JPS63209750A - Adsorbent for purifying viii th blood coagulation factor and process for purifying said factor using the adsorbate - Google Patents

Adsorbent for purifying viii th blood coagulation factor and process for purifying said factor using the adsorbate

Info

Publication number
JPS63209750A
JPS63209750A JP62042435A JP4243587A JPS63209750A JP S63209750 A JPS63209750 A JP S63209750A JP 62042435 A JP62042435 A JP 62042435A JP 4243587 A JP4243587 A JP 4243587A JP S63209750 A JPS63209750 A JP S63209750A
Authority
JP
Japan
Prior art keywords
blood coagulation
adsorbent
coagulation factor
factor
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62042435A
Other languages
Japanese (ja)
Other versions
JPH0431735B2 (en
Inventor
Yoko Nagano
永野 洋子
Nobutaka Tani
敍孝 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62042435A priority Critical patent/JPS63209750A/en
Publication of JPS63209750A publication Critical patent/JPS63209750A/en
Publication of JPH0431735B2 publication Critical patent/JPH0431735B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enhance selective adsorptivity for a VIII th blood coagulation factor by forming an adsorbate for purifying the VIII th blood coagulation factor from water-insoluble porous gel having sulfuric ester groups on a part of its surface and 800,000-100,000,000 exclusion limit mol.wt. CONSTITUTION:An adsorbate for purifying the VIII th blood coagulation factor is formed from water-insoluble porous gel having sulfuric ester groups on at least a part of its surface and 800,000-100,000,000 exclusion limit mol.wt. The water-insoluble porous gel is preferably constituted of a compd. contg. OH groups, and the sulfuric ester groups are preferably introduced by the esterification of the OH groups of the water-insoluble porous gel having OH groups with sulfuric acid. After adsorbing the VII th blood coagulation factor by treating a soln. contg. the VIII th blood coagulation factor with the above described adsorbate, the blood coagulation factor is recovered by eluting the blood coagulation factor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は体液中から血液凝固第■因子を吸着分離するた
めの血液凝固第■因子精製用吸着体および該吸着体を用
いた血液凝固第■因子の精製法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an adsorbent for purifying blood coagulation factor (I) for adsorbing and separating blood coagulation factor (I) from body fluids, and a blood coagulation factor (I) purification method using the adsorbent. ■Regarding methods for purifying factors.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

血液凝固第■因子は抗血友病A因子とも呼ばれ、従来よ
り血友病A患者の出血の治療には欠乏している血液凝固
第■因子を投与する方法が冑効で一般的に行われている
Blood coagulation factor (I) is also called anti-hemophilia factor A. Traditionally, the method of administering blood coagulation factor (I), which is lacking in hemophilia A patients, has been effective and generally used to treat bleeding. It is being said.

しかしながら、血液凝固第■因子は血漿中に微二しか存
在せずまた不安定であるためヒト血漿からの血液凝固第
■因子の回収精製は容易ではない。
However, since only a small amount of blood coagulation factor (I) exists in plasma and is unstable, recovery and purification of blood coagulation factor (I) from human plasma is not easy.

現在のところ血友病A患者への血液凝固第■因子の補充
にはクリオプレシピテート、および第■因子濃縮製剤が
用いられている。
At present, cryoprecipitate and factor (2) concentrates are used to supplement blood coagulation factor (2) to hemophilia A patients.

クリオプレシピテートは血漿の粗分画を用いる。ため第
■因子の回収率が高いという利点はある一方、その投与
によってアレルギー反応が出やすいこと、大量のフィブ
リノーゲンを含んでいるため血漿中のフィブリノーゲン
の濃度が増加すること、また第■因子の濃度が低いため
大量の製剤を注入しなければならないことなどの欠点が
ある。
Cryoprecipitate uses a crude fraction of plasma. Therefore, although it has the advantage of a high recovery rate of factor II, its administration tends to cause allergic reactions, and since it contains a large amount of fibrinogen, the concentration of fibrinogen in plasma increases, and the concentration of factor II There are disadvantages such as the need to inject a large amount of the preparation due to the low concentration.

第■因子濃縮製剤にはこれらの欠点がないため血友病A
患者への補充用としてすぐれてはいるが、通常第■因子
濃縮製剤は米国特許第3.831,018などに示され
ているようにコーン分画11あるいはクリオプレシピテ
ートなどの第■因子粗製画分から、ポリエチレングリコ
ール沈殿分画法、グリシン沈殿分画法などを組合わせた
複雑な方法により製造されるため濃縮時の第■因子の回
収率が約2096と非常に低いという問題点がある。
Factor Ⅰ concentrates do not have these drawbacks, so they are not suitable for hemophilia A.
Although excellent for patient supplementation, factor II concentrates are usually made from crude factor II concentrates such as Cohn's fraction 11 or cryoprecipitate, as shown in U.S. Pat. No. 3,831,018. Since it is produced from fractions by a complicated method that combines polyethylene glycol precipitation fractionation, glycine precipitation fractionation, etc., there is a problem that the recovery rate of factor ① during concentration is very low at about 2096.

また、吸着により第■因子の精製を行う試みもなされて
はいるが、吸着選択性がわるいこと、吸着した第■因子
の回収率が低いことなどの理由で、実用に耐える吸着体
はなかった。
In addition, attempts have been made to purify factor II through adsorption, but no adsorbent has been found to be of practical use due to poor adsorption selectivity and low recovery rate of adsorbed factor II. .

