JPS6320936A - Data transmission equipment - Google Patents

Data transmission equipment

Info

Publication number
JPS6320936A
JPS6320936A JP16583086A JP16583086A JPS6320936A JP S6320936 A JPS6320936 A JP S6320936A JP 16583086 A JP16583086 A JP 16583086A JP 16583086 A JP16583086 A JP 16583086A JP S6320936 A JPS6320936 A JP S6320936A
Authority
JP
Japan
Prior art keywords
signal
address
serial
transmission
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16583086A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakurai
努 櫻井
Saburo Kubota
三郎 久保田
Hiroshi Fujiwara
博史 藤原
Masanobu Miyata
正伸 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16583086A priority Critical patent/JPS6320936A/en
Priority to US07/073,255 priority patent/US4847613A/en
Priority to EP87110238A priority patent/EP0253381B1/en
Priority to DE3789791T priority patent/DE3789791T2/en
Publication of JPS6320936A publication Critical patent/JPS6320936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)

Abstract

PURPOSE:To quicken data transmission without storing once a transmission signal by replacing preceding data information at the detection of address coincidence to serial data obtained by parallel/serial conversion of data information to be sent when the address coincidence is detected at the time of receiving synchronizing information and address information and resending the replaced data. CONSTITUTION:A synchronizing carrier generating circuit 16 generates a carrier signal (b) synchronously with the transmission speed of a reception signal (a), an address coincidence detection storage circuit 20 detects the coincidence between address information of the reception signal and the setting address and stores the result. A comparator 23 compares an address set by an address setting switch 22 like a LS 85 with an address stored after being subjected to parallel conversion by a serial/parallel converter 21 and outputs an address coincidence storage signal (d). In receiving a carrier signal (b) as a clock, the receiving signal (a) is retarded by a serial signal delay circuit 25 until the signal (a) has the same timing as a serial signal (c) of a parallel/serial converter 24. After the start of reception, a transmission changeover switch 26 is connected to the position (h) in the presence of the coincidence storage signal (d) when address information passes to change over the transmission signal to the serial signal (c). When no address coincidence storage signal (d) is given, the transmission signal is sent again as it is through a signal delay circuit 25.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動機械等に用いるデータ伝送装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a data transmission device used in automatic machines and the like.

従来の技術 近年、マイクロプロセンサーの利用によシ自動機械は高
機能化されつつあり、それにつれセンサー・アクチュエ
ーターの数が数百、数千にも及ぶものもめずらしくなく
なって来た。そういった自動機械の配線量の総量が長さ
にして数km 、入出力点数として数百点を超え、トラ
ブル時の対応の困難さ、信頼性の低下、又、配線工数の
増大化を招いて来た。
Conventional Technology In recent years, automatic machines have become more sophisticated through the use of microprocessors, and as a result, machines with hundreds or even thousands of sensors and actuators are no longer uncommon. The total amount of wiring for such automated machines exceeds several kilometers in length and hundreds of input/output points, making it difficult to respond to troubles, reducing reliability, and increasing the amount of wiring man-hours. Ta.

配線の数を減らす為に最近では各センサー・アクチュエ
ーターのすぐ近くにリモートエ/Qと呼ばれる制御ユニ
ットを配置し、その間をシリアル多重伝送方式を用いて
光フアイバ1本、あるいは電線1本で結ぶ方式が種々考
案されているが、自動機械の近くはノイズ環境が極めて
悪い為、ノイズに強い光ファイバーを用いた光伝送方式
が有望視されている。
In order to reduce the number of wires, recently a control unit called a remote E/Q is placed close to each sensor/actuator, and a single optical fiber or electric wire is used to connect the units using serial multiplex transmission. Various methods have been proposed, but since the noise environment near automated machinery is extremely poor, optical transmission systems using optical fibers that are resistant to noise are considered promising.

