JPS63209956A - Heat accumulation predicting device for thermal head - Google Patents

Heat accumulation predicting device for thermal head

Info

Publication number
JPS63209956A
JPS63209956A JP4465787A JP4465787A JPS63209956A JP S63209956 A JPS63209956 A JP S63209956A JP 4465787 A JP4465787 A JP 4465787A JP 4465787 A JP4465787 A JP 4465787A JP S63209956 A JPS63209956 A JP S63209956A
Authority
JP
Japan
Prior art keywords
temperature
recording
thermal head
predicted
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4465787A
Other languages
Japanese (ja)
Inventor
Toshio Ebinaka
胡中 俊雄
Tomohisa Mikami
三上 知久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4465787A priority Critical patent/JPS63209956A/en
Publication of JPS63209956A publication Critical patent/JPS63209956A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/36Print density control
    • B41J2/365Print density control by compensation for variation in temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To make a thermal recording stably, by developing the temperature immediately before current recording as shown by a specific formula with reference to the temperature predicted before start of previous recording thereby obtaining a predicted temperature having reduced accumulation error and controlling the application voltage of a thermal head based on the predicted temperature. CONSTITUTION:Prediction temperature is equal to an ambient temperature Ta at a time point when recording is started, and rises as the recording proceeds. In the formula, the temperature being achieved through cooling during previous recording interval is operated to be equal to the difference from the ambient temperature Ta, then it is added with the ambient temperature to provide a prediction temperature Tn. Consequently, addition of starting temperature Tn-l having accumulated operational error can be avoided, and highly accurate prediction can be made. A thermal head control section feeds temperature Tn predicted at a temperature predicting section 11, gradation number of recording pixel, recording speed, etc., to a pulse table 14 where the pulse width is determined. A thermal head drive section 13 controls power of a head 12 according to the pulse width.

Description

【発明の詳細な説明】 〔目 次〕 概要 産業上の利用分野 従来の技術(第5図〜第9図) 発明が解決しようとする問題点 問題点を解決するための手段(第1図)作用 実施例(第2図〜第4図) 発明の効果 〔概 要〕 本発明は熱記録手段を具備する文字2画像を記録する装
置において、熱記録を行うための熱エネルギ・がサーマ
ルヘッド内部に蓄熱することにより同じ印加電力を加え
ても記録紙における記録濃度が変化する問題を解決する
ために、前記録開始の予測温度を基準として加熱要素を
対応付けた発熱量出力部と、雰囲気温度を基準として冷
却要素を対応付けた冷却量出力部と、積和演算部を設け
[Detailed Description of the Invention] [Table of Contents] Overview Industrial Application Fields Prior Art (Figures 5 to 9) Problems to be Solved by the Invention Means for Solving the Problems (Figure 1) Functional Examples (Figs. 2 to 4) Effects of the Invention [Summary] The present invention provides an apparatus for recording two images of characters equipped with a thermal recording means, in which the thermal energy for performing thermal recording is transferred to the inside of the thermal head. In order to solve the problem that the recording density on the recording paper changes even if the same applied power is applied due to heat storage in the A cooling amount output section that associates cooling elements with reference to , and a sum-of-products calculation section are provided.

雰囲気温度に対しての加熱冷却総量を求め、これに雰囲
気温度を加算することによシ累積誤差の少ない予測温度
を得て、この予測温度をもとにサーマルヘッドに対する
印加電力を制御して、蓄熱量にかかわらない安定な加熱
記録を行うものである0〔産業上の利用分野〕 本発明は加熱記録装置に係るものでありで、411Fニ
サーマルヘツド内の蓄熱量を予測する蓄熱予測演算装置
に関する。
By determining the total amount of heating and cooling for the ambient temperature, and adding the ambient temperature to this, a predicted temperature with a small cumulative error is obtained, and based on this predicted temperature, the power applied to the thermal head is controlled. The present invention relates to a heating recording device that performs stable heating recording regardless of the amount of heat storage, and is a heat storage prediction calculation device that predicts the amount of heat storage in a 411F thermal head. Regarding.

サーマルヘッドを使用して感熱紙に記録を行うとき、サ
ーマルヘッドに出力データに対応する電流を流して発熱
させている。この発熱によシサーマルヘッド自体が加熱
されるので、多値階調記録を行う場合、サーマルヘッド
の蓄熱量に応じて通電制御することが必要である。
When recording on thermal paper using a thermal head, a current corresponding to output data is passed through the thermal head to generate heat. Since the thermal head itself is heated by this heat generation, when performing multilevel gradation recording, it is necessary to control the energization according to the amount of heat stored in the thermal head.

〔従来の技術〕[Conventional technology]

熱記録での濃度制御は、サーマルヘッド内での蓄熱量を
検出し、その蓄熱量に応じてサーマルヘッドへの印加電
力を制御する。印加電力は、を圧を制御する方法や通電
する時間に尚たるパルス幅変化で制御できる。
Density control in thermal recording involves detecting the amount of heat stored in the thermal head, and controlling the power applied to the thermal head in accordance with the amount of heat stored. The applied power can be controlled by controlling the pressure or by changing the pulse width depending on the time during which the current is applied.

熱記録で問題となるサーマルヘッドの蓄熱応答現象は、
その物理的な構造に対応付けられ、主に3つのレベルに
分類できる。第ルベルは、熱記録に必要な熱エネルギを
得る第5図の発熱抵抗体41によるものであシ、その熱
時定数に係わる。
The thermal head's heat storage response phenomenon, which is a problem in thermal recording, is
It can be classified into three main levels depending on its physical structure. The second level is due to the heating resistor 41 shown in FIG. 5 which obtains the thermal energy necessary for thermal recording, and is related to its thermal time constant.