本発明者らは、かかる実情に鑑み、鋭意研究を重ねた結
果、複雑な操作を用いることなく効率的、選択的かつ高
収率で血液凝固第■因子を吸着しうる吸着体およびそれ
を用いた血液凝固第■因子の精製法を見出した。
In view of these circumstances, the present inventors have conducted extensive research and have discovered an adsorbent that can efficiently, selectively, and highly yield blood coagulation factor adsorbent without using complicated operations, and an adsorbent using the same. We discovered a method for purifying blood coagulation factor Ⅰ.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、排除限界分子量が80万〜1億の水
不溶性多孔質ゲルであって、少なくともその表面の一部
に硫酸エステル基を有することを特徴とする血液凝固第
■因子精製用吸着体および血液凝固第■因子を含む溶液
を前記吸着体で処理して血液凝固第■因子を吸着したの
ち、血液凝固第■因子を溶出して回収することを特徴と
する血液凝固第■因子の精製法に関する。
That is, the present invention provides an adsorbent for purifying blood coagulation factor (I), which is a water-insoluble porous gel with an exclusion limit molecular weight of 800,000 to 100 million, and has a sulfate ester group on at least a part of its surface. and purification of blood coagulation factor (I), characterized in that a solution containing blood coagulation factor (I) is treated with the adsorbent to adsorb blood coagulation factor (I), and then blood coagulation factor (I) is eluted and recovered. Regarding the law.

〔実施例〕〔Example〕

本明細書でいう体液とは血液、血漿およびこれらからえ
られた分画成分、あるいはその他の生体由来の液性成分
で血液凝固第■因子を含有するものであればいかなるも
のであってもよい。
In this specification, the body fluid may be blood, plasma, fractionated components obtained from these, or any other fluid component derived from a living body as long as it contains blood coagulation factor. .

本発明に用いる水不溶性多孔質ゲルは、血液凝固第■因
子を吸着するために適当な大きさの径の連続した細孔を
有するものが好ましい。すなわち、第■因子は分子量が
少なくとも 100万以上の巨大分子であり、これを吸
着するためには第■因子が容易にゲル内に侵入できるよ
うな大きさの径の細孔ををすることが必要である。
The water-insoluble porous gel used in the present invention preferably has continuous pores of an appropriate size for adsorbing blood coagulation factor (I). In other words, Factor II is a giant molecule with a molecular weight of at least 1 million or more, and in order to adsorb it, it is necessary to create pores with a diameter large enough to allow Factor II to easily penetrate into the gel. is necessary.

細孔径の測定方法には種々あり、水銀圧入法が最もよく
用いられているが、親水性ゲルのばあいには適用がむず
かしい。したがって、親水性ゲルの細孔径の目安として
排除限界分子量がよく用いられる。排除限界分子量とは
、たとえば「実験高速液体クロマトグラフィ」 (波多
野博行および花卉俊彦著、妹化学同人発行)などの成書
に述べられているごとく、ゲル浸透クロマトグラフィに
おいて細孔内に侵入できない(排除される)分子のうち
最も小さい分子量を有する分子の分子量をいう。排除限
界分子量は対象とする化合物により異なることが知られ
ており、一般に球状蛋白質、デキストラン、ボリエチレ
ングリコールなどについてよく調べられており、本発明
においては第■因子に最も類似している球状蛋白質(ビ
ールスを含む)を用いてえられた値を用いるのが適当で
ある。
There are various methods for measuring pore diameter, and mercury intrusion method is the most commonly used, but it is difficult to apply to hydrophilic gels. Therefore, the exclusion limit molecular weight is often used as a guideline for the pore size of a hydrophilic gel. The exclusion limit molecular weight is the molecular weight that cannot enter the pores (is excluded) in gel permeation chromatography, as stated in books such as "Experimental High Performance Liquid Chromatography" (written by Hiroyuki Hatano and Toshihiko Hana, published by Imosa Kagaku Dojin). It refers to the molecular weight of the molecule that has the smallest molecular weight among molecules. It is known that the exclusion limit molecular weight varies depending on the target compound, and in general, globular proteins, dextran, polyethylene glycol, etc. have been well investigated. It is appropriate to use the values obtained using

排除限界分子量の異なる種々の水不溶性多孔質ゲルを用
いて検討した結果、予想に反し排除限界分子量が第■因
子の分子量より小さい80万程度のものでもある程度の
吸着能を示し、また細孔径の大きいものほど吸着能力が
大きいわけではなく、細孔径がある大きさをこえるとむ
しろ能力が低下したり第■因子以外の蛋白が吸着される
ことが示され、したがって最適な細孔径の範囲が存在す
ることが明らかになった。すなわち80万未満の排除限
界分子量を有する水不溶−性多孔質ゲルを用いたばあい
は第■因子の吸着量は小さく実用に耐えないが、排除限
界分子量が第■因子の分子量に近い80万ないし200
万の水不溶性多孔質ゲルを用いてもある程度実用に供し
うる吸着体かえられた。水不溶性多孔質ゲルの、排除限
界分子量が大きくなるにつれて第■因子の吸着量は増加
するがやがて頭打ちとなり、排除限界分子量が1億より
大きくなると表面積が少なすぎるため吸着量は目立って
低下する。
As a result of studies using various water-insoluble porous gels with different exclusion limit molecular weights, we found that, contrary to expectations, even gels with exclusion limit molecular weights of around 800,000, which are smaller than the molecular weight of factor It has been shown that the larger the pore size, the greater the adsorption capacity; if the pore size exceeds a certain size, the capacity decreases and proteins other than factor II are adsorbed, so there is an optimal pore size range. It became clear that it would. In other words, if a water-insoluble porous gel with an exclusion limit molecular weight of less than 800,000 is used, the adsorption amount of factor (I) is too small to be practical; or 200
Even if a water-insoluble porous gel was used, an adsorbent that could be put to practical use to some extent was created. As the exclusion limit molecular weight of the water-insoluble porous gel increases, the adsorption amount of factor (2) increases, but eventually reaches a plateau, and when the exclusion limit molecular weight exceeds 100 million, the surface area is too small, so the adsorption amount decreases noticeably.

