3D profile by using measuring needle central coordinate and vector compensation technology
CN101750043A (en) Method for measuring 3D profile surface by trigger measuring head on measuring machine
CA1310092C (en) Method for determining position within the measuring volume of a coordinate measuring machine and the like and system therefor
JPS6321000Y2 (en)
US4345383A (en) Designer's triangle
JPS6321001Y2 (en)
JPS6320999Y2 (en)
CN101738175B (en) Method for measuring spatial rotating surface by taking coordinate of ball center of steel pin as target point
JPH06341826A (en) Screw-hole-center measuring method
JP2001201304A (en) Beveling dimension measuring device and beveling dimension measuring method using the device
US2319569A (en) Method and means for measuring profiles and contours
CN220751000U (en) Special gauge for multidirectional high-precision sheet metal part
CN210833517U (en) Level measuring instrument
CN113342354B (en) Automatic analysis method, system and device for electrode model coordinate system points
KR19980017628U (en) Tap Hole Measuring Gauge for 3D Measuring Device
JPH0262001B2 (en)
CN213616713U (en) Calibration model suitable for 3D vision and six-axis robot
JP2559113B2 (en) Method of generating measurement information in coordinate measuring machine
JPS6038161Y2 (en) Reference block for measuring machine