第2レベルは、グレーズ層42と呼ばれる熱伝導率の比
較的低い層に係わる。このグレーズ層42は、熱記録に
直接寄与しなかりた熱エネルギを外部に放散することを
妨げ、熱記録面を保温することでサーマルヘッドへの電
気エネルギを節約する働きをする。第3レベルは、グレ
ーズ層42で余分となった熱エネルギをサーマルヘッド
の外部に放出する放熱板43に係わる。このレベルでの
蓄熱現象の特徴として、外気と接しているために外気の
温度変化の影響を強く受ける0これらの蓄熱現象は9発
熱抵抗体41.グレーズ層42.放熱板43の順に応答
が緩慢となる。熱記録においては、これらの蓄熱現象を
十分に把握することにより良好な記録が可能になる0 これらの蓄熱現象は、記録画像、サーマルヘッドの物理
定数を元に熱伝導方程式を解くことで算出できるが、記
録画像を特定したシ、複雑なサーマルヘッドの構造を含
めての解析は実用性を欠いている。そこで、従来よシ様
々な発明がなされている。
The second level involves a layer of relatively low thermal conductivity called the glaze layer 42. This glaze layer 42 prevents thermal energy that does not directly contribute to thermal recording from dissipating to the outside, and serves to save electrical energy to the thermal head by keeping the thermal recording surface warm. The third level relates to a heat sink 43 that releases excess thermal energy from the glaze layer 42 to the outside of the thermal head. The heat storage phenomenon at this level is characterized by the fact that it is in contact with the outside air and is strongly affected by temperature changes in the outside air. Glaze layer 42. The response becomes slower in the order of heat sink 43. In thermal recording, good recording is possible by fully understanding these heat accumulation phenomena0 These heat accumulation phenomena can be calculated by solving the heat conduction equation based on the recorded image and the physical constants of the thermal head. However, once the recorded image has been identified, analysis that includes the complex structure of the thermal head is impractical. Therefore, various inventions have been made in the past.

第6図は、サーマルヘッドの構造を近似する熱定数を求
め、抵抗R51,コンデンサC52からなる時定数回路
で温度シミュレーシッンし、その温度値によシ駆動信号
をゲートすることでパルス幅を変化させて、熱記録濃度
を制御している。
Figure 6 shows that a thermal constant that approximates the structure of the thermal head is determined, temperature simulation is performed using a time constant circuit consisting of a resistor R51 and a capacitor C52, and the pulse width is determined by gating the drive signal according to the temperature value. The thermal recording density is controlled by changing the density.

第7図囚は、隣接するライン間での熱記録濃度を制御す
るものである。第7図囚のようにラインn、mを連続記
録する場合、nラインで記録しないでmラインで記録を
行う0列は、nラインで記録し、かつmラインで記録す
るa列に比較して。
FIG. 7 is for controlling the thermal recording density between adjacent lines. When recording lines n and m continuously as shown in Figure 7, column 0, which records on line m without recording on line n, is compared to column a, which records on line n but records on line m. hand.

濃度が低くなる。これを防ぐために、nライン記鎌後、
(B)に示すような補助ラインn′ラインを設ける。n
′ラインは、nラインを反転したものである。
concentration becomes lower. To prevent this, after writing the n line,
An auxiliary line n' line as shown in (B) is provided. n
' line is the inversion of n line.

第8図は、2値からなる記録パターン及び印加パルス電
力からサーマルヘッドのグレーズ層温度を演算によシシ
ミエレートして濃度制御するものでおる。温度メモリ6
1に記憶した前記録時の全記録周期内のグレーズ層温度
と2値の記録データ67をもとに一定の濃度となるよう
にパルス幅決定演算63でパルス幅を求め、記録パルス
幅データ65によシサーマルヘッド66を駆動する。こ
の駆動によるグレーズ層温度変化を記録パルス幅。
In FIG. 8, the density is controlled by calculating the temperature of the glaze layer of the thermal head from the recording pattern consisting of two values and the applied pulse power. Temperature memory 6
Based on the glaze layer temperature within the entire recording cycle of the previous recording stored in 1 and the binary recording data 67, the pulse width is determined by a pulse width determination calculation 63 so as to obtain a constant density, and the recording pulse width data 65 The thermal head 66 is driven accordingly. The pulse width records the glaze layer temperature change due to this drive.

前記録時のグレーズ層温度から温度予測演算64により
次ラインのグレーズ層温度を予測して9次ライン温度デ
ータ62としている。
The glaze layer temperature of the next line is predicted by temperature prediction calculation 64 from the glaze layer temperature at the time of previous recording, and the ninth line temperature data 62 is obtained.

第9図は、サーマルヘッド71の放熱板に温度検出素子
72を取シ付は表面温度をセンスして。
In FIG. 9, a temperature detection element 72 is attached to the heat sink of a thermal head 71 to sense the surface temperature.

記録階調数、記録速度等を元にパルス幅テーブル73に
よシパルス幅を決定し、熱記録濃度を制御している。
The pulse width is determined based on the pulse width table 73 based on the number of recording gradations, recording speed, etc., and the thermal recording density is controlled.

第6図は2発熱抵抗体、第7図、第8図は、グレーズ層
、第9図は、放熱板での蓄熱量を主に濃度制御を行って
いる。またこれらのことは単独あるいは組み合わせて用
いられる。
FIG. 6 shows two heating resistors, FIGS. 7 and 8 show a glaze layer, and FIG. 9 shows a heat sink mainly controlling the concentration of the amount of heat stored in the heat dissipation plate. Moreover, these things may be used alone or in combination.

このような技術において、熱記録に影響を与える蓄熱量
の把握は、第6図のような大まかなシtエレーシ冒ン、
第7図のような局所的な条件による対応や第9図のよう
な実測値からの推定によるものが実用化されていた。こ
れらのものは、おおまかな蓄熱現象を予測できるに過ぎ
なく、高精度な温度値を得られなかった。これに対して
第8図のものはよシ高精度な予測を実現できるが、記録
パターンが2値に限定されておシ、雰囲気温度や記録周
期が変化したシすると追従できないという問題点かあり
た。
In this type of technology, understanding the amount of heat storage that affects thermal recording is based on a rough calculation as shown in Figure 6.
Measures based on local conditions as shown in FIG. 7 and methods based on estimation from actual measurements as shown in FIG. 9 have been put into practical use. These methods can only roughly predict heat accumulation phenomena and cannot obtain highly accurate temperature values. On the other hand, the one shown in Figure 8 can achieve highly accurate predictions, but the recording pattern is limited to two values, and there is a problem that it cannot follow changes in the ambient temperature or recording cycle. Ta.

そこで本発明者はサーマルヘッド内の蓄熱現象を、前記
録開始直前のサーマルヘッドの温度と前記録期間内での
加熱冷却量を逐次累積することで予測演算によ〕求める
方式を提案した。これらの関係を(1)式に示す。n−
1ライン、nラインを記録する間の温度変化は、(1)
式のようにnラインでの発熱による温度上昇ΔTnの第
1項と、直前のn−1ラインでの実温度T、−1が雰囲
気温度T、との差で冷却されていく第2項との和となる
Therefore, the present inventor proposed a method for determining the heat accumulation phenomenon in the thermal head by predictive calculation by sequentially accumulating the temperature of the thermal head immediately before the start of the previous recording and the amount of heating and cooling within the previous recording period. These relationships are shown in equation (1). n-
The temperature change during recording 1 line and n line is (1)
As shown in the equation, the first term of the temperature rise ΔTn due to heat generation in the n line, and the second term that is cooled due to the difference between the actual temperature T, -1, and the ambient temperature T, in the previous n-1 line. is the sum of

%−Tfl−t=ΔTn −(Tk−t −Tm)(1
−exp(−t/r))−・・−・−(1)(1)式に
おいて、tはライン間の記録周期、τは熱時定数である
%-Tfl-t=ΔTn-(Tk-t-Tm)(1
-exp(-t/r))--(1) In equation (1), t is the recording period between lines, and τ is a thermal time constant.