したがって本発明に用いる水不溶性多孔質ゲルの好まし
い排除限界分子量は80万〜1億であり、さらに好まし
くは 200万〜5000万である。
Therefore, the exclusion limit molecular weight of the water-insoluble porous gel used in the present invention is preferably 800,000 to 100 million, more preferably 2 million to 50 million.

また、水不溶性多孔質ゲルの多孔構造については表面多
孔性よりも全多孔性が好ましく、吸着表面積を大きくす
るため空孔容積は20%以上であることが好ましい。水
不溶性多孔質ゲルの形状は、粒状、繊維状、膜状、ホロ
ーファイバー状など任意の形状を選ぶことができる。粒
子状の水不溶性多孔質ゲルを用いるばあい、その粒子径
は、小さすぎると実用的な流速かえられず、また大きす
ぎると吸着能力および溶出性が劣るため1〜5000.
canであるのが望ましい。
Further, regarding the porous structure of the water-insoluble porous gel, total porosity is preferable to surface porosity, and the pore volume is preferably 20% or more in order to increase the adsorption surface area. The shape of the water-insoluble porous gel can be selected from any shape such as granules, fibers, membranes, and hollow fibers. When using particulate water-insoluble porous gel, the particle size should be 1 to 5,000.
It is desirable that it be can.

本発明に使用する水不溶性多孔質ゲルは有機性、無機性
いずれであってもよいが、目的とする第■因子以外の血
液成分の吸着、いわゆる非特異的吸着が少ないものが望
ましい。
The water-insoluble porous gel used in the present invention may be either organic or inorganic, but it is desirable that it has less adsorption of blood components other than the target factor (i), that is, so-called non-specific adsorption.

、  本発明に使用する水不溶性多孔質ゲルの代表例と
しては、アガロース、デキストラン−ポリアクリルアミ
ドなどの軟質ゲル、多孔質ガラス、多孔質シリカゲルな
どの無機多孔体、ポリメチルメタクリレート、ポリビニ
ルアルコール、スチレン−ジビニルベンゼン共重合体な
どの合成高分子、セルロースなどの天然高分子を原料と
する多孔質ポリマー硬質ゲルなどがあげられるが、これ
らに限定されるわけではない。
Typical examples of water-insoluble porous gels used in the present invention include agarose, soft gels such as dextran-polyacrylamide, inorganic porous materials such as porous glass and porous silica gel, polymethyl methacrylate, polyvinyl alcohol, and styrene. Examples include, but are not limited to, synthetic polymers such as divinylbenzene copolymers, and porous polymer hard gels made from natural polymers such as cellulose.

アガロースなどの軟質ゲルは合成ポリマーや無機質から
なるゲルに比べて非特異的吸着が少ないという利点を有
するが、血漿製剤の精製には軟質ゲルよりも硬質ゲル(
ポリマー硬質ゲル)のほうが速い流速で吸着および脱離
操作が行えるため一層好ましい。
Soft gels such as agarose have the advantage of less nonspecific adsorption compared to gels made of synthetic polymers or inorganic substances, but hard gels (
Polymer hard gel) is more preferable because adsorption and desorption operations can be performed at a faster flow rate.

多孔質セルロースゲルは軟質硬質両ゲルの特徴を併せ持
ち、また硫酸エステル基の導入も容易に行えるのでとく
に好ましい。
Porous cellulose gels are particularly preferred because they have the characteristics of both soft and hard gels, and sulfate ester groups can be easily introduced.

水不溶性多孔質ゲルに硫酸エステル基を導入する方法は
種々あるが、硫酸エステル基含有化合物を水不溶性多孔
質ゲルに固定する方法、水不溶性多孔質ゲルが水酸基を
含有するばあいにクロルスルホン酸、濃硫酸などの試薬
を用いて水酸基含有水不溶性多孔質ゲルの水酸基を硫酸
エステル化することにより直接硫酸エステル基を導入す
る方法などが代表的な方法である。
There are various methods for introducing a sulfate ester group into a water-insoluble porous gel. Typical methods include a method of directly introducing sulfate ester groups by converting the hydroxyl groups of a water-insoluble porous gel containing hydroxyl groups into sulfate esters using a reagent such as concentrated sulfuric acid.

硫酸エステル基含有化合物を水不溶性多孔質ゲルに固定
する方法としては共有結合を介する方法が安定性が高く
、好ましい。
As a method for fixing a sulfate ester group-containing compound to a water-insoluble porous gel, a method via covalent bonding is preferred because of its high stability.

本発明に用いる硫酸エステル基含有化合物としては、ア
ルコール、糖類、多価アルコール、炭水化物などの水酸
基含有化合物の硫酸エステルがあげられ、これらの化合
物のうち硫酸エステル基のほかに水不溶性多孔質ゲルへ
の固定に利用できる官能基を有する化合物が好ましい。
Examples of the sulfate group-containing compound used in the present invention include sulfate esters of hydroxyl group-containing compounds such as alcohols, sugars, polyhydric alcohols, and carbohydrates. A compound having a functional group that can be used for immobilization is preferred.

