JPS63209829A - 抵抗溶接可能な樹脂ラミネ−ト鋼板及びその製造方法 - Google Patents

抵抗溶接可能な樹脂ラミネ−ト鋼板及びその製造方法

Info

Publication number
JPS63209829A
JPS63209829A JP62041322A JP4132287A JPS63209829A JP S63209829 A JPS63209829 A JP S63209829A JP 62041322 A JP62041322 A JP 62041322A JP 4132287 A JP4132287 A JP 4132287A JP S63209829 A JPS63209829 A JP S63209829A
Authority
JP
Japan
Prior art keywords
resin
layer
steel plate
laminated steel
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62041322A
Other languages
English (en)
Other versions
JPH053828B2 (ja
Inventor
樺沢 真事
松田 恭典
渡邊 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62041322A priority Critical patent/JPS63209829A/ja
Publication of JPS63209829A publication Critical patent/JPS63209829A/ja
Publication of JPH053828B2 publication Critical patent/JPH053828B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、抵抗溶接特にスポット溶接に可能な樹脂ラ
ミネート鋼板及びその製造方法に関するものである。
〔従来の技術〕
鋼板間に合成樹脂層を介在せしめた樹脂ラミネート鋼板
は、その割振性、騒音防止性等の優れた性能を有するこ
とから、現在では自動車部材、家電製品部材、建築部材
等に急速に普及しつつある。
これらの用途には、一般に抵抗溶接加工特にスポット溶
接加工をして用いられる場合が多く、又、防錆性が要求
されていることから、亜鉛、亜鉛−鉄合金等のメッキし
た鋼板又は、ジンクリッチプライマー系の塗料を塗装し
た鋼板が実用に供されている。したがって、前記樹脂ラ
ミネート鋼板も同様に、抵抗溶接可能な、防錆性のもの
が要求されている。
樹脂ラミネート鋼板は、鋼板間に非導電性の合成樹脂層
を介在しているために、抵抗溶接を可能にするための試
みが多く行なわれており、一部実用化されている。
前記樹脂ラミネート鋼板の導電性を付与するために、合
成樹脂層中にその層の厚さの1/2以上の粒径を有する
鉄粉、ミルスケール、カーゼングラファイト粒子などの
導電性粒子を10〜50重:t%占めるように構成した
ものがある(%開昭57−146649参照)。
又、スポット溶接可能な接着クラッド金属板として、板
厚0.05〜1.0uのステンレス鋼、鋼、銅合金等の
金属板と板厚0.4 K1以上の主として炭素鋼(普通
鋼、高張力鋼)のような鋼板とを樹脂系の接着剤で接着
したものであって、その接着剤層の厚さの0,5〜1,
5倍の鉄、亜鉛、アルミニウム。
銅、ステンレス鋼などの金属粉を接着剤層中に含有する
ものがある(特開昭57−51453参照)。
ここでは前記炭素鋼板は表面処理したものとして、亜鉛
などのメッキし九ものを例示している。
〔発明が解決しようとする問題点〕
しかしながら、このような従来の抵抗溶接可能な樹脂ラ
ミネート鋼板は、溶接品質について重大な欠陥の生じる
場合がある。即ち(1)W4板の溶接部周囲でその鋼板
に孔の生じた欠陥(ピンホールと呼称する) 、(2)
鋼板の溶接部で内部の溶鋼が外部に噴出する欠陥(表散
シと呼称する) 、(3)鋼板の溶接部周囲で合成樹脂
層のふくれによる表面形状の不良である。
とれらの欠陥の起因について図によって説明する。
第3図はスポット溶接についての説明図である。
スポット溶接は2枚・の鋼板1,1′を重ね合せ、これ
を丸棒状の電極2,2′で加圧して通電し、ジエール熱
によシ、その電極直下における2枚の鋼板の接触部3を
加熱、溶融状態にし、点状に溶接する。
図において4はトランス、5は制御装置、6は電源を示