第5図はそのリモートエ10からなるシステム図である
。1はセンサー、2はアクチュエーター、3は入カニニ
ット、4は出カニニットであり、3と4を以後子局と呼
ぶことにする。5はこれら子局すべてを制御するコント
ローラーであり、これは子局に対し親局と呼ばれている
ものである。6は光ファイバー、又は電線である。しか
しながら光伝送では光ファイバーの受動タップ取出しは
非常に困難である為、子局ごとに再生が必要である。
FIG. 5 is a system diagram consisting of the remote controller 10. 1 is a sensor, 2 is an actuator, 3 is an input unit, and 4 is an output unit, and 3 and 4 will be referred to as slave stations from now on. Reference numeral 5 denotes a controller that controls all of these slave stations, and this is called a master station for the slave stations. 6 is an optical fiber or an electric wire. However, in optical transmission, passive tapping of optical fibers is extremely difficult, so regeneration is required for each slave station.

この場合、大きく分類すると光でも伝送できるような方
式として次に述べる2つの伝送方式がある。
In this case, broadly classified, there are the following two transmission methods that can also transmit light.

以下図面を参照しながら2種類の光伝送方式を説明する
Two types of optical transmission systems will be explained below with reference to the drawings.

第6図は、その1つの方式を示したものである。FIG. 6 shows one such method.

図に於いて光ファイバー7を通って来た伝送信号は、光
電変換器8で電気信号に変換された後、受信バッファ9
に一旦蓄えられ、マイクロプロセッサ等1oにより解読
・処理された後に送信バッファ11に蓄えられる。その
後、直列信号に変換され電気・光信号変換器12により
再び光信号に変換されて送信される。
In the figure, the transmission signal that has passed through the optical fiber 7 is converted into an electrical signal by a photoelectric converter 8, and then is transferred to a receiving buffer 9.
The data is stored in the transmission buffer 11 after being decoded and processed by the microprocessor 1o. Thereafter, it is converted into a serial signal, and converted again into an optical signal by the electrical/optical signal converter 12, and then transmitted.

第7図は、もう1つの光伝送方式を示したものである。FIG. 7 shows another optical transmission system.

図に於いて電気信号に変換された直列の受信信号はすべ
て直列並列変換と並列直列変換できるシフトレジスタ1
3に一旦蓄えられる。その後、アドレス−数構出回路1
4でこのユニットがアクセスされていることを検知する
と出力ラッチ16で出力データ3oの記憶を行なう。又
シフトレジスタ13内に一旦蓄えられたデータを入力デ
ータ32に置き換えて再び並列直列変換して送信する。
In the figure, all the serial received signals converted to electrical signals are converted into a shift register 1 that can be converted into serial parallel and parallel serial.
It is temporarily stored in 3. After that, address-number construction circuit 1
When it is detected in step 4 that this unit is being accessed, the output latch 16 stores the output data 3o. Further, the data once stored in the shift register 13 is replaced with the input data 32, and the data is parallel-serial converted again and transmitted.

又アドレス一致していないときはそのまま並列・直列変
換して送信する。
If the addresses do not match, the data is converted into parallel/serial data and sent.

発明が解決しようとする問題点 しかしながら上記のような構成では、伝送信号1フレー
ムすべてを一旦蓄えて処理した後送信を行う為1フレー
ムの伝送時間以上遅れざるを得ない。そして伝送装置を
通過する毎にこれらの遅れ時間が累積され、そのため自
動機械によっては、応答性が遅くなって制御できなくな
シ、速い応答性が必要な時は、やむなく並列電気配線を
使用せざるを得ないという問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, since all one frame of the transmission signal is once stored and processed before being transmitted, there is no choice but to delay the transmission time of one frame or more. Each time the transmission passes through a transmission device, these delay times are accumulated, and as a result, the response of some automatic machines may become slow and uncontrollable, and when fast response is required, it is unavoidable to use parallel electrical wiring. There was a problem that it was unavoidable.