なかでも多価アルコールの部分硫酸エステル化物、とり
わけ糖類の硫酸エステル化物が硫酸エステル基および固
定に必要な官能基の両方を含んでいるうえに、生体適合
性、活性ともに高く好ましい。さらに硫酸エステル化多
糖類は容易に水不溶性多孔質ゲルに固定できることから
とくに好ましい。
Among these, partially sulfated esters of polyhydric alcohols, particularly sulfated saccharides, are preferred because they contain both sulfate ester groups and functional groups necessary for fixation, and have high biocompatibility and activity. Furthermore, sulfate-esterified polysaccharides are particularly preferred because they can be easily fixed in water-insoluble porous gels.

硫酸エステル基含有化合物としては、エタノールアミン
、エチレングリコール、グリセリン、アニソール、ペン
タエリスリトール、ソルビトール、ポリビニルアルコー
ル、ポリヒドロキシエチルメタクリレートなどのアルコ
ール、多価アルコールの硫酸エステル化物、グルコース
、キシロース、トレオース、ガラクトース、フコース、
ガラクトサミン、ウロン酸、グルクロン酸、アスコルビ
ン酸などの糖類、炭水化物の硫酸エステル化物、ヘパリ
ン、デキストラン酸、コンドロイチン硫酸、コンドロイ
チンポリ硫酸、ヘパラン硫酸、ケラタン硫酸、キシラン
硫酸、カロニン硫酸、セルロース硫酸、キチン硫酸、キ
トサン硫酸、ペクチン硫酸、イヌリン硫酸、アルギニン
硫酸、グリコーゲン硫酸、ポリラクトース硫酸、カラギ
ーナン硫酸、硫酸化デンプン、ポリグルコース硫酸、ラ
ミナリン硫酸、ガラ2タン硫酸、レバン硫酸、メベサル
フエートなどの硫酸エステル化多糖類などがあげられる
がこれらに限定されるわけではない。
Examples of compounds containing sulfate ester groups include alcohols such as ethanolamine, ethylene glycol, glycerin, anisole, pentaerythritol, sorbitol, polyvinyl alcohol, and polyhydroxyethyl methacrylate, sulfate esters of polyhydric alcohols, glucose, xylose, threose, galactose, fucose,
Saccharides such as galactosamine, uronic acid, glucuronic acid, ascorbic acid, sulfuric acid esters of carbohydrates, heparin, dextran acid, chondroitin sulfate, chondroitin polysulfate, heparan sulfate, keratan sulfate, xylan sulfate, caronine sulfate, cellulose sulfate, chitin sulfate, Sulfated polysaccharides such as chitosan sulfate, pectin sulfate, inulin sulfate, arginine sulfate, glycogen sulfate, polylactose sulfate, carrageenan sulfate, sulfated starch, polyglucose sulfate, laminarin sulfate, galata sulfate, levan sulfate, mebesulfate, etc. Examples include, but are not limited to.

硫酸エステル化多糖類のうち分子量が10万以下の低分
子量のものはフィブリノーゲンなどの吸着がほとんどな
くとくに好ましい。また硫酸エステル化多糖類のうちイ
オウ含量が5〜20%のものは吸着活性が高く好ましい
Among the sulfate-esterified polysaccharides, those having a molecular weight of 100,000 or less are particularly preferable because they hardly adsorb fibrinogen or the like. Further, among the sulfated polysaccharides, those having a sulfur content of 5 to 20% are preferred because of their high adsorption activity.

導入される硫酸エステル基の回は、吸着体1mlあたり
 0.19〜loa+nolが望ましい。 0.1μs
+o1未満では吸着能力が充分でなく、また10mmo
lを越えると非特異的吸着、とくにフィブリノーゲンの
吸着が多すぎ、実用に供することが困難である。さらに
好ましくは1〜500μll1O1がよい。
The number of sulfate groups introduced is preferably 0.19 to loa+nol per ml of adsorbent. 0.1μs
If it is less than +o1, the adsorption capacity is not sufficient, and if it is less than 10 mm
If it exceeds 1, non-specific adsorption, especially fibrinogen adsorption, will be too large, making it difficult to put it to practical use. More preferably, it is 1 to 500 μll1O1.

第■因子を含む溶液から本発明による吸着体を用いて第
■因子を分離するには、第■因子を含む溶液と吸着体と
を接触させて第■因子を吸着させたのち、未吸着成分を
洗浄してから第■因子を溶出させればよい。
In order to separate factor ■ from a solution containing factor ■ using the adsorbent according to the present invention, after bringing the solution containing factor ■ into contact with the adsorbent to adsorb factor ■, unadsorbed components After washing, factor ① may be eluted.

吸着した第■因子を溶出する方法としては温度を高める
方法、pHを変化させる方法など種々の方法があるがイ
オン強度の高い水溶液によって溶出する方法が後処理も
簡便で好ましい。吸着体の種類により第■因子以外の成
分が吸着するばあいには、イオン強度、pHなどを連続
的に変化させるいわゆるグラディエンド法により、ある
いは段階的に変化させるステッ゛ブワイズ法により第■
因子を分離することもできる。
There are various methods for eluting the adsorbed factor ①, such as increasing the temperature and changing the pH, but the method of eluting with an aqueous solution with high ionic strength is preferred because post-treatment is simple. If components other than factor ① are adsorbed depending on the type of adsorbent, factor ① may be adsorbed using the so-called gradient-end method in which the ionic strength, pH, etc. are continuously changed, or by the stepwise method in which the ionic strength, pH, etc. are changed stepwise.
Factors can also be separated.

以下に、実施例を用いて本発明をさらに詳しく説明する
が、本発明はかかる実施例のみに限定されるものではな
い。
The present invention will be explained in more detail below using Examples, but the present invention is not limited to these Examples.