す。しかるに従来の導電性粒子を含有した樹脂ラミネー
ト鋼板と通常の鋼板とをスポット溶接する場合は第4図
(a)、第4図伽)、第4図(c)の過程を経る。
第4図(a)は溶接初期の過程を示すもので、導電性粒
子を含有した樹脂ラミネート鋼板7と通常の鋼板1とを
重ね合せ、これを丸棒状の電極2.2′で加圧して通電
する。この場合、溶接電流はこれらの鋼板全体に流れる
。樹脂ラミネート鋼板7の合成樹脂層8では導電性粒子
9が含有されているので、電流は流れるが、鋼板部分1
0に比べて電気抵抗が非常に大きい。
その九め通常の鋼板同士の溶接に比べると、合成樹脂層
8には大きな電圧が印加される。
従って樹脂ラミネート鋼板7では、合成樹脂層8全体に
流れる電流は比較的小さいが、通電を担う個々の導電性
粒子9には比較的大きい電流が流れ、導電性粒子9の各
点において相当量の発熱を生じる。
第4図(b)は溶接中期の過程を示すもので、電極直下
における樹脂ラミネート鋼板7の中の合成樹脂層部分1
1は発熱によって軟化し、電極加圧力により電極直下の
位置の外側に排除された状態になる。この場合は合成樹
脂層部分1ノの電気抵抗は著しく低下し、電流は電極直
下の鋼板部分11に集中し、かつ合成樹脂層8に印加さ
れる電圧も低下する。従って、溶接初期において電極直
下の外側に位置した合成樹脂層部分12の導電性粒子9
の発熱も小さくなる。
第4図(c)は溶接終期の過程を示すもので、導電性粒
子を含有した樹脂ラミネート鋼板7と通常の鋼板1とは
点状に溶接されている。記号13はすrット(溶接金属
)を示す。
(1)ピンホールの発生については、前記第4図(a)
の溶接初期の過程から第4図(b)の溶接中期の過程へ
の変化に長時間を要する場合に生じる。即ち、導電性粒
子9の大きな発熱が長時間継続すると。
それに接する鋼板部分が溶融し、さらに溶融が進んでつ
いには鋼板の表面に達し、溶鋼を噴出してピンホールを
生ずる。
(2)表散りは、電極直下における鋼板の表面が、合成
樹脂層の導電性粒子が局部発熱の著しい場合に、前記ピ
ンホールの場合と同様に溶融して内部の溶鋼を噴出して
生ずるものである。
(3)鋼板の溶接部周囲での合成樹脂層のふくれによる
表面形状の不良については、前記第4図<&)は勿論、
第4図(b)においても5合成樹脂層が通電によって温
度が上昇するので、樹脂ラミネート鋼板と通常の鋼板と
の接触面に溶#4を形成する前に。
合成樹脂層との接合部で溶鋼を形成し、その溶鋼が合成
樹脂層に飛散していく。この場合溶鋼の熱量が大きいの
で、合成樹脂はガス化し、その圧力によって鋼板を外側
にふくらませ、鋼板の表面形状の不良をも九らす。
本発明の目的は1以上の様な溶接欠陥の生じない抵抗溶
接可能な、しかも防錆性の優れた樹脂ラミネート鋼板及
びその製造方法を提供するものである。
〔問題点を解決するだめの手段及び作用〕第1の発明は
鋼板間に10〜500μmの合成樹脂層を介在せしめた
樹脂ラミネート鋼板において、各鋼板は外面に亜鉛系表
面処理層を、その内面には錫層、鉛層、錫−鉛合金層か
ら選ばれた1糧以上の層を有し、合成樹脂層はその合成
樹脂層の厚さ(d)に対して平均粒径が0.8〜1.5
dである導電性の粒子を混合圧着してなる抵抗溶接可能
な樹脂ラミネート鋼板であることを特徴とする。
第2の発明はその片面に錫、鉛、錫−鉛合金から選ばれ
た1種以上をメッキした2枚の鋼板を用い、それらの鋼
板のメッキ面を内側にしその間に導電性粒子を混合して
いる樹脂層を介在させて樹脂ラミネート原板を形成した
後に、その樹脂ラミネート原板の両面に亜鉛系表面処理
を施す抵抗溶接可能な樹脂2ミネート鋼板の製造方法で
あることを特徴とする。そしてこの製造方法の好ましい
ものとして、樹脂ラミネート原板の形成にあたり、1枚
の鋼板のメッキ面に導電性粒子を混合している樹脂フィ
ルムをロールを介して接着し、他の鋼板のメッキ面で、
その露出しているフィルム面を覆い、ついでロールを介
して圧着して形成する樹脂ラミネート鋼板の製造方法を
挙げることが出来る。
この発明に使用する合成樹脂の厚さ(d)は、その円外
側に配する鋼板の厚さによっても変化するが10〜50
0μmの範囲が適当である。この厚さが10μm未満で
はラミネート化が困離である。500μmを超えた場合
は割振性等の効果が横ばいとなり、又経済性の面からみ
て好ましくない。
実用的には、30〜100μmの範囲が好ましい。
導電性粒子の平均粒径は合成樹脂層の厚さによって変る
が、使用する合成樹脂層の厚さ(d)の0.8〜1.5
dであることが必要である。0.8d未満では平均粒径