本発明は上記問題を解消するもので、伝送媒体として光
も電気も使え、伝送信号を一旦蓄えることなくアドレス
情報がデータ情報よシも先行する伝送フォーマット中で
データ情報の置き換えを受信途中で行いながら再送信す
ることにより、高速のデータ伝送を提供するものである
The present invention solves the above problems by using either light or electricity as a transmission medium, and replacing data information during reception in a transmission format in which address information precedes data information without temporarily storing the transmission signal. This provides high-speed data transmission by retransmitting the data while the data is being sent.

問題点を解決するための手段 そして上記問題点を解決する本発明の技術的手段は、同
期情報とアドレス情報とデータ情報から構成される伝送
信号の内、アドレス情報とあらかじめ設定したアドレス
とが一致したことを検出して記憶するアドレス一致検出
記憶回路と、前記伝送信号の伝送速度に同期したキャリ
ア信号を発生させる同期キャリア発生回路と、前記同期
キャリア発生回路から出力されたキャリア信号を取り込
みタイミングとして送信すべき並列データ情報を直列信
号に変換する並列直列変換器と、前記アドレス一致検出
記憶回路から出力されるアドレス−致信号により受信中
の伝送信号の内のデータ情報を前記並列直列変換器の直
列信号と置き換える送信切り換えスイッチ回路と、前記
受信中の伝送信号を前記並列直列変換器から出力される
直列信号と同〒タイミングになるまで遅らせる直列信号
遅延回路とからなるものである。
Means for Solving the Problems and the technical means of the present invention for solving the above problems are such that the address information matches a preset address in a transmission signal composed of synchronization information, address information, and data information. an address match detection storage circuit that detects and stores the transmission speed of the transmission signal; a synchronous carrier generation circuit that generates a carrier signal synchronized with the transmission speed of the transmission signal; and a synchronous carrier generation circuit that takes in the carrier signal output from the synchronous carrier generation circuit as a timing. A parallel-to-serial converter converts parallel data information to be transmitted into a serial signal, and a parallel-to-serial converter converts data information in the transmission signal being received by an address match signal output from the address match detection storage circuit to the parallel to serial converter. It consists of a transmission changeover switch circuit that replaces the serial signal, and a serial signal delay circuit that delays the transmission signal being received until it reaches the same timing as the serial signal output from the parallel-serial converter.

作  用 本発明は上記した構成によって、同期情報とアドレス情
報を受信した時点でアドレス一致検出記憶回路によりア
ドレス一致が検出されると以後のデータ情報と送信すべ
きデータ情報を並列直列変換器により並列・直列変換し
た直列データとを置き換えて再送信を行う為、伝送信号
を一旦蓄えずに伝送でき、高速なデータ伝送が行なえる
According to the above-described configuration, when an address match is detected by the address match detection storage circuit at the time when synchronization information and address information are received, the subsequent data information and the data information to be transmitted are parallelized by the parallel-serial converter.・Since retransmission is performed by replacing the serial data that has been serially converted, the transmission signal can be transmitted without being stored once, and high-speed data transmission can be performed.

その際、受信信号中の同期情報とアドレス情報の直列信
号は、直列信号遅延回路により、外部から入力データを
取シ込むタイミングになるまで遅延されている為、デー
タ情報の置き換えによる波形の乱れはほとんど発生しな
い。したがって安定したデータ伝送がなされることにな
る。又、一般にキャリア信号は受信信号の○N10FF
パルス幅のほぼ半分に相当する時間遅れて発生させるこ
とができるから、受信信号を再びキャリア信号によって
再送信するまでの遅れ時間は、受信信号の0N10FF
パルス幅のほぼ半分の時間となりよって高速なデータ伝
送が可能となる。
At this time, the serial signals of the synchronization information and address information in the received signal are delayed by the serial signal delay circuit until the timing to receive input data from the outside, so the waveform is not disturbed due to the replacement of data information. Almost never occurs. Therefore, stable data transmission can be achieved. Also, generally the carrier signal is ○N10FF of the received signal.
Since the pulse can be generated with a delay of approximately half the pulse width, the delay time until the received signal is retransmitted by the carrier signal is 0N10FF of the received signal.
The time is approximately half the pulse width, thus enabling high-speed data transmission.

