JPS63208729A - Autocorrelator - Google Patents

Autocorrelator

Info

Publication number
JPS63208729A
JPS63208729A JP4022887A JP4022887A JPS63208729A JP S63208729 A JPS63208729 A JP S63208729A JP 4022887 A JP4022887 A JP 4022887A JP 4022887 A JP4022887 A JP 4022887A JP S63208729 A JPS63208729 A JP S63208729A
Authority
JP
Japan
Prior art keywords
light
nonlinear optical
signal
nonlinear
autocorrelator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4022887A
Other languages
Japanese (ja)
Inventor
Masafumi Kiguchi
雅史 木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4022887A priority Critical patent/JPS63208729A/en
Publication of JPS63208729A publication Critical patent/JPS63208729A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high sensitivity by using a nonlinear optical material with an electrode which detects an overlap part of light as a nonlinear optical material, eliminating the need for phase matching, an obtaining a signal directly as an electric signal. CONSTITUTION:A light beam 1 to be measured is split into two by a beam splitter 2, one is reflected by a mirror 5, and the other is delayed by an optical delay part 3 and then superposed again by a beam mixer 4. This is converged by a lens 6 on the nonlinear material 10 with the electrode. A voltage with depends upon the intensity of the incident light is induced, so this is amplified by an FET preamplifier 7 and a voltage amplifier 8 and its time mean value is calculated by an integrator 9 and inputted to an X-Y recorder 11 as long-axis data. Here, the lateral axis is assigned to an optical delay quantity and a sweep is made to obtain the autocorrelation function of light pulses. Consequently, the need for position matching eliminated and the signal is obtained directly as the electric signal. Thus, the high sensitivity is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、光パルスの時間幅測定を行なう測定器に係る
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a measuring instrument for measuring the time width of a light pulse.

〔従来の技術〕[Conventional technology]

従来の超短パルス光の測定器については、プロシーデイ
ングズ オブ ザ アイ・イー・イー・イー57.1 
(1969年)第14頁から第18頁(PROCII!
EDINGS OF IEEE 57.1 (1969
)pp14−18)において論じられている。しかし、
これらは、蛍光、或は第2高調波発生を用いたものであ
った。
For conventional ultrashort pulse light measuring instruments, see Proceedings of the IE 57.1.
(1969) pp. 14-18 (PROCII!
EDINGS OF IEEE 57.1 (1969
) pp 14-18). but,
These used fluorescence or second harmonic generation.

【発明が解決しようとする問題点〕[Problem that the invention attempts to solve]

被測定パルス光の波長が可変である場合には。 When the wavelength of the pulsed light to be measured is variable.

第2高調波を発生する方式では1位相整合を満たすため
に、非線形光学結晶の角度や温度を調整する必要が生じ
、又その適用波長範囲も狭かった。
In the method of generating the second harmonic, it is necessary to adjust the angle and temperature of the nonlinear optical crystal in order to satisfy one phase matching, and the applicable wavelength range is also narrow.

特に、波長が紫外域並びにその近辺にある場合には、そ
の第2高調波は真空紫外域になり、実質上は実現困難に
なるという問題があった。更に、信号が光であり、これ
を電気に変換するため、光電子増倍管を用いるので、遮
光の必要性、高圧電源の必要性等が生じ、コストが高く
つくという問題があった。
In particular, when the wavelength is in the ultraviolet region or its vicinity, the second harmonic is in the vacuum ultraviolet region, making it practically difficult to realize. Furthermore, since the signal is light and a photomultiplier tube is used to convert it into electricity, there is a problem in that there is a need for light shielding, a high-voltage power supply, etc., and the cost is high.

本発明の目的は、光学系調整の波長依存性の無い、広い
波長範囲、特に紫外域まで測定可能で、かつ、信号を直
接電気的に得ることのできる簡便な装置を提供すること
にある。
An object of the present invention is to provide a simple device that can measure in a wide wavelength range, particularly in the ultraviolet region, without wavelength dependence in optical system adjustment, and can directly obtain signals electrically.