が小さすぎて溶接が充分に出来ない。
1.5dを超えた場合は樹脂と鋼板の接着強度が低下す
る。
導電性粒子の配合量は樹脂ラミネート鋼板の物性に大き
く影響を及ぼすため、最低限の導電性が確保できる混合
量を下限値とし接着強度を低下させない限度で上限値を
設定する。実用的には、合成樹脂に対して0.2〜3.
0容量%配合することによって好ましい結果が期待出来
る。
この発明では、各鋼板は、外面に亜鉛系表面処理層を、
その内面には錫層、鉛層、錫−鉛合金層から選ばれた1
種以上の層を有することが必要である。
各鋼板の外面に亜鉛系表面処理層を有するのは亜鉛系表
面処理したものが、その耐食性に優れていることから自
動車部材、家電製品部材等の用途に直ちに適用出来るこ
とによる。
ここにおいて亜鉛系表面処理層は亜鉛、若しくは亜鉛−
鉄、亜鉛−ニッケル等の亜鉛合金をメッキし九層又はジ
ンクリッチグ2イマー系の塗料で塗装して得られる層が
例示できる。
しかし各鋼板の内面には亜鉛系表面処理層とは異なった
、錫層、鉛層、錫−鉛合金層から選ばれた1糧以上の層
を有することが必要である。樹脂ラミネート鋼板は一般
にはその製造工程で、ロール等によって熱圧着するため
に、合成樹脂と反応して気体を発生しやすい金属は、樹
脂ラミネート鋼板にふくれ等を生じせしめて接着強度を
低下させる。
錫、鉛、錫−鉛合金は軟質金属で、しかも樹脂ラミネー
ト鋼板の製造工程における加熱程度では反応によって気
体を発生しない。
また、2ミネート鋼板の内側に亜鉛あるいは亜鉛合金を
めっきした場合、一般にそれらは低沸点金属であるため
、通電中に亜鉛蒸気を生じ溶接欠陥の発生を促進する。
しかし、本発明のめつき金属ではそのような現象は未然
に防ぐことができる。
そのため鋼板の内面にこれら金属層を有することによっ
て、導電性粒子がニッケル、鉄、ステンレスの固い粒子
であっても、これら軟質金属が鋼板と導電性粒子の媒体
となり、しかも軟質金属自身が導電性を有することから
、鋼板と導電性粒子との接触抵抗を小さくする。そのた
め樹脂ラミネート鋼板を抵抗溶接した場合に、その合成
樹脂層による電気抵抗を小さくすることが出来、結果と
して、ピンホール、表散り、ふくれによる表面形状の不
良等の欠陥を生じない。
本発明による樹脂ラミネート鋼板の好ましい製造方法と
して、樹脂ラミネート鋼板を構成する各金属板の片面に
錫、鉛、錫−鉛合金から選ばれた1種以上をメッキして
、ついでそれらの鋼板のメッキ面を内面として合成樹脂
層を介在させた樹脂ラミネート原板を形成し、その樹脂
ラミネート原板の両面に亜鉛系表面処理を施すことが必
要である。
ここでは、亜鉛系表面処理を樹脂ラミネート原板に施す
ために、樹脂ラミネート鋼板の製造工程での鋼板と合成
樹脂層との間への亜鉛の混在等によるふくれの影響等を
心配する必要がない。
〔実施例〕
本発明による樹脂ラミネート鋼板を図によって説明する
。第1図は、本発明による樹脂ラミネート鋼板の一例を
示す断面図である。鋼板21と鋼板21′との間に合成
樹脂層22を介在せしめた樹脂ラミネート鋼板20にお
いて、各鋼板1! 1 * 21’の外面には電気亜鉛
メツ中fd x s 、 z s’を有し、その内面に
は錫層j 4 、24’を有し、合成樹脂層22にはそ
の合成樹脂層の厚(d)に対して、平均粒径が1.24
であるニッケルの粒子25を混合圧着してなるものであ
る。
この場合錫層の代シに鉛層、錫−鉛合金層を用いること
も出来る。又、錫層、&に層、錫−鉛合金層を複層とし
て用いることも出来る。
又、電気亜鉛メッキ層に代って、を気亜鉛−鉄合金メツ
キ層、電気亜鉛−ニッケル合金メッキ層。
又はジンクリッチブライマー系の黴料で塗装した層を用
いることも出来る。
次に本発明による樹脂ラミネート鋼板の製造方法の1例
を図によって説明する。第2図はその外面に亜鉛メッキ
層、その内面に錫メッキ層を有する鋼板の間にニッケル
粒子(平均粒径1.2d)を含有する合成樹脂層を介在
し九樹脂2ミネート鋼板の製造工程を示す、鋼板26は
、縦瓜寛気メッキ装置27で片面に錫メッキされる。つ
いで片面に錫メッキした鋼板28はそのメッキ面を上面
にして加熱炉29で加熱されそのメッキ面に、あらかじ
めニッケル粒子(平均粒径1.2d)を含有した合成樹
脂フィルム30をロール31を介して接着し、更に、そ
の片面に合成樹脂フィルムを接着した鋼板は、加熱炉2
9で再加熱され、そしてその片面に錫メッキした他の鋼
板28′のメッキしている面で、その露出しているフィ
ルム面を覆い、ロール30を介して圧着して樹脂ラミネ