実施例 以下本発明の一実施例のループ状データ伝送装置につい
て図面を参照しながら説明する。
Embodiment Hereinafter, a loop data transmission device according to an embodiment of the present invention will be described with reference to the drawings.

第1図は一実施例におけるデータ伝送装置の構成図を示
すものである。第1図において16は同期キャリア発生
回路で、受信信号aの伝送速度に同期したキャリア信号
すを発生させるものである。
FIG. 1 shows a configuration diagram of a data transmission device in one embodiment. In FIG. 1, reference numeral 16 denotes a synchronous carrier generation circuit, which generates a carrier signal synchronized with the transmission speed of the received signal a.

内部の回路の一実施例をくわしく示すと17はクロック
発振器、18はたとえばLS393の様なカウンター、
19はSRクリップフロップである。
An example of an internal circuit is shown in detail: 17 is a clock oscillator, 18 is a counter such as LS393,
19 is an SR clip-flop.

伝送信号aを受信開始するとSRフリップフロップ19
がセットされカウンター18のCLRが解除され発振器
17のクロックを分周し、受信信号の0N10FFパル
ス幅の約半分遅れて受信信号aの伝送速度に同期したキ
ャリア信号すを発生する。
When the reception of the transmission signal a starts, the SR flip-flop 19
is set, the CLR of the counter 18 is released, the clock of the oscillator 17 is divided, and a carrier signal S synchronized with the transmission speed of the received signal a is generated with a delay of about half the 0N10FF pulse width of the received signal.

又、伝送信号1フレーム全てを受信するのに必要なキャ
リアパルスの数をカウントアツプするとSRフリップフ
ロップ19をリセットして受信待機する。
When the number of carrier pulses required to receive one frame of the transmission signal is counted up, the SR flip-flop 19 is reset and stands by for reception.

20はアドレス一致検出記憶回路で受信中の信号のアド
レス情報と設定アドレスが一致したことを検出し記憶す
るものである。内部の回路の一実施例をくわしく示すと
21はたとえばLSI64の様な直列並列変換器で直列
なアドレス情報を並列なアドレス情報に変換して記憶す
るものである。
Reference numeral 20 denotes an address match detection storage circuit that detects and stores the match between the address information of the signal being received and the set address. Describing one embodiment of the internal circuit in detail, 21 is a serial/parallel converter such as an LSI 64, which converts serial address information into parallel address information and stores the same.

23はたとえばLSssの様にアドレス設定スイッチ2
2で設定されたアドレスと直列並列変換器21で並列変
換して記憶されたアドレスとを比較してアドレス−数記
憶信号dを出力するものである。29はアドレス情報の
直列・並列変換後キャリア信号すを0FFj、て並列出
力状態を維持するためのゲートである。24はたとえば
LSI65の様の同期キャリア発生回路16から出力さ
れたキャリア信号すをクロック入力として並列入力デー
タを直列信号cK変換する並列直列変換器である。26
は受信信号aを並列直列変換器24から出力される直列
信号Cと同一タイミングになるまで遅らせる直列信号遅
延回路である。本−実施例ではD型フリップフロップに
並列直列変換器24と同一キャリア信号をクロック入力
として与えて受信信号aを並列直列変、換器24から出
力される直列信号Cと同一タイミングになるように遅延
している。26は送信切り換えスイッチであり普段はi
側と接続している。受信を開始しアドレス情報が通過し
た時点でアドレス一致検出記憶回路からアドレス−数記
憶信号dが出ていバばh側に接続し、以後送信信号を直
列信号Cに切り換える。
23 is address setting switch 2 like LSss, for example.
The address set in step 2 is compared with the address parallel-converted and stored by the serial-parallel converter 21, and an address-number storage signal d is output. Reference numeral 29 is a gate for maintaining the parallel output state by setting the carrier signal to 0FFj after serial/parallel conversion of the address information. Reference numeral 24 denotes a parallel-to-serial converter which converts parallel input data into a serial signal cK using the carrier signal outputted from the synchronous carrier generation circuit 16, such as an LSI 65, as a clock input. 26
is a serial signal delay circuit that delays the received signal a until it reaches the same timing as the serial signal C output from the parallel-to-serial converter 24. In this embodiment, the same carrier signal as that of the parallel-to-serial converter 24 is applied to the D-type flip-flop as a clock input, so that the received signal a is parallel-to-serial converted at the same timing as the serial signal C output from the converter 24. It's delayed. 26 is a transmission selector switch, which is normally set to i.
connected to the side. When reception is started and the address information has passed, an address-number storage signal d is output from the address coincidence detection storage circuit and connected to the side of the bus h, and thereafter the transmission signal is switched to the serial signal C.