この様子を示したものが第1図である。第1図において
、横軸は1記録期間を単位とする記録の時間推移を示し
、縦軸は温度変化を示す。1はサーマルヘッドの発熱抵
抗体での温度変化を示し。
FIG. 1 shows this situation. In FIG. 1, the horizontal axis shows the time course of recording in units of one recording period, and the vertical axis shows temperature changes. 1 shows the temperature change in the heating resistor of the thermal head.

2はグレーズ層の予測温度を示す0予測温度は。2 indicates the predicted temperature of the glaze layer; 0 indicates the predicted temperature.

記録を開始する10点では、雰囲気温度T、に等しく。At the 10 points where recording begins, the ambient temperature is equal to T.

記録とともに温度上昇していく。i、my tfi、、
の期間においては、(1)式の第2項’rn−1が雰囲
気温度T、となるので、第2項は零となシ、第1項での
加熱分のみが温度上昇に寄与するO tfi−1〜t、
の期間においては、記録による加熱分とこの区間での冷
却によシt3での温度が決まる。冷却に関する時定数は
The temperature increases as the record is recorded. i, my tfi...
During the period, the second term 'rn-1 of equation (1) becomes the ambient temperature T, so the second term is zero, and only the heating in the first term contributes to the temperature rise. tfi-1~t,
In the period t3, the temperature at t3 is determined by the amount of heating due to recording and the cooling in this section. What is the time constant for cooling?

グレーズ層を含めた値である0このように、前記録期間
での予測温度、加熱量、冷却量を演算することで、逐次
、蓄熱量が予測できる。
The value including the glaze layer is 0. In this way, by calculating the predicted temperature, heating amount, and cooling amount in the previous recording period, the amount of heat storage can be predicted one by one.

最終的な現記録直後の蓄熱予測演算式を(2)式よシ求
めている。
The final heat storage prediction calculation formula immediately after the current recording is calculated using equation (2).

’l’fi−’l’?l=Δ’rfixx−(Ta−t
−Ta)x(i→野(−t/f))・・・・・・(2)
このように(1)式を解釈すると、第1項、第2項とも
に積の形となシ、積和演算を累積することとなる。積和
演算化とすることによシ、市販されている積和演算器(
ディジタル信号プロセッサ)で容易に実現できる。
'l'fi-'l'? l=Δ'rfixx-(Ta-t
-Ta)x(i→field(-t/f))...(2)
When formula (1) is interpreted in this way, both the first term and the second term are in the form of a product, which results in the accumulation of product-sum operations. By converting it into a product-sum operation, a commercially available product-sum calculation unit (
This can be easily realized using a digital signal processor (digital signal processor).

最終的な実際の予測温度は1次の(3)式となる。The final actual predicted temperature is expressed by the first-order equation (3).

Tn””Tfi−s+ΔT、 X 1− (Tn−x 
−’r、) X (1−exp(−t/f)) ・(3
)〔発明が解決しようとする問題点〕 従来の技術において、熱記録に影響を与える蓄熱量の予
測演算は、(2)式(すなわち(3)式)によシ逐次求
めていた。この(2)式に着目すると、第1項。
Tn""Tfi-s+ΔT, X 1- (Tn-x
-'r,) X (1-exp(-t/f)) ・(3
) [Problems to be Solved by the Invention] In the conventional technology, the predictive calculation of the amount of heat storage that affects thermal recording is sequentially calculated using equation (2) (that is, equation (3)). Focusing on this equation (2), the first term.

第2項に前記録期間に予測した’rn−xの値が用いら
れている。通常、演算は、有限の桁で実行するので、誤
差を含み、(2)式のように累積する特性のある’ra
−tが、演算式により多く存在する程、誤差は。
The value of 'rn-x predicted in the previous recording period is used in the second term. Normally, calculations are performed with a finite number of digits, so 'ra' contains errors and has the characteristic of accumulating as shown in equation (2).
The more -t there is in the arithmetic expression, the greater the error.

拡大する。誤差が大きくなると、適切なパルス幅を選択
できなくなシ、記碌品位に悪影響を与える0このために
、演算の有効桁を増して演算精度をあげる必要があった
Expanding. If the error becomes large, it becomes impossible to select an appropriate pulse width, which adversely affects the recording quality.For this reason, it is necessary to increase the number of effective digits in the calculation to improve the calculation accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

前記(3)式よシ明らかな如く、前記鍮開始時の予測温
度’rn−tを基準として現記鎌直前の温度−が(4)
式で表わせる。
As is clear from the above equation (3), the temperature immediately before the current sickle is expressed as (4) based on the predicted temperature 'rn-t at the start of the brass.
It can be expressed by a formula.

% == ’r、−1 + Δ% −(′rl−s −
T、)(1−exp (−Vv )) ””” (4)
ここで、ΔTnは前記録周期内での加熱量、T、は雰囲
気温度、tは前記碌周期、τは熱時定数である0 この(4)式の第3項を展開すると(5)式となる。
% == 'r, -1 + Δ% - ('rl-s -
T, ) (1-exp (-Vv)) """ (4)
Here, ΔTn is the amount of heating within the previous recording cycle, T is the ambient temperature, t is the recording period, and τ is the thermal time constant.0 Expanding the third term of equation (4), equation (5) is obtained. becomes.

Tn=Ta+Δ%+(Tn−t−Ta)exp(−’/
τ)  ・−曲曲曲−(5)(4) 、 (5)式を比
較すると、第1項において、(4)式は前記録開始時の
予測温度であることに対して。
Tn=Ta+Δ%+(Tn-t-Ta)exp(-'/
τ) - - Curved Song - (5) Comparing equations (4) and (5), in the first term, equation (4) is the predicted temperature at the start of the previous recording.

(5)式は雰囲気温度で表わされている。第3項におい
ては乗算の係数が変更されているに過ぎない。
Equation (5) is expressed in terms of ambient temperature. In the third term, only the multiplication coefficient is changed.