ート原板32を形成する。その後樹脂ラミネート原板3
2の両面を水平型電気メツキ装置33で電気亜鉛−ニッ
ケル合金メッキされる。
前記第2図に示すような樹脂ラミネート鋼板の製造工程
によって製造された本発明の樹脂ラミネート鋼板の条件
及び製品特性を第1表に示す。
第  1  表 第1表から明らかなように、密着強度は、通常の樹脂ラ
ミネート鋼板(導電性粒子の入っていない)と類似して
おり、その電気抵抗も合成樹脂層を介在しない亜鉛系メ
ッキ鋼板に類似した小さい値が得られ、スポット溶接し
ても溶接品質の欠陥を生じなかった。
次に本発明の櫨々の樹脂ラミネート鋼板についてスポッ
ト溶接した場合の溶接品質の欠陥(ピンホール、表敬シ
、ふくれによる表面形状の不良)の有無を実験した結果
を説明する。
「実験例」 スポット溶接は第3図に示すような単相交流型スポット
溶接機を使用し、電極先端径60.[極加圧力250〜
2通電時間10 の条件で、本発明の樹脂ラミネート鋼
板と同種の通常の鋼板の組合継手をその界面が散りを発
生する直前の電流で溶接した。溶接後前記の溶接品質の
欠陥を調べ、その欠陥がなく、十分な接合強度の得られ
たものを「良」、そうでないものを「不良」として評価
した。
なお、比較例として、鋼板の内面にメツΦ金属のない場
合(Al 3 )、導電性粒子の平均粒径が0.8〜1
.5 d (dは合成樹脂層の厚さ)を外れた場合、・
ff1l 5 、 Al 6 、導電性粒子の添加量(
容量%)が0.2〜3マoL%を外れた場合A14で他
は実験例と同一条件とした。その実験結果を第2表に示
す。
第2表から明らかなように本発明の樹脂ラミネート鋼板
を使用すれば、スポット溶接において、溶接品質の欠陥
を生じない。
上記実験においては、電気亜鉛メッキした樹脂ラミネー
ト鋼板について述べたが、ジンクリッテゾライマー系の
塗料で塗装した樹脂ラミネート鋼板でも同じ結果が得ら
れることは勿論である。
又、本発明の樹脂ラミネート鋼板は、上記スポット溶接
に限定されることなく、シーム溶接等の抵抗溶接に適用
出来ることは勿論である。
なお、樹脂ラミネート原板の形成方法としては、前記実
施例に示した方法の外に、1枚の鋼板のメッキ面に合成
樹脂フィルムをロールで圧着してから、その上に導電性
粒子を均一に撒布してから、他の鋼板のメッキ面で覆う
方法や、1枚の鋼板のメッキ面に加熱又は溶剤希釈によ
って低粘度とした導電性粒子を混合し九合成樹脂を塗布
し、その後その上に、他の鋼板のメッキ面で覆う方法等
であってもよい。
〔発明の効果〕
本発明は、樹脂ラミネート鋼板の両面に亜鉛系表面処理
層を形成して高耐食性を付与し、その樹脂ラミネート鋼
板を構成している各鋼板の内面に錫、鉛、錫−鉛層の軟
質金属を選択して有することより抵抗溶接する場合に、
その樹脂ラミネート鋼板に介在した合成樹脂層に含有し
た導電性粒子の機能を充分に発揮させるとともに合成樹
脂層の接触抵抗を小さくし、樹脂ラミネート鋼板の電気
抵抗を小さく出来る。その結果として本発明の樹脂ラミ
ネート鋼板は、溶接品質の欠陥(ピンホール等〕を生じ
ることなく抵抗溶接特にスポット溶接を可能にした効果
は大である。
又、本発明の樹脂ラミネート鋼板の製造方法によれば、
樹脂ラミネート原板に亜鉛系表面処理を施すので、樹脂
ラミネート原板を構成している鋼板の内面に錫等の層を
、前記亜鉛系表面処理の影響を受けることなく全く独立
して形成出来るので実用上の効果が大きい。
【図面の簡単な説明】
第1図はこの発明による樹脂ラミネート鋼板の断面図、
第2図はこの発明の樹脂ラミネート鋼板を製造するため
の1例を示す概略工程図、第3図は一般のスポット溶接
の説明図、第4図(、)は従来の導電性粒子含゛有の樹
脂ラミネート鋼板をスポット溶接する場合の溶接初期の
過程を示す概略説明図、第4図(b)はその溶接中期の
過程を示す概略説明図、第4図(、)はその溶接終期の
過程を示す概略説明図である。 20・・・樹脂ラミネート鋼板、21.21’・・・樹
脂2ミネート鋼板を構成する鋼板、22・・・合成樹脂
層、23 、23’・・・亜鉛系表面処理層(電気亜鉛
メッキ層)、24.24’・・・錫層、鉛層、錫−鉛層
の少なくとも1種からなる層(錫層)、25・・・導電
性粒子、26・・・鋼板、27・・・縦型電気メツキ装
置、28・・・片面に錫メッキした鋼板、29 、29
’・・・加熱炉、3σ・・・合成樹脂フィルム、31.
31’・・・o−ル、32・・・樹脂ラミネート原板、
33・・・水平型電気メツキ装置。 第 4 図 (a)