又、アドレス−数記憶信号dが出ていなければ切り換え
は行わず、信号遅延回路26を通って遅延された受信信
号をそのまま再送信するものである。
Further, if the address-number storage signal d is not output, switching is not performed, and the received signal delayed through the signal delay circuit 26 is retransmitted as it is.

27は受信信号中のデータ情報を直列・並列変換する直
列並列変換器である。28はアドレス一致時に出力ラッ
チを行う出力ラッチ回路である。
27 is a serial/parallel converter that converts data information in a received signal into serial/parallel data. 28 is an output latch circuit that latches the output when an address matches.

第2図は一実施例におけるループ状伝送装置の伝送フォ
ーマットを示したものである。伝送フォーマットは少な
くとも同期キャリア信号を発生させる為の同期情報とア
クセスする子局を区別する為のアドレス情報を持ったア
ドレス情報とデータ情報から成りたっており、伝送順序
は、同期情報アドレス情報、データ情報の順となってい
る。
FIG. 2 shows a transmission format of a loop-shaped transmission device in one embodiment. The transmission format consists of at least synchronization information for generating a synchronized carrier signal and address information and data information for distinguishing the slave station to be accessed, and the transmission order is as follows: synchronization information address information, data information The order is as follows.

第3図のa−gはアドレス一致した場合の第1図のB 
−、−(7の各信号波形、第4図のfi % (7はア
ドレス一致しなかった場合の第1図のa −qの各信号
波形であり、送信信号qは受信信号aK対し、キャリア
lのほぼ1パルス幅時間遅れて再生されていることを示
す。
A to G in Figure 3 are B in Figure 1 when the addresses match.
-, -(Each signal waveform of 7, fi % of Fig. 4 (7 is each signal waveform of a - q of Fig. 1 when the address does not match, and the transmitted signal q is the carrier of the received signal aK) This shows that the reproduction is delayed by approximately one pulse width of l.

以上の様に構成されたループ状データ伝送装置について
、以下第1図と第3図と第4図を用いてその動作を説明
する。
The operation of the loop data transmission device configured as described above will be explained below with reference to FIGS. 1, 3, and 4.

受信信号との1例として第3図aの様な君号とを受信す
るとSRフリップフロップ19がセットされカウンタ1
9により発振クロックfが分周されて第3図すの様なキ
ャリア信号すを発生する。
When a received signal such as the one shown in FIG. 3A is received, the SR flip-flop 19 is set and the counter 1 is
The oscillation clock f is frequency-divided by 9 to generate a carrier signal as shown in FIG.

本−実施例ではクロック周波数は24MHzである。In this embodiment, the clock frequency is 24 MHz.