実施例1 多孔質セルロースゲルであるCKゲルA−3(商品名、
チッソ■製、球状蛋白質の排除限界分子量5000万、
粒径45〜105μts ) 10m1を採り、エタノ
ール中で臨界点乾燥により乾燥させた。乾燥ゲルをよく
脱水したピリジン10m1中に懸濁させ氷冷した。これ
にクロルスルホン酸2 mlを攪拌下漬下し、滴下終了
後さらに10分間攪拌をつづけた。反応終了後ゲルを濾
別し、ピリジン、水で洗浄して、表面に硫酸エステル基
が導入されたセルロースゲルをえた。硫酸エステル基の
導入量は吸着体1 mlあたり 110μmolであっ
た。
Example 1 CK gel A-3 (trade name, porous cellulose gel)
Made by Chisso ■, exclusion limit molecular weight of globular protein 50 million,
A sample of 10 ml (particle size 45-105 μts) was taken and dried by critical point drying in ethanol. The dried gel was suspended in 10 ml of well-dehydrated pyridine and cooled on ice. 2 ml of chlorosulfonic acid was added to the solution while stirring, and after the dropwise addition was completed, stirring was continued for another 10 minutes. After the reaction was completed, the gel was filtered and washed with pyridine and water to obtain a cellulose gel having sulfate groups introduced onto its surface. The amount of sulfate ester group introduced was 110 μmol per ml of adsorbent.

実施例2 クロルスルホン酸の量を3 mlに、滴下後の撹拌時間
を60分間にかえたほかは実施例1と同様にして表面に
硫酸エステル基が導入されたセルロースゲルをえた。硫
酸エステル基の導入量は吸着体1 mlあたり 750
μlll01であった。
Example 2 A cellulose gel having sulfate ester groups introduced onto the surface was obtained in the same manner as in Example 1, except that the amount of chlorosulfonic acid was changed to 3 ml and the stirring time after dropping was changed to 60 minutes. The amount of sulfate ester group introduced is 750 per ml of adsorbent.
It was μlll01.

実施例3 多孔質セルロースゲルであるセルロファインGCL−2
000(商品名、チッソ■製、球状蛋白質の排除限界分
子ff1300万、粒径45〜1057M) LOml
を水洗後吸引濾過し、これにジメチルスルホキサイド6
 ml 、 2N NaOH2,6m1−エピクロルヒ
ドリン1.5mlを加え40℃で2時間攪拌した。反応
後ゲルを濾別、水洗してエポキシ基の導入されたセルロ
ースゲルをえた。
Example 3 Cellulofine GCL-2, a porous cellulose gel
000 (Product name, manufactured by Chisso ■, exclusion limit molecule ff13 million for globular proteins, particle size 45-1057M) LOml
After washing with water and suction filtering, add dimethyl sulfoxide 6 to this.
ml, 2N NaOH2,6ml and 1.5ml of 1-epichlorohydrin were added and stirred at 40°C for 2 hours. After the reaction, the gel was filtered and washed with water to obtain a cellulose gel into which epoxy groups were introduced.

これに濃アンモニア水6 mlを加え、40℃で2時間
反応させてアミノ化セルロースゲルをえた。
6 ml of concentrated ammonia water was added to this, and the mixture was reacted at 40°C for 2 hours to obtain an aminated cellulose gel.

えられたゲル2gに、分子量約5000.イオウ含量1
5%のデキストラン硫酸ナトリウム4gを0.1舅リン
酸バツフア(pH8,0) B mlに溶解した液を加
え室温で16時間振盪した。反応後NaCNBHs20
Bを加え室温で30分間攪拌後、40℃で4時間加熱し
たのちゲルを濾別水洗してデキストラン硫酸の固定され
たセルロースゲルをえた。導入されたデキストラン硫酸
の量は吸着体1 mlあたり 3 、4 mgであった
2g of the gel obtained has a molecular weight of about 5000. Sulfur content 1
A solution prepared by dissolving 4 g of 5% sodium dextran sulfate in 0.1 ml of phosphate buffer (pH 8.0) was added, and the mixture was shaken at room temperature for 16 hours. After reaction NaCNBHs20
After adding B and stirring at room temperature for 30 minutes, the mixture was heated at 40°C for 4 hours, and the gel was filtered and washed with water to obtain a cellulose gel on which dextran sulfate was fixed. The amount of dextran sulfate introduced was 3.4 mg per ml of adsorbent.

実施例4 分子量が約50万、イオウ含量4.5%のデキストラン
硫酸を用いたほかは実施例3と同様にしてデキストラン
硫酸の固定されたセルロースゲルをえた。導入されたデ
キストラン硫酸の量は吸着体1 mlあたり 5.4m
gであった。
Example 4 A cellulose gel on which dextran sulfate was fixed was obtained in the same manner as in Example 3, except that dextran sulfate having a molecular weight of about 500,000 and a sulfur content of 4.5% was used. The amount of dextran sulfate introduced was 5.4 m per ml of adsorbent.
It was g.

比較例 セルロースゲルとしてセルロファインGC70G(商品
名、チッソ■製、球状蛋白質の排除限界分子量40万、
粒径45〜105μ層)を用いたほかは、実施例1と同
様にして表面に硫酸イオンが導入されたセルロースゲル
をえた。・硫酸エステル基の導入量は吸着体1 mlあ
たり 250μsolであった。
Comparative example cellulose gel was Cellulofine GC70G (trade name, manufactured by Chisso ■, exclusion limit molecular weight of globular protein 400,000,
A cellulose gel with sulfate ions introduced onto the surface was obtained in the same manner as in Example 1, except that a layer with a particle size of 45 to 105 μm was used. - The amount of sulfate ester group introduced was 250 μsol per ml of adsorbent.