Claims (3)

    【特許請求の範囲】
  1. (1)鋼板間に10〜500μmの合成樹脂層を介在せ
    しめた樹脂ラミネート鋼板において、 前記各鋼板は外面に亜鉛系表面処理層を、その内面には
    錫層、鉛層、錫−鉛合金層から選ばれた1種以上の層を
    有し、前記合成樹脂層はその合成樹脂層の厚さ(d)に
    対して平均粒径が0.8〜1.5dである導電性の粒子
    を混合圧着してなることを特徴とする 抵抗溶接可能な樹脂ラミネート鋼板。
  2. (2)その片面に錫、鉛、錫−鉛合金から選ばれた1種
    以上をメッキした2枚の鋼板を用い、それらの鋼板メッ
    キ面を内側にし、その間に導電性粒子を混合している樹
    脂層を介在させて樹脂ラミネート原板を形成した後に、
    その樹脂ラミネート原板の両面に亜鉛系表面処理を施す
    ことを特徴とする 抵抗溶接可能な樹脂ラミネート鋼板の製造方法。
  3. (3)樹脂ラミネート原板の形成にあたり、1枚の鋼板
    のメッキ面に導電性粒子を混合している樹脂フィルムを
    ロールを介して接着し、他の鋼板のメッキ面で、その露
    出しているフィルム面を覆い、ついでロールを介して圧
    着して形成することを特徴とする特許請求の範囲第2項
    記載の抵抗溶接可能な樹脂ラミネート鋼板の製造方法。
JP62041322A 1987-02-26 1987-02-26 抵抗溶接可能な樹脂ラミネ−ト鋼板及びその製造方法 Granted JPS63209829A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62041322A JPS63209829A (ja) 1987-02-26 1987-02-26 抵抗溶接可能な樹脂ラミネ−ト鋼板及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62041322A JPS63209829A (ja) 1987-02-26 1987-02-26 抵抗溶接可能な樹脂ラミネ−ト鋼板及びその製造方法