次に、 (4) 、 (5)式をそれぞれ用い、再帰的
に演算して温度予測する過程での誤差を評価する。数表
現は同一ビット構成とし、2項間の演算精度も同じとす
る。第2項、第3項での量子化、演算は同一となるが、
(4)式第1項のTn−1は前記録周期での演算、量子
化誤差を含むのに対して、(5)式第1項のT、は測定
値で64)単なる雰囲気温度の量子化誤差だけとなる。
Next, using equations (4) and (5), the errors in the process of recursively calculating and predicting the temperature are evaluated. The number expressions have the same bit structure, and the calculation accuracy between the two terms is also the same. The quantization and operations in the second and third terms are the same, but
Tn-1 in the first term of equation (4) includes calculations and quantization errors in the previous recording cycle, whereas T in the first term of equation (5) is the measured value (64), which is simply a quantum of ambient temperature. There is only a conversion error.

すなわち再帰的な演算誤差を縮少でき、高精度な演算を
実現できる。(5)式を図示すると9本発明の原理図第
1図となる。
That is, recursive calculation errors can be reduced and highly accurate calculations can be realized. The equation (5) is illustrated in FIG. 1, which is a diagram of the principle of the present invention.

第1図において横軸は1記録周期を単位とする記録の時
間推移を示し、縦軸は温度変化を示す。
In FIG. 1, the horizontal axis shows the time course of recording in units of one recording cycle, and the vertical axis shows temperature changes.

1はサーマルヘッドの発熱抵抗体での温度変化を示し、
2はグレーズ層での予測温度の変化を示す。
1 shows the temperature change in the heating resistor of the thermal head,
2 shows the predicted temperature change in the glaze layer.

予測温度は記録を開始する10点では雰囲気温度T1に
等しく、記録とともに温度上昇していく。t0〜tfi
−□の期間においては(5)式第3項Tn−1が雰囲気
温度T8となるので、第3項は零となり、第2項での加
熱量のみが温度上昇に寄与する。tn−、% tnO期
−間においては記録による加熱量ΔTnと?  1n−
1での予測温度が1fiまでに冷却された温度、すなわ
ち(5)式の第2項、第3項との和となる。
The predicted temperature is equal to the ambient temperature T1 at the 10 points where recording starts, and the temperature increases as recording progresses. t0~tfi
During the period -□, the third term Tn-1 of equation (5) becomes the ambient temperature T8, so the third term becomes zero, and only the amount of heating in the second term contributes to the temperature rise. tn-,% During the tnO period, the heating amount ΔTn according to the record? 1n-
The predicted temperature at 1fi becomes the temperature cooled by 1fi, that is, the sum of the second and third terms in equation (5).

〔作 用〕[For production]

前記録期間内での冷却によシ到達する温度を雰囲気温度
からの差分とするように演算し、これを雰囲気温度を加
算することで予測温度を演算するので、演算誤差の累積
する前記録開始温度の加算を避けられる。その結果、高
精度の予測演算を行うことができる。
The temperature reached by cooling during the previous recording period is calculated as the difference from the ambient temperature, and the predicted temperature is calculated by adding this to the ambient temperature, so calculation errors will accumulate at the start of the previous recording. Temperature addition can be avoided. As a result, highly accurate prediction calculations can be performed.

〔実施例〕〔Example〕

本発明の一実施例を第2図〜第4図によシ説明する。 An embodiment of the present invention will be explained with reference to FIGS. 2 to 4.

第2図は本発明の一実施例を示すブロック構成図、第3
図は第2図における温度予測部の詳細図。
FIG. 2 is a block diagram showing one embodiment of the present invention;
The figure is a detailed diagram of the temperature prediction section in FIG. 2.

第4図は温度予測部の動作を示すタイムチャートである
FIG. 4 is a time chart showing the operation of the temperature prediction section.

第2図において11は本発明の主要部である温度予測部
、12はサーマルヘッド、13はサーマルヘッドを駆動
するサーマルヘッド駆動部、14はサーマルヘッド駆動
部13の印加電力を決定すルハルス幅テーブル、15は
サーマルヘッド12の温度検出するサーミスタ、16は
サーミスタ15で検出した温度を云ジタル信号に変換す
る温度検出部、17は上記のブロックを制御するサーマ
ルヘッド制御部である。
In FIG. 2, 11 is a temperature prediction section which is the main part of the present invention, 12 is a thermal head, 13 is a thermal head drive section that drives the thermal head, and 14 is a Luhalus width table that determines the applied power to the thermal head drive section 13. , 15 is a thermistor that detects the temperature of the thermal head 12, 16 is a temperature detection section that converts the temperature detected by the thermistor 15 into a digital signal, and 17 is a thermal head control section that controls the above blocks.

サーマルヘッド制御if[7ハ、サーマルヘッド12に
よシ熱記録を開始する直前に、まずサーミスタ15.温
度検出部16によりサーマルヘッド12の温度をセンス
、74ジタル化するための制御を行う。次に、この雰囲
気データにあたるセンスした温度データ、記録画素の階
調数、記録速度等の温度予測に必要なデータを温度予測
部11へ転送する。温度予測部11は、これらのデータ
よシ逐次サーマルヘッドの温度を予測する。サーマルヘ
ッド制御部17は、温度予測部11で予測した温度値、
記録画素の階調数、記録速度等をパルス幅テーブル14
へ送る。パルス幅テーブル14は。
Thermal head control if [7c] Immediately before starting thermal recording by the thermal head 12, the thermistor 15. The temperature detection section 16 senses the temperature of the thermal head 12 and performs control for converting it into 74 digits. Next, data necessary for temperature prediction, such as sensed temperature data corresponding to the atmosphere data, the number of gradations of recording pixels, and recording speed, is transferred to the temperature prediction unit 11. The temperature prediction unit 11 sequentially predicts the temperature of the thermal head based on these data. The thermal head control unit 17 receives the temperature value predicted by the temperature prediction unit 11,
The number of gradations of recording pixels, recording speed, etc. are determined by the pulse width table 14.
send to The pulse width table 14 is as follows.

これらのデータに応じてパルス幅を決定する。サーマル
ヘラ)”JEK動部13 ハ、パルス幅テーブル14の
出力パルス幅に従ってサーマルヘッド12を電力制御し
て最適な熱記録を行う。以下、温度予測部12の詳細な
動作を第3図のブロック図。
The pulse width is determined according to these data. Thermal spatula)" JEK moving part 13 C. Optimal thermal recording is performed by controlling the power of the thermal head 12 according to the output pulse width of the pulse width table 14. Below, the detailed operation of the temperature prediction part 12 is explained in the block diagram of FIG. 3. .