なおキャリア信号すは受信信号の伝送速度の倍の周波数
となるように発振クロックfを分周するものとする。分
周率は4分周以上に選ぶが、本−実施例では発振クロッ
クを4分周している。よって本−実施例の伝送速度は6
Mbpsである。受信信号aはアドレス−置換出記憶回
路2oを構成している直列並列変換器21の直列入力ビ
ンに接続されており、ゲート29により必要数のキャリ
アjが与えられてアドレス情報の直列並列変換がなされ
る。この並列のアドレス情報とアドレス設定スイッチ2
2とを比較器23で比較し、一致していればアドレス−
数記憶信号dを出力し送信切シ換えスイッチ26のi側
からh側に切り換える。以後送信信号qは並列直列変換
器24により直列信号に変換された入力データC装置き
換えられ第3図qの様な送信波形を出力する。なお本−
実施例では送信切り換えの際、受信信号aは直列信号C
と同一タイミングになるように並列直列変換器24のク
ロック入力信号と同一のキャリア信号すをDフリップフ
ロップ25のクロック入力に加えて遅延している為送信
切り換えによる波形の乱れは極めて少ない。
It is assumed that the frequency of the oscillation clock f is divided so that the frequency of the carrier signal is twice the transmission speed of the received signal. The frequency division ratio is selected to be 4 or more, and in this embodiment, the oscillation clock is divided by 4. Therefore, the transmission speed of this embodiment is 6
Mbps. The received signal a is connected to the serial input bin of the serial-to-parallel converter 21 constituting the address-replacement storage circuit 2o, and the necessary number of carriers j is given by the gate 29 to perform serial-to-parallel conversion of the address information. It will be done. This parallel address information and address setting switch 2
2 by the comparator 23, and if they match, the address -
The number storage signal d is output and the transmission changeover switch 26 is switched from the i side to the h side. Thereafter, the transmission signal q is replaced by input data C which is converted into a serial signal by the parallel-to-serial converter 24, and a transmission waveform as shown in FIG. 3Q is output. Furthermore, this book-
In the embodiment, when switching transmission, the received signal a becomes the serial signal C.
Since the same carrier signal as the clock input signal of the parallel-to-serial converter 24 is added to the clock input of the D flip-flop 25 and delayed so that the timing is the same as that of the clock input signal of the parallel-to-serial converter 24, there is very little disturbance in the waveform due to transmission switching.

又、第3図において受信波形aを受けてから送信波形q
を出力するまでの遅延時間は、受信開始からキャリア信
号すが立ち上がるまでの時間となり伝送送れは本−実施
例では140〜220nSeCと極めて小さい。
Also, in Fig. 3, after receiving the received waveform a, the transmitted waveform q
The delay time from the start of reception to the rise of the carrier signal is the time required to output the signal, and the transmission speed is extremely small at 140 to 220 nSeC in this embodiment.

一方受信信号aのデータ情報の並列出力は次のようにな
される。すなわち、受信信号aとキャリア信号すはそれ
ぞれ直列並列変換器27のシリアル入力、クロック入力
で1直列データ情報が並列データに変換される。アドレ
スが一致している場合は出力ラッチ回路で並列に並換さ
れたデータをラッチし、ラッチした並列信号を出力デー
タにとして得ることが出来る。
On the other hand, parallel output of the data information of the received signal a is performed as follows. That is, one serial data information is converted into parallel data by the serial input and clock input of the received signal a and the carrier signal A, respectively, of the serial/parallel converter 27. If the addresses match, the output latch circuit latches the parallelized data, and the latched parallel signal can be obtained as output data.

次にアドレス一致しなかった場合について説明する。Next, a case where the addresses do not match will be explained.

アドレス一致しなかった場合は送信切シ換えスイッチ2
6はi側のままである。受信信号aはD型7リツプフロ
ツプ26のデータ入力であシ、又クロック入力としてキ
ャリア信号すが入力されているのでDフリップフロップ
の出力波形iすなわち送信波形qは第4図の9の様に、
受信波形aと全く同一波形に再生されることになる。又
この時は並列データの入力も出力もされないことになる
If the address does not match, send switch 2
6 remains on the i side. The received signal a is the data input of the D-type 7 flip-flop 26, and the carrier signal is also input as the clock input, so the output waveform i of the D flip-flop, that is, the transmitted waveform q, is as shown in 9 in FIG.
The waveform will be reproduced into exactly the same waveform as the received waveform a. Also, at this time, no parallel data is input or output.