Publications (2)

Publication Number Publication Date
JPS63209829A true JPS63209829A (ja) 1988-08-31
JPH053828B2 JPH053828B2 (ja) 1993-01-18

Family

ID=12605283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62041322A Granted JPS63209829A (ja) 1987-02-26 1987-02-26 抵抗溶接可能な樹脂ラミネ−ト鋼板及びその製造方法

Country Status (1)

Country Link
JP (1) JPS63209829A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227247A (ja) * 1989-02-28 1990-09-10 Kobe Steel Ltd 抵抗溶接可能型制振鋼板
JPH0347749A (ja) * 1989-07-15 1991-02-28 Kobe Steel Ltd 抵抗溶接可能型制振鋼板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969363B2 (ja) 2006-08-07 2012-07-04 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
GB0622060D0 (en) * 2006-11-06 2006-12-13 Hexcel Composites Ltd Improved composite materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227247A (ja) * 1989-02-28 1990-09-10 Kobe Steel Ltd 抵抗溶接可能型制振鋼板
JPH0347749A (ja) * 1989-07-15 1991-02-28 Kobe Steel Ltd 抵抗溶接可能型制振鋼板

Also Published As

Publication number Publication date
JPH053828B2 (ja) 1993-01-18

Similar Documents

Publication Publication Date Title
US4353951A (en) Spot-weldable bonded clad metal plate
JPH0328268B2 (ja)
US4480166A (en) Resistance welding of zinc-coated steel
CN105149714B (zh) 金属板无压痕胶焊连接方法
JPS63209829A (ja) 抵抗溶接可能な樹脂ラミネ−ト鋼板及びその製造方法
US4922075A (en) Electric resistance welding for zinc plated steel plate
GB2387347A (en) Tin and Zinc-based solder fillers for aluminium body parts and methods of applying the same
US2170019A (en) Method of welding
JP7255652B2 (ja) ウェルドボンド継手の製造方法
JP2817562B2 (ja) 缶用ラミネート鋼板
JPH0477245A (ja) 密着性及びスポット溶接性の優れた樹脂複合型表面処理制振鋼板
KR920008670B1 (ko) 저항용접 가능형 제진강판(抵杭熔接可能型 制振鋼板)
JP2581369B2 (ja) 耐食性および溶接性に優れた積層鋼板
JP5398024B2 (ja) 樹脂被覆鋼板
JPH089104B2 (ja) 鋼板の抵抗溶接法
JPS63188040A (ja) 可溶接制振鋼板及びその製造方法
JPH0274331A (ja) 樹脂ラミネート鋼板
JPH03266640A (ja) 耐食性および溶接性に優れた積層鋼板
Gould et al. Weldability and electrode wear characteristics of hot-dip galvanized steel with and without a ferrophos containing primer
JPH032960B2 (ja)
JPS6030589A (ja) 溶接缶胴の製造方法
JP2580923B2 (ja) 溶接缶用ラミネート鋼板とその製造方法
JP2023149228A (ja) スポット溶接方法
KR20020039716A (ko) 용접성이 우수한 연료탱크용 수지피복용액 및 이를 이용한수지피복강판
JPH0564860A (ja) 樹脂複合型鋼板