第4図のタイムチャート・を用いて述べる。This will be explained using the time chart in Figure 4.

第3図は本発明の温度予測部の詳細を示すブロック図で
ある。第3図中、34.35は加熱量を決定する画素毎
の階調数、記録速度(記録周期)を示す信号、36は雰
囲気温度を入力する信号であシ、28は記録開始時に温
度センナで実測した雰囲気温度の値を1画素毎に1ライ
ン分格納する雰囲気温度ラインバッファ、29は演算し
た予測温度の値を1画素毎に1.フィン分格納する予測
温度ラインバッファ、25は記録ライン間の加熱量を求
める加熱量テーブル、23は前ラインでの予測温度と雰
囲気温度との差を求める減算器、27は定数1を出力す
る定数テーブル、26はグレーズ層を含めた熱時定数テ
ーブル、31,32.33はマルチプレックサ、21は
記録ライン間の加熱量を求めるために加熱量テーブル2
5.定数テーブル27の出力、雰囲気温度に対する冷却
量を求めるために減算器23の出力、熱時定数テーブル
26の出力を乗算する乗算器、22は雰囲気温度に対す
る加熱、冷却総量を求め本ために乗算器21の出力を累
算する累算器、24は累算器22の出力である雰囲気温
度に対する温度差に雰囲気温度を加える加算器、30は
加算器24の出力データを画素毎に一時格納するレジス
タ、37は演算出力となる予測温度を示す信号である0
次に第3図の動作を第4図に示すタイムチャートを用い
て以下述べる。このタイムチャートは。
FIG. 3 is a block diagram showing details of the temperature prediction section of the present invention. In Figure 3, 34 and 35 are signals indicating the number of gradations and recording speed (recording cycle) for each pixel that determine the amount of heating, 36 is a signal for inputting the ambient temperature, and 28 is a temperature sensor at the start of recording. An atmosphere temperature line buffer 29 stores the actually measured atmospheric temperature values for one line for each pixel, and 29 stores the calculated predicted temperature values for each pixel by 1. 25 is a heating amount table that calculates the heating amount between recording lines; 23 is a subtracter that calculates the difference between the predicted temperature in the previous line and the ambient temperature; 27 is a constant that outputs a constant 1. 26 is a thermal time constant table including the glaze layer, 31, 32, and 33 are multiplexers, and 21 is a heating amount table 2 for determining the heating amount between recording lines.
5. A multiplier 22 multiplies the output of the constant table 27, the output of the subtracter 23 to obtain the cooling amount relative to the ambient temperature, and the output of the thermal time constant table 26. 22 is a multiplier for obtaining the total amount of heating and cooling relative to the ambient temperature. 24 is an adder that adds the ambient temperature to the temperature difference with respect to the ambient temperature that is the output of accumulator 22; 30 is a register that temporarily stores the output data of adder 24 for each pixel. , 37 is a signal indicating the predicted temperature which is the calculation output 0
Next, the operation shown in FIG. 3 will be described below using the time chart shown in FIG. This time chart.

記録動作を開始する1ライン目、および2ライン目以降
を代表するものの様子を表わし、ライン先頭の第1画素
、第2画素についての予測に関するものである。信号a
は1ライン毎の予測演算を行う期間を示すライン信号、
IN号すは予測演算する第1番目のラインを示す第1ラ
イン信号、信号Cは第3図内の画素毎の階調数信号34
.記録速度信号35.雰囲気温度データ信号36が入力
されることを示し、1ライン内の画素数分生起する画素
データ入力信号、信号dは雰囲気温度ラインバッフ10
入出力データを表わす雰囲気温度ラインバッフ1データ
、信号eは予測温度ラインバッフ128の入出力データ
を表わす予測温度ラインバッフ1データ、信号fは1画
素の予測演算を行う期間を示す画素予測演算信号、信号
gは予測演算のための基本タロツク信号、信号りは累積
演算に先立ち累算器22をリセットする累算器リセット
信号、信号iはマルチプレックサ32,33のマルチプ
レックサ制御信号、信号j、にはマルチプレックサ32
.33のマルチプレックサ出力データ、信号lは累算器
22の出力データ、信号mはレジスタ30の最終的な予
測温度データを示す。
It represents the first line at which the recording operation starts, and the second and subsequent lines, and relates to predictions for the first and second pixels at the head of the line. signal a
is a line signal indicating the period for performing predictive calculation for each line,
The IN signal is the first line signal indicating the first line to be predictively calculated, and the signal C is the gradation number signal 34 for each pixel in Fig. 3.
.. Recording speed signal 35. Indicates that the ambient temperature data signal 36 is input, and the pixel data input signal generated by the number of pixels in one line, signal d, is the ambient temperature line buffer 10.
Ambient temperature line buffer 1 data representing input/output data; signal e represents predicted temperature line buffer 1 data representing input/output data of the predicted temperature line buffer 128; signal f represents a pixel prediction calculation signal indicating a period for performing predictive calculation for one pixel. , signal g is a basic tally signal for predictive calculation, signal 1 is an accumulator reset signal that resets accumulator 22 prior to cumulative calculation, signal i is a multiplexer control signal for multiplexers 32 and 33, and signal j, has a multiplexer 32
.. 33, the signal l shows the output data of the accumulator 22, and the signal m shows the final predicted temperature data of the register 30.

予測演算を開始する第1番目のラインにおいて。In the first line starting the prediction calculation.

ライン信号aが“1”になるにともない、第1ライン信
号すが“1°となシ雰囲気温度データをともなったデー
タ転送であることを示す0画素データ入力信号Cにより
画素毎に記録開始時点での雰囲気温度データT1を雰囲
気温度ラインバッフ128に書き込む。同時に、第1ラ
イン信号すと画素データ入力信号Cとの論理積による図
示しない制御信号によシマルチプレックサ31が雰囲気
温度データを予測温度ラインバッファ29へ入力する。
As the line signal a becomes "1", the first line signal becomes "1°".The 0 pixel data input signal C indicates that the data transfer is accompanied by the ambient temperature data, and the recording starts for each pixel. Ambient temperature data T1 is written to the ambient temperature line buffer 128. At the same time, the multiplexer 31 predicts the ambient temperature data using a control signal (not shown) obtained by ANDing the first line signal and the pixel data input signal C. Input to temperature line buffer 29.