実施例5 実施例1〜4および比較例で合成した各ゲル1 mlを
試験管にとり、これにクエン酸加ヒト血漿6 mlを加
え攪拌し・ながら37℃で1時間インキュベートした。
Example 5 1 ml of each gel synthesized in Examples 1 to 4 and Comparative Example was placed in a test tube, 6 ml of citrated human plasma was added thereto, and the gel was incubated at 37° C. for 1 hour with stirring.

吸着後の血漿中の第■因子の活性、フィブリノーゲンの
濃度を第1表に示す。第■因子活性はAPTT法で測定
した。
Table 1 shows the activity of factor ① and the concentration of fibrinogen in the plasma after adsorption. Factor Ⅰ activity was measured by the APTT method.

C以下余白〕。Margin below C].

第  1  表 第1表に示された結果から明らかなように、本発明によ
る吸着体(実施例1〜4)が排除限界分子量が40万の
セルロースゲルを用いてえられ大吸着体(比較例)に比
べて第■因子に対してすぐれた吸着能力を示すことがわ
かる。
Table 1 As is clear from the results shown in Table 1, the adsorbent according to the present invention (Examples 1 to 4) was obtained using cellulose gel with an exclusion limit molecular weight of 400,000, and the large adsorbent (comparative example) ) shows superior adsorption ability for factor ①.

さらに、本発明の吸着体のなかでも実施例1〜3でえら
れた吸着体は分子量が50万、イオウ含量が4.5%の
デキストラン硫酸を用いてえられた吸着体(実施例4)
に比べてすぐれた選択性を示し、また硫酸エステル基の
導入量が吸着体1 mlあたり750μsolである吸
着体(実施例2)は、実施例1および3でえられた吸着
体に比べれば選択性において劣ることがわかる。
Furthermore, among the adsorbents of the present invention, the adsorbents obtained in Examples 1 to 3 are the adsorbents obtained using dextran sulfate with a molecular weight of 500,000 and a sulfur content of 4.5% (Example 4).
The adsorbent (Example 2), which exhibits superior selectivity compared to the adsorbents obtained in Examples 1 and 3, and in which the amount of sulfate ester groups introduced is 750 μsol per ml of adsorbent, is selective compared to the adsorbents obtained in Examples 1 and 3. It can be seen that they are inferior in gender.

実施例6 実施例1でえられた吸着体1 mlをポリプロピレン製
カラムに充填し、これにヒト血漿3mlを流した。つぎ
に生理食塩液10m1を流して未吸着成分を洗浄したの
ち、食塩濃度をO,15Mから2Mまで連続的に変化さ
せた液を流してカラムから流出(グラディエンド溶出)
した液をフラクションコレクターで分取した。
Example 6 1 ml of the adsorbent obtained in Example 1 was packed into a polypropylene column, and 3 ml of human plasma was poured into it. Next, 10 ml of physiological saline was poured to wash away unadsorbed components, and then a solution with the salt concentration changed continuously from O, 15M to 2M was poured to flow out of the column (gradient elution).
The resulting solution was collected using a fraction collector.

各フラクションにつき総蛋白の濃度を測定した。また第
■因子、フィブリノーゲンは酵素免疫法で溶出パターン
を調べた。
Total protein concentration was determined for each fraction. Furthermore, the elution pattern of factor Ⅰ and fibrinogen was examined by enzyme immunoassay.

その結果を第1図に示す。第1図中、第■因子とフィブ
リノーゲンの溶出パターンは相対濃度として示し、それ
は酵素免疫法で発色させ、60Qnmのりフラクション
(反射)をデンシトメーターで測定したピークの高さで
表わされている。
The results are shown in FIG. In Figure 1, the elution patterns of factor Ⅰ and fibrinogen are shown as relative concentrations, which are expressed by the peak heights obtained by developing color using enzyme immunoassay and measuring the 60Qnm glue fraction (reflection) using a densitometer. .

第1図の結果から、血液凝固第■因子は高塩濃度で溶出
し、他の吸着蛋白、とくにフィブリノーゲンと分離して
溶出されることがわかる。
From the results shown in FIG. 1, it can be seen that blood coagulation factor (2) is eluted at high salt concentrations and is eluted separately from other adsorbed proteins, especially fibrinogen.

実施例7 実施例3で合成した吸着体1 mlをポリプロピレン製
カラムに充填し、あらかじめ0.154MのNaCjを
含む0.05M )リス(ヒドロキシメチル)アミノメ
タン−塩酸緩衝液(pH7,4>で平衡化した。つぎに
血液凝固第■因子濃縮製剤であるクリオブリン(商品名
、イムノAG社製)を同緩衝液に第■因子活性が50/
mlになるように溶解した溶液3 mlを加え、同緩衝
液5 mlで未吸着成分を洗浄したのち、同緩衝液の食
塩濃度を0.5Mと 1.5Mの2段階に変化させた液
を流してカラムから流出した液を数本のフラクションに
分取した。
Example 7 1 ml of the adsorbent synthesized in Example 3 was packed into a polypropylene column, and 0.05M) lis(hydroxymethyl)aminomethane-hydrochloric acid buffer (pH 7.4) containing 0.154M NaCj was added in advance. Equilibration was carried out.Next, Cryobulin (trade name, manufactured by Immuno AG), which is a blood coagulation factor II concentrate, was added to the same buffer solution at a concentration of factor II of 50%.
After adding 3 ml of the solution dissolved in the same buffer solution and washing the unadsorbed components with 5 ml of the same buffer solution, the same buffer solution with the salt concentration changed in two stages, 0.5M and 1.5M, was added. The liquid that flowed out from the column was separated into several fractions.