発明の効果 本発明は受信信号を一旦蓄えずに受信途中のアドレス情
報が一致した時点でデータ情報を置きかえて再送信を行
うものであるので伝送遅れは極めて少なくでき、又、送
信データ切り換え時に受信信号を並列直列変換器から出
力される直列信号と同一タイミングになるまで遅らせる
ものであるので送信データ切り換えによる波形の乱れは
極めて少なくでき、しかも次のような効果も奏する。
Effects of the Invention The present invention does not store the received signal once, but replaces the data information when the address information matches during reception, and retransmits it. Therefore, transmission delays can be extremely minimized, and the received signal is Since the signal is delayed until the timing is the same as that of the serial signal output from the parallel-serial converter, waveform disturbances due to switching of transmission data can be extremely reduced, and the following effects are also achieved.

すなわち、光伝送の場合、光の○N10FF信号を電気
のON/○FF信号に変換する際、受光量の大小によっ
てON時間とOFF時間の割合いが変化する為、パルス
幅に歪みが生じそのまま電気・光信号に変換するといっ
たことを繰り返すうちにパルス幅の歪みがしだいに大き
くなってやがては正常な伝送が行なえなくなるといった
問題点があったが、本発明では直列信号遅延回路として
たと′えばD型フリップフロップを用いることにより歪
んだ受信信号もON時間とOFF時間の割合いが等しく
なるように波形整形できる為、本発明の伝送装置を多数
ループ状に接続しても正常なデータ伝送を行うことがで
きるのである。
In other words, in the case of optical transmission, when converting an optical ○N10FF signal into an electrical ON/○FF signal, the ratio of ON time and OFF time changes depending on the amount of received light, so the pulse width is distorted and the signal remains unchanged. There was a problem that as the conversion into electrical and optical signals was repeated, the distortion in the pulse width gradually increased, and eventually normal transmission could no longer be performed.However, in the present invention, as a serial signal delay circuit, for example, By using a D-type flip-flop, it is possible to shape the waveform of a distorted received signal so that the ratio of ON time and OFF time is equal, so that normal data transmission can be achieved even if many transmission devices of the present invention are connected in a loop. It can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるループ状光データ伝
送装置の構成図、第2図は同実施例に使用する伝送フォ
ーマットを示す説明図、第3図及び第4図は第1図の各
信号a−qの信号波形図、第5図は従来のリモー)Il
oのシステム図、第6図は従来のループ状光データ伝送
装置の一例を示すブロック図、第7図は従来のループ状
光データ伝送装置のもう1つの例を示すブロック図であ
る。 16・・・・・・同期キャリア発生回路、2o・・・・
・・アドレス−置換出記憶回路、24・・・・・・並列
直列変換器、26・・・・・・直列信号遅延回路、26
・・・・・・送信切り換えスイッチ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名Ic
 −・λへJ1弓緊トリアA5さジli!ぞ1第 2 
図 第3図 第4図
FIG. 1 is a block diagram of a loop-shaped optical data transmission device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a transmission format used in the embodiment, and FIGS. Signal waveform diagram of each signal a-q, Fig. 5 is a conventional remote controller) Il
FIG. 6 is a block diagram showing an example of a conventional loop-shaped optical data transmission device, and FIG. 7 is a block diagram showing another example of the conventional loop-shaped optical data transmission device. 16...Synchronized carrier generation circuit, 2o...
... Address-replacement storage circuit, 24 ... Parallel-serial converter, 26 ... Serial signal delay circuit, 26
......Transmission selector switch. Name of agent: Patent attorney Toshio Nakao and one other person Ic
-・λ to J1 Yukine Tria A5 Saji li! 1st 2nd
Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 同期情報とアドレス情報とデータ情報から構成される伝
送信号の内、アドレス情報とあらかじめ設定したアドレ
スとが一致したことを検出して記憶するアドレス一致検
出記憶回路と、前記伝送信号の伝送速度に同期したキャ
リア信号を発生させる同期キャリア発生回路と、前記同
期キャリア発生回路から出力されたキャリア信号を取り
込みタイミングとして送信すべき並列データ情報を直列
信号に変換する並列直列変換器と、前記アドレス一致検
出記憶回路から出力されるアドレス一致信号により受信
中の伝送信号の内のデータ情報を前記並列直列変換器の
直列信号と置き換える送信切り換えスイッチ回路と、前
記受信中の伝送信号を前記並列直列変換器から出力され
る直列信号と同一タイミングになるまで遅らせる直列信
号遅延回路とからなるデータ伝送装置。
An address match detection memory circuit that detects and stores a match between address information and a preset address in a transmission signal consisting of synchronization information, address information, and data information, and an address match detection memory circuit that is synchronized with the transmission speed of the transmission signal. a synchronous carrier generation circuit that generates a carrier signal output from the synchronous carrier generation circuit; a parallel-to-serial converter that converts parallel data information to be transmitted into a serial signal by taking in the carrier signal output from the synchronous carrier generation circuit as a timing; and the address coincidence detection memory. a transmission changeover switch circuit for replacing data information in a transmission signal being received with a serial signal of the parallel-serial converter by an address matching signal output from the circuit; and outputting the transmission signal being received from the parallel-serial converter. A data transmission device consisting of a serial signal delay circuit that delays the serial signal until it reaches the same timing as the serial signal.
JP16583086A 1986-07-15 1986-07-15 Data transmission equipment Pending JPS6320936A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16583086A JPS6320936A (en) 1986-07-15 1986-07-15 Data transmission equipment
US07/073,255 US4847613A (en) 1986-07-15 1987-07-14 Data transfer apparatus
EP87110238A EP0253381B1 (en) 1986-07-15 1987-07-15 Data transfer apparatus
DE3789791T DE3789791T2 (en) 1986-07-15 1987-07-15 Data transmission device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16583086A JPS6320936A (en) 1986-07-15 1986-07-15 Data transmission equipment