この結果、#囲気温度ライン六ツ7ア28および予測温
度ラインバッフ129の同一画素に対応するメモリ番地
に同じ雰囲気温度データが記憶され、予測温度ラインバ
ッフ129をページ記録開始時のみ初期設定する。また
2画素データ入力信号Cが°l”になることによって9
階調数信号34、記録速度信号35が入力され、加熱量
テーブル25.熱定数テーブル26が確定し、第1画素
について予測演算が可能となる。予測演算準備ができる
と1画素子測演算信号fは、基本ンロック信号gの立ち
下がシに同期して11”となる。
As a result, the same ambient temperature data is stored in the memory address corresponding to the same pixel in the #ambient temperature line 67a 28 and the predicted temperature line buffer 129, and the predicted temperature line buffer 129 is initialized only at the start of page recording. In addition, since the 2-pixel data input signal C becomes °l", 9
A gradation number signal 34 and a recording speed signal 35 are input, and a heating amount table 25. The thermal constant table 26 is finalized, and predictive calculations can be made for the first pixel. When the prediction calculation preparation is completed, the one-pixel element measurement calculation signal f becomes 11'' in synchronization with the fall of the basic lock signal g.

画素予測演算信号fが“1°になると、累算器リセット
信号りおよびマルチプレックサ制御信号iを発生する。
When the pixel prediction calculation signal f reaches "1°," an accumulator reset signal and a multiplexer control signal i are generated.

累算器刃セット信号りは、累算器22をリセットする。The accumulator blade set signal resets the accumulator 22.

マルチプレックサ制御信号iは、マルチプレックサ32
,33の出力に第1ラインの第1画素での加熱量演算に
必要な加熱量テーブル25からの加熱量と定数テーブル
27からの出力係数値=1を乗算器21に入力する。乗
算器21は、基本クロック信号gの立ち上がりでマルチ
プレックサ32.33の出力であるマルチプレックサ出
力データj、kを取り込む0その乗算結果ΔTh1lを
累算器22に累算し、基本タロツク信号gの次の立ち上
がυで、累算器出力データlとする。なお、この立ち上
がシに先立ち、マルチプレックサ制御信号iを“0“と
することで。
The multiplexer control signal i is the multiplexer 32
, 33, the heating amount from the heating amount table 25 necessary for calculating the heating amount at the first pixel of the first line and the output coefficient value=1 from the constant table 27 are input to the multiplier 21. The multiplier 21 takes in the multiplexer output data j, k, which is the output of the multiplexer 32 and 33, at the rising edge of the basic clock signal g.The multiplier 21 accumulates the multiplication result ΔTh1l in the accumulator 22, and outputs the basic clock signal. The next rising edge υ of g is set as accumulator output data l. Note that, prior to this rise, the multiplexer control signal i is set to "0".

マルチプレックサ32.33は、第1ラインの第1画素
での冷却量演算に必要な予測温度ラインバッファ29と
雰囲気温度ラインバッファ28とを減算器23によシ減
算した温度差と熱時定数テーブル26の出力を乗算器2
1に入力する。すなわち、加熱量の演算結果の出力と冷
却量の演算のためのデータの7エツチを同一タイミング
にて行う。
The multiplexers 32 and 33 output the temperature difference and thermal time constant obtained by subtracting the predicted temperature line buffer 29 and the ambient temperature line buffer 28 necessary for calculating the amount of cooling at the first pixel of the first line by the subtractor 23. The output of table 26 is multiplier 2
Enter 1. That is, the output of the calculation result of the heating amount and the seven etchings of the data for calculating the cooling amount are performed at the same timing.

引き続き1乗算器21は冷却量を演算実行するが。Subsequently, the 1 multiplier 21 calculates the cooling amount.

予測温度ラインバッファ29と雰囲気温度2インバツフ
128との差は、記録の第1ライン目の全ての画素で零
となるので、累算器22での累算結果ΔTA!11は、
加熱量の演算結果ΔTh1lそのものとなる。演算結果
は2次の基本クロック信号gの立ち上がシで累算器出力
データlとなる。第1ライン第1画素について求めた加
熱冷却量ΔT111に雰囲気温度ラインバッフ129に
記憶すれている記録開始直前の第1画素の温度値Tal
を加算器24によって加算する。この加算結果が求める
べき第1ライン第1画素記録後の予測温度となる。予測
温度は、レジスタ30に一時記憶させ。
Since the difference between the predicted temperature line buffer 29 and the ambient temperature 2 in-buffer 128 is zero for all pixels in the first line of recording, the accumulated result in the accumulator 22 is ΔTA! 11 is
The calculation result of the heating amount is exactly ΔTh1l. The calculation result becomes accumulator output data l at the rising edge of the secondary basic clock signal g. The temperature value Tal of the first pixel immediately before the start of recording stored in the ambient temperature line buffer 129 is added to the heating and cooling amount ΔT111 calculated for the first pixel of the first line.
are added by the adder 24. The result of this addition becomes the predicted temperature after recording of the first pixel on the first line to be determined. The predicted temperature is temporarily stored in the register 30.

マルチプレックサ31を介して予測温度ラインバッファ
29を’l’al+ΔTA!11に更新する。続いて。
The predicted temperature line buffer 29 is input via the multiplexer 31 to 'l'al+ΔTA! Update to 11. continue.

画素データ入力信号Cが1″になることによって、第2
画素に関する階調数信号34.記録速度信号35が入力
され、加熱量テーブル25.熱時定数テーブル26が確
定し、第2画素の予測演算が可能となる。以下、第12
イン終了までこれらの演算を繰シ返す。
By the pixel data input signal C becoming 1'', the second
Gradation number signal 34 regarding pixels. The recording speed signal 35 is input, and the heating amount table 25. The thermal time constant table 26 is determined, and predictive calculation for the second pixel becomes possible. Below, the 12th
These operations are repeated until the input is completed.

予測演算を開始する第2番、目ライン以降においては、
ライン信号aのみ°1”になる。画素データ入力信号C
が111になることによって2階調数値号34.記録速
度信号35が入力され、前ラインでの演算によシ予測温
度ラインバッファ29がすでに更新されておシ、加熱量
テーブル25゜熱定数テーブル26が確定し、第1画素
の予測演算が可能となる。予測演算準備ができると1画
素子測演算信号fは、基本クロック信号gの立ち下がシ
に同期して“1”となる。画素予測演算信号fが“1”
になると、累算器リセット信号りおよびマルチプレック
サ制御信号iを発生する。累算器リセット信号りは、累
算器22をリセットする。
From the second line onwards, where prediction calculation starts,
Only line signal a becomes °1". Pixel data input signal C
becomes 111, resulting in a two-level numerical value 34. The recording speed signal 35 is input, the prediction temperature line buffer 29 has already been updated by the calculation in the previous line, the heating amount table 25° and the thermal constant table 26 are determined, and the prediction calculation for the first pixel is possible. becomes. When the prediction calculation preparation is completed, the one-pixel element measurement calculation signal f becomes "1" in synchronization with the fall of the basic clock signal g. Pixel prediction calculation signal f is “1”
, it generates an accumulator reset signal and a multiplexer control signal i. The accumulator reset signal resets accumulator 22.