蛋白質の流出の様子、および各フラクション(B(3m
l) 、C(5,4ml) 、D −I (2ml) 
、D−II (2ml) 、E −I (2ml)およ
びE −II (2ml) )のA −P T T法に
よってM1定した第■因子活性を第2図に示す。
The flow of protein and each fraction (B (3 m
l), C (5.4ml), D-I (2ml)
, D-II (2 ml), E-I (2 ml), and E-II (2 ml)), the M1 activity determined by the A-PTT method is shown in FIG.

第2図の結果から第■因子はほとんど100%吸着され
食塩濃度を高めることにより分離回収されることが示さ
れた。回収率は61%、比活性(総蛋白口あたりの第■
因子の活性)は145.12であり、元の溶液の比活性
14.03に比較すると約10倍であった。
From the results shown in FIG. 2, it was shown that almost 100% of factor ① was adsorbed and could be separated and recovered by increasing the salt concentration. The recovery rate was 61%, specific activity (per total protein)
The specific activity (activity of the factor) was 145.12, which was about 10 times higher than the specific activity of the original solution, which was 14.03.

〔発明の効果〕〔Effect of the invention〕

本発明の吸着体および該吸着体を用いた第■因子の精製
法は、複雑な操作を用いることなく効率的、選択的かつ
高収率で第■因子を分離回収する効果を奏する。
The adsorbent of the present invention and the method for purifying factor ① using the adsorbent have the effect of separating and recovering factor ① efficiently, selectively, and in high yield without using complicated operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1でえられた本発明の吸着体を充填し
たカラムにヒト血漿を流したのち、0.15Mから2M
の食塩濃度でグラディエンド溶出したばあいの各フラク
ションにおける食塩濃度、総蛋白の濃度、および第■因
子、フィブリノーゲンの溶出のパターンを表わすグラフ
である。 第2図は、実施例3でえられた本発明の吸着体を充填し
たカラムに血液凝固第■因子濃縮製剤であるクリオブリ
ンを溶解した緩衝液を流したのち、0.5Mと 1.5
Mの2段階の食塩濃度の緩衝液で溶出したばあいの食塩
濃度と蛋白濃度の変化および各フラクションにおける第
■因子活性を表わすグラフである。 才1 図
Figure 1 shows that human plasma was poured into a column filled with the adsorbent of the present invention obtained in Example 1, and then 0.15M to 2M
2 is a graph showing the salt concentration, total protein concentration, and elution pattern of factor ① and fibrinogen in each fraction when gradient elution is performed at a salt concentration of . Figure 2 shows that after flowing a buffer solution in which cryobulin, which is a blood coagulation factor (I) concentrate, was passed through a column filled with the adsorbent of the present invention obtained in Example 3, 0.5M and 1.5M were dissolved.
FIG. 2 is a graph showing changes in salt concentration and protein concentration when eluted with a buffer solution with two levels of salt concentration in M and factor Ⅰ activity in each fraction. FIG. 1 figure

Claims (1)

【特許請求の範囲】 1 排除限界分子量が80万〜1億の水不溶性多孔質ゲ
ルであって、少なくともその表面の一部に硫酸エステル
基を有することを特徴とする血液凝固第VIII因子精製用
吸着体。 2 水不溶性多孔質ゲルが水酸基含有化合物より構成さ
れてなる特許請求の範囲第1項記載の吸着体。 3 水酸基含有水不溶性多孔質ゲルの水酸基を硫酸エス
テル化することにより硫酸エステル基が導入された特許
請求の範囲第2項記載の吸着体。 4 硫酸エステル基含有化合物が共有結合により水不溶
性多孔質ゲルに固定されてなる特許請求の範囲第1項記
載の吸着体。 5 硫酸エステル基含有化合物が硫酸エステル化多糖類
である特許請求の範囲第4項記載の吸着体。 6 硫酸エステル基の含量が吸着体1mlあたり0.1
μ〜10mmolである特許請求の範囲第1項記載の吸
着体。 7 硫酸エステル基の含量が吸着体1mlあたり1〜5
00μmolである特許請求の範囲第1項記載の吸着体
。 8 硫酸エステル化多糖類の分子量が10万以下である
特許請求の範囲第5項記載の吸着体。 9 血液凝固第VIII因子を含む溶液を、排除限界分子量
が80万〜1億の水不溶性多孔質ゲルであって、少なく
ともその表面の一部に硫酸エステル基を有することを特
徴とする血液凝固第VIII因子の吸着体で処理して血液凝
固第VIII因子を吸着したのち、血液凝固第VIII因子を溶
出して回収することを特徴とする血液凝固第VIII因子の
精製法。
[Scope of Claims] 1. A water-insoluble porous gel with an exclusion limit molecular weight of 800,000 to 100 million, for purification of blood coagulation factor VIII, characterized by having a sulfate ester group on at least a part of its surface. adsorbent. 2. The adsorbent according to claim 1, wherein the water-insoluble porous gel is composed of a hydroxyl group-containing compound. 3. The adsorbent according to claim 2, wherein a sulfate ester group is introduced by sulfuric acid esterification of the hydroxyl group of a water-insoluble porous gel containing a hydroxyl group. 4. The adsorbent according to claim 1, wherein the sulfate ester group-containing compound is fixed to a water-insoluble porous gel by covalent bonds. 5. The adsorbent according to claim 4, wherein the sulfate group-containing compound is a sulfate-esterified polysaccharide. 6 The content of sulfate ester groups is 0.1 per ml of adsorbent.
The adsorbent according to claim 1, which has a molecular weight of μ to 10 mmol. 7 The content of sulfate ester groups is 1 to 5 per ml of adsorbent.
The adsorbent according to claim 1, which has an amount of 00 μmol. 8. The adsorbent according to claim 5, wherein the sulfated polysaccharide has a molecular weight of 100,000 or less. 9. A solution containing blood coagulation factor VIII is made into a water-insoluble porous gel with an exclusion limit molecular weight of 800,000 to 100 million, and has a sulfate ester group on at least a part of its surface. A method for purifying blood coagulation factor VIII, which comprises treating it with a factor VIII adsorbent to adsorb blood coagulation factor VIII, and then eluting and recovering blood coagulation factor VIII.
JP62042435A 1987-02-25 1987-02-25 Adsorbent for purifying viii th blood coagulation factor and process for purifying said factor using the adsorbate Granted JPS63209750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62042435A JPS63209750A (en) 1987-02-25 1987-02-25 Adsorbent for purifying viii th blood coagulation factor and process for purifying said factor using the adsorbate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62042435A JPS63209750A (en) 1987-02-25 1987-02-25 Adsorbent for purifying viii th blood coagulation factor and process for purifying said factor using the adsorbate