Publications (1)

Publication Number Publication Date
JPS6320936A true JPS6320936A (en) 1988-01-28

Family

ID=15819811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16583086A Pending JPS6320936A (en) 1986-07-15 1986-07-15 Data transmission equipment

Country Status (1)

Country Link
JP (1) JPS6320936A (en)

Similar Documents

Publication Publication Date Title
US4710922A (en) Apparatus and associated methods for converting serial data pattern signals transmitted or suitable for transmission over a high speed synchronous serial transmission media, to parallel pattern output signals
JPH055711Y2 (en)
EP0103460B1 (en) Improvements in or relating to data interconnecting networks
US5079770A (en) Apparatus and associated methods for converting serial data pattern signals transmitted or suitable for transmission over a high speed synchronous serial transmission media, to parallel pattern output signals
US4717914A (en) Methods for receiving and converting high speed serial data pattern input signals to parallel data pattern outputs
JPS5812775B2 (en) Tokibunkatsutajiyuuhoshiki no tanmatsu ni Okeru Shingoutajiyuukahouhou Oyobi Souchi
JP2534788B2 (en) Synchronous multiplexer reframing circuit.
EP0253381B1 (en) Data transfer apparatus
US4158107A (en) Integral frame slip circuit
EP0228213B1 (en) System for transmitting and receiving asynchronous nonhomogeneous variable width parallel data over a synchronous high speed serial transmission media
CA1126833A (en) Digital loop synchronization circuit
EP0240873B1 (en) I/O Handler
JPS6320936A (en) Data transmission equipment
EP0409168B1 (en) Elastic store memory circuit
JPS63204940A (en) Loop shape data transmitting device
JPH0731530B2 (en) Synchronous control NC device
SU1647921A1 (en) Switching device with flexible memory
JPH01841A (en) data transmission equipment
JP2801595B2 (en) Normal-to-linear conversion device
JP2834145B2 (en) Packet phase synchronization circuit and packet phase synchronization method
JPH01155743A (en) Loop shape data transmission equipment
JPS63232796A (en) Data transmitting device
JP2770375B2 (en) Transmission delay phase compensation circuit
JPH08265345A (en) Data transmission system
JPS6172443A (en) Synchronizing system of digital multiplex transmission system