マルチプレックサ制御信号iは、マルチプレックサ32
.33の出力に第2ラインの第1画素での加熱量演算に
必要な加熱量テーブル25からの加熱量と定数テーブル
27からの出力係数値=1を乗算器21に入力する。乗
算器21は、基本クロック信号gの立ち上がりでマルチ
プレックサ32゜33の出力であるマルチプレックサ出
力データj。
The multiplexer control signal i is the multiplexer 32
.. The heating amount from the heating amount table 25 necessary for calculating the heating amount at the first pixel of the second line and the output coefficient value = 1 from the constant table 27 are input to the multiplier 21 as the output of 33. The multiplier 21 receives multiplexer output data j, which is the output of the multiplexers 32 and 33, at the rising edge of the basic clock signal g.

kを取り込む。その乗算結果ΔTh21を累算器22に
累算し、基本クロック信号gの次の立ち上がシで、累算
器出力データlとする。なお、この立チ上が、91C先
立ち、マルチプレックサ制御信号監を10”とすること
で、マルチプレックサ32゜33は、第2ライン第1画
素での冷却量演算に必要な予測温度ラインバッフ129
と雰囲気温度ラインバッファ28とを減算器23によシ
減算した温度差と熱時定数テーブル26の出力を乗算器
211C入力する。すなわち、加熱量の演算結果の出力
と冷却量の演算のためのデータの7エツチを同一タイミ
ングにて行う。引き続き9乗算器21は、第2ライン第
1画素を記録する直前の予側温−麟一 14基睦^私ム
 −浦−6a 4≦普1 イへ甲C21を求める0予測
温度Tp11は、第1ライン第1画素での加熱冷却量Δ
T111に同画素の雰囲気温度Talを加算することで
求めたものである0演算結果は、累算器22で累算され
、記録開始から第22イン第1画素記録直後までの加熱
冷却総量ΔTh21+ΔTC21を次の基本クロック信
号gの立ち上がシで累算器出力データlとなる。第4因
では、この雰囲気温度に対する加熱冷却総量をΔT12
1とする0この累算器22の出力データΔT121に雰
囲気温度ラインバッフ128に記憶されている記録開始
直前の第1ライン第1画素の温度値Talを加算器24
によりて加算する。この加算結果が求めるべき第2ライ
ン第1画素記録直後の予測温度となる0予測温度は、レ
ジスタ30に一時記憶させ、マルチプレックサ31を介
して予測温度ラインバッファ29を更新する0以下。
Take in k. The multiplication result ΔTh21 is accumulated in the accumulator 22, and is set as accumulator output data l at the next rising edge of the basic clock signal g. In addition, by setting the multiplexer control signal to 10" before this rising point is 91C, the multiplexers 32 and 33 set the predicted temperature line necessary for calculating the cooling amount at the first pixel of the second line. Buff 129
The temperature difference obtained by subtracting and the ambient temperature line buffer 28 by the subtracter 23 and the output of the thermal time constant table 26 are input to the multiplier 211C. That is, the output of the calculation result of the heating amount and the seven etchings of the data for calculating the cooling amount are performed at the same timing. Subsequently, the 9 multiplier 21 calculates the predicted side temperature immediately before recording the first pixel of the second line - Rinichi 14 bases ^ I - Ura - 6a 4≦P1 A to A C21 The 0 predicted temperature Tp11 is: Heating and cooling amount Δ at the first pixel on the first line
The 0 calculation result obtained by adding the ambient temperature Tal of the same pixel to T111 is accumulated by the accumulator 22, and the total heating and cooling amount ΔTh21+ΔTC21 from the start of recording to immediately after recording of the 22nd in first pixel is calculated. At the next rising edge of the basic clock signal g, the accumulator output data becomes l. For the fourth factor, the total amount of heating and cooling for this ambient temperature is ΔT12
The adder 24 adds the temperature value Tal of the first pixel of the first line immediately before the start of recording stored in the ambient temperature line buffer 128 to the output data ΔT121 of the accumulator 22.
Add by. The 0 predicted temperature, which is the predicted temperature immediately after recording of the first pixel on the second line to be determined by this addition result, is 0 or less, which is temporarily stored in the register 30 and updated in the predicted temperature line buffer 29 via the multiplexer 31.

予測ライン終了までこれらの演算を繰り返して。Repeat these operations until the prediction line ends.

全ラインを予測演算する0そしてこの予測演算値が第2
図のパルス幅テーブル14に送出され、これに応じたパ
ルス幅がサーマルヘッド駆動部13に出力される。
0 to predict all lines and this predictive calculation value is the second
The pulse width is sent to the pulse width table 14 shown in the figure, and a pulse width corresponding to this is output to the thermal head drive unit 13.

なお9本実施例においては2画素単位に予測演算してい
るが、複数の画素をひとまとめにして演算することも可
能である。このグループ化によりて、雰囲気温度ライン
バッファ28.予測温度ラインバッフ129の容量を削
減でき2乗算器21゜累算器22の演算速度を低速化で
き、よジローコストに実現できる。また2本実施例では
、加熱量に続き冷却量を演算しているが、逆層も可能で
ある。
Note that in this embodiment, predictive calculations are performed in units of two pixels, but it is also possible to perform calculations on a plurality of pixels at once. This grouping allows the ambient temperature line buffer 28. The capacity of the predicted temperature line buffer 129 can be reduced, the calculation speed of the square multiplier 21° accumulator 22 can be reduced, and the cost can be reduced. Furthermore, in the two embodiments, the amount of cooling is calculated following the amount of heating, but reverse layers are also possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、演算誤差の累積する成分を温度予測の
手段よシ縮少した形で提供できるので。
According to the present invention, the cumulative components of calculation errors can be provided in a reduced form compared to the temperature prediction means.