Publications (2)

Publication Number Publication Date
JPS63209750A true JPS63209750A (en) 1988-08-31
JPH0431735B2 JPH0431735B2 (en) 1992-05-27

Family

ID=12635988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62042435A Granted JPS63209750A (en) 1987-02-25 1987-02-25 Adsorbent for purifying viii th blood coagulation factor and process for purifying said factor using the adsorbate

Country Status (1)

Country Link
JP (1) JPS63209750A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248619A (en) * 1984-02-09 1985-12-09 ザ スペシヤル トラステイ−ズ フオア セント ト−マス ホスピタル Purification of viii factor
JPS6154451A (en) * 1984-08-24 1986-03-18 Chemo Sero Therapeut Res Inst Gel for affinity chromatography having group specificity and its production
JPS6154450A (en) * 1984-08-24 1986-03-18 Chemo Sero Therapeut Res Inst Gel for affinity chromatography having group specificity and its production
JPS6226227A (en) * 1985-07-12 1987-02-04 マイルス・ラボラトリ−ス・インコ−ポレ−テツド Sulfated non-carbohydrate gel matrix adsorbent
JPS62191042A (en) * 1986-02-17 1987-08-21 Kanegafuchi Chem Ind Co Ltd Blood coagulation factor viii adsorbent and method for purifying blood coagulation factor viii using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248619A (en) * 1984-02-09 1985-12-09 ザ スペシヤル トラステイ−ズ フオア セント ト−マス ホスピタル Purification of viii factor
JPS6154451A (en) * 1984-08-24 1986-03-18 Chemo Sero Therapeut Res Inst Gel for affinity chromatography having group specificity and its production
JPS6154450A (en) * 1984-08-24 1986-03-18 Chemo Sero Therapeut Res Inst Gel for affinity chromatography having group specificity and its production
JPS6226227A (en) * 1985-07-12 1987-02-04 マイルス・ラボラトリ−ス・インコ−ポレ−テツド Sulfated non-carbohydrate gel matrix adsorbent
JPS62191042A (en) * 1986-02-17 1987-08-21 Kanegafuchi Chem Ind Co Ltd Blood coagulation factor viii adsorbent and method for purifying blood coagulation factor viii using same

Also Published As

Publication number Publication date
JPH0431735B2 (en) 1992-05-27

Similar Documents

Publication Publication Date Title
US6156492A (en) Adsorbent carrier containing immobilized sulfated polysaccharide and ligand for direct hemoperfusion
JPS6226227A (en) Sulfated non-carbohydrate gel matrix adsorbent
JP4578405B2 (en) Adsorbent and adsorber for low density lipoprotein and fibrinogen capable of whole blood treatment
CA1283073C (en) Adsorbent for purification of blood coagulation factor viii and process for purification of blood coagulation factor viii using the same
EP0230247A2 (en) Adsorbent for removing complement component
JPH0622633B2 (en) Adsorbent and removal device using the same
JPH01171638A (en) Adsorbent for serum amyloid a protein
JPS6090039A (en) Blood purifying adsorbing body
JPS59193135A (en) Adsorbing body
JPH0667472B2 (en) Adsorbent for serum amyloid P protein
JPS6319214B2 (en)
JPS63209750A (en) Adsorbent for purifying viii th blood coagulation factor and process for purifying said factor using the adsorbate
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
JP3157026B2 (en) Adsorbent for blood purification
FI62103C (en) REQUIREMENTS FOR THE REQUIREMENT OF HEPARIN MED HOEG SPECIFIC ACTIVITIES
JPH0779693B2 (en) Blood coagulation factor IX adsorbent and method for purifying blood coagulation factor IX using the same
JPS6256782B2 (en)
JPH0616842B2 (en) Adsorbent for activated complement components
JPH105330A (en) Adsorbent releasing factor derived from cell, adsorption removing device using the same as well as adsorption removing method
JPH0771632B2 (en) Adsorbent and removal device using the same
KR100470502B1 (en) Adsorbent carrier used in direct hemoperfusion and method for reducing the particle size thereof
JPH0339736B2 (en)
JPH0592036A (en) Method for removing activated complement component
JPS628414B2 (en)
JPH0362433B2 (en)