高精度な予測温度を算出でき、より高品位な熱記録を実
現で継る。
It is possible to calculate highly accurate predicted temperatures and achieve higher quality thermal recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図。 第2図は本発明の一実施例ブーツク図。 第3図は本発明における温度予測部の詳細構成ブロック
図。 第4図は本発明における温度予測部の詳細を示すタイム
チャート。 第5図はサーマルヘッド構造説明図。 第6図〜第9図は従来例を示す図である。 11・・・温度予測部。 12・・・サーマルヘッド。 13・・・サーマルヘッド駆動部。 14・・・パルス幅テーブル。 15・・・サーミスタ。 16・・・温度検出部。 17・・・サーマルヘッド制御部。
FIG. 1 is a diagram explaining the principle of the present invention. FIG. 2 is a boot diagram of an embodiment of the present invention. FIG. 3 is a detailed configuration block diagram of the temperature prediction section in the present invention. FIG. 4 is a time chart showing details of the temperature prediction section in the present invention. FIG. 5 is an explanatory diagram of the structure of the thermal head. FIGS. 6 to 9 are diagrams showing conventional examples. 11...Temperature prediction section. 12...Thermal head. 13...Thermal head drive unit. 14...Pulse width table. 15...Thermistor. 16...Temperature detection section. 17...Thermal head control section.

Claims (1)

【特許請求の範囲】 画素あるいは複数画素を単位としてサーマルヘッドの蓄
熱検出機構を備え、検出した蓄熱量をもとに印加電力を
制御する熱記録装置において、階調数、記録周期、前記
録周期開始直前の予測温度で対応付けした加熱量テーブ
ルと、 この加熱量テーブルの出力値をスケーリングする定数テ
ーブルと、 記録周期で対応付けした熱時定数テーブルと、前記録周
期開始直前の予測温度と雰囲気温度の差を得る減算器と
、 前記録周期内での加熱量を求めるために加熱量テーブル
の出力と定数テーブルの出力間の第1の乗算及び前記録
周期開始時の温度が記録周期間に冷却されて到達する温
度と雰囲気温度との差を求めるために熱時定数テーブル
の出力と減算器の出力間の第2の乗算を行う乗算器と、 雰囲気温度に対する前記録周期までの加熱冷却総量を乗
算器による第1、第2の乗算結果を累積して求める累積
器と、 この累積器の出力に雰囲気温度を加える加算器を設け、 記録周期ごとに現記録周期開始直前の予測温度を演算す
るようにしたことを特徴とするサーマルヘッド蓄熱予測
演算装置。
[Claims] A thermal recording device that is equipped with a thermal head heat storage detection mechanism for each pixel or multiple pixels, and that controls applied power based on the detected amount of heat storage. A heating amount table associated with the predicted temperature immediately before the start, a constant table for scaling the output value of this heating amount table, a thermal time constant table associated with the recording cycle, and the predicted temperature and atmosphere immediately before the start of the previous recording cycle. a subtracter to obtain the difference in temperature; a first multiplication between the output of the heating amount table and the output of the constant table to obtain the heating amount within the previous recording cycle; and the temperature at the start of the previous recording cycle is A multiplier that performs a second multiplication between the output of the thermal time constant table and the output of the subtractor to find the difference between the temperature reached by cooling and the ambient temperature, and the total amount of heating and cooling up to the previous recording cycle with respect to the ambient temperature. An accumulator that accumulates the first and second multiplication results by the multiplier, and an adder that adds the ambient temperature to the output of this accumulator are installed, and the predicted temperature immediately before the start of the current recording cycle is calculated for each recording cycle. A thermal head heat storage prediction calculation device characterized in that:
JP4465787A 1987-02-27 1987-02-27 Heat accumulation predicting device for thermal head Pending JPS63209956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4465787A JPS63209956A (en) 1987-02-27 1987-02-27 Heat accumulation predicting device for thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4465787A JPS63209956A (en) 1987-02-27 1987-02-27 Heat accumulation predicting device for thermal head

Publications (1)

Publication Number Publication Date
JPS63209956A true JPS63209956A (en) 1988-08-31

Family

ID=12697517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4465787A Pending JPS63209956A (en) 1987-02-27 1987-02-27 Heat accumulation predicting device for thermal head

Country Status (1)

Country Link
JP (1) JPS63209956A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136876A (en) * 1989-10-23 1991-06-11 Yokogawa Electric Corp Thermally sensitive recording device
JPH03266659A (en) * 1990-03-16 1991-11-27 Seiko Instr Inc Line thermal printer
WO2023071164A1 (en) * 2021-10-26 2023-05-04 宁德时代新能源科技股份有限公司 Heat management method and system, and domain controller and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136876A (en) * 1989-10-23 1991-06-11 Yokogawa Electric Corp Thermally sensitive recording device
JPH03266659A (en) * 1990-03-16 1991-11-27 Seiko Instr Inc Line thermal printer
WO2023071164A1 (en) * 2021-10-26 2023-05-04 宁德时代新能源科技股份有限公司 Heat management method and system, and domain controller and storage medium

Similar Documents

Publication Publication Date Title
CN100528582C (en) Thermal response printer and method therefore
CA2675700C (en) Thermal response correction system
KR910000767B1 (en) Method and apparatus for heating thermal head
JPH0813552B2 (en) Gradation printer
US5942992A (en) Fast technique for converting binary numbers into values expressed in an engineering unit format
CA2587492A1 (en) Thermal response correction system
JPS63209956A (en) Heat accumulation predicting device for thermal head
JPH0324972A (en) Estimating device for heat accumulation of thermal head
JPH0952382A (en) Method and apparatus for correcting heat accumulation
JPH02248264A (en) Thermal recorder having temperature predictive constant controlling performance
Costa et al. Numerical simulation of solid-liquid phase change phenomena
JP6283637B2 (en) Thermal transmissivity estimation system, thermal transmissivity estimation device, and thermal transmissivity estimation program
JPS5998878A (en) Thermal recording apparatus
JPS63209955A (en) Heat accumulation predicting unit for thermal head
JP2803680B2 (en) Thermal head thermal storage prediction device
JPH02217268A (en) Device to calculate estimation of regenerated heat of thermal head
GB2151862A (en) Apparatus for determining temperature
JPH01202466A (en) Thermal recorder
JP5772464B2 (en) Life estimation apparatus, life estimation method and program
JPH01208158A (en) Thermal head heat accumulation predicting device
JPH0392363A (en) Thermal head heat accumulation controller
JPH0324973A (en) Estimating device for heat accumulation of thermal head
JPH02200455A (en) Thermal head heat accumulation predictive arithmetic device
CA2594744A1 (en) Printer thermal response calibration system
JPS60161163A (en) Thermal accumulation correction device for thermal head