また光パルスの時間幅を測定する場合、その自己相関関
数を求める事がよく行なわれる。そのために、光を2つ
に分け、再び重ね合わせ、その重なり具合を、非線形な
効果1例えば第2高調波発生や2光子吸収などで観測す
る。このとき、第2高調波発生で偏光を利用して特別な
位相整合を利用した場合を除いて、片方の光だけで生じ
る非線形過程が、バックグラウンドとなり、検出感度を
落とすという問題があった。バックグラウンドの生じな
い第2高調波発生の方法は、位相整合を満たせる波長範
囲が狭く、また調整も煩雑になる。
Furthermore, when measuring the time width of a light pulse, its autocorrelation function is often determined. To do this, the light is divided into two parts, superimposed again, and the degree of overlap is observed using nonlinear effects such as second harmonic generation and two-photon absorption. At this time, there is a problem in that, except when special phase matching is utilized using polarized light in second harmonic generation, the nonlinear process occurring in only one of the lights becomes a background and reduces detection sensitivity. The second harmonic generation method that does not generate background has a narrow wavelength range that satisfies phase matching, and also requires complicated adjustment.

これに比べて光子吸収等を利用した方が、非線形光学材
料の選択幅も広がり、又高効率化も期待できる。
Compared to this, if photon absorption is used, the selection range of nonlinear optical materials will be wider, and higher efficiency can be expected.

本発明の第2の目的は、位相整合を伴なわない−ような
過程を利用した場合においても、バックグラウンドが除
去された高感度な装置を提供することにある。
A second object of the present invention is to provide a highly sensitive device in which background is removed even when a process that does not involve phase matching is used.

〔問題点を解決するための手段〕[Means for solving problems]

従来の装置は、波形の自己相関をとるために、2つの光
パルスの重なり程度を測定する方法として、第2高調波
発生を用いていた0本発明の目的はこれに光整流を用い
ることにより、達成される。
Conventional devices use second harmonic generation as a method of measuring the degree of overlap between two optical pulses in order to obtain autocorrelation of waveforms.The purpose of the present invention is to solve this problem by using optical rectification. , achieved.

また、上記第2の目的は、2つに分けた光ビームをそれ
ぞれ光パルスの繰返し周波数よりも充分低い周波数ω1
.ω2で強度変調し、ω1±ω2で信号を同期検波する
装置により、達成される。
In addition, the second purpose is to divide the light beam into two at frequencies ω1 that are sufficiently lower than the repetition frequency of the light pulses.
.. This is achieved by a device that performs intensity modulation at ω2 and synchronously detects the signal at ω1±ω2.

〔作用〕[Effect]

光整流では、測定対象の光の電場Eと、その複素共役量
E−の積に比例した信号を得るため、位相整合の必要が
無い、更に、これは広い波長範囲に対し、信号を得る事
ができるという事につ−ながる8周波数ωの光を物質に
入射すると、誘起される分極Pは P”X(”)E(ω)E(ω)s”t+X(”)E(ω
)E*(ω)となる、第1項は2ωで振動し第2高調波
発生に対応し、第2項は、ω=0つまりDC分極が誘起
される事を表わし、これを光整流と呼ぶ。ここでx(2
)は2次の非線形感受率である。よって、この光整流を
用いれば、光の周波数、或は波長によらず常にDC分極
が発生する。更に、位相整合の必要も無い。
In optical rectification, a signal proportional to the product of the electric field E of the light to be measured and its complex conjugate quantity E- is obtained, so there is no need for phase matching.Furthermore, it is possible to obtain a signal over a wide wavelength range. When light of 8 frequencies ω, which leads to the formation of
E call. Here x(2
) is the second-order nonlinear susceptibility. Therefore, if this optical rectification is used, DC polarization will always occur regardless of the frequency or wavelength of the light. Furthermore, there is no need for phase matching.

また光ビームを2つに分け、それぞれω1.ω2で強度
変調したとき、ωl、ω2が光パルスの繰返し周波数に
比べて充分低ければ、それを再び重ね合わせて、非線形
光学過程を利用してその自己相関をとると、その信号強
度S(τ)はと書ける。つまり、2つのビームの重なっ
た項のみが、ω1±ω2の成分を有する。よって、ω1
±ω2の周波数で信号を同期検波すれば、バックグラウ
ンドを除く事が可能になり、更に迷光等の影響も無くな
り、高感度化が実現できる。
Also, the light beam is divided into two, each with ω1. When the intensity is modulated by ω2, if ωl and ω2 are sufficiently low compared to the repetition frequency of the optical pulse, if they are superimposed again and their autocorrelation is taken using a nonlinear optical process, the signal strength S(τ ) can be written as . In other words, only the overlapping term of the two beams has a component of ω1±ω2. Therefore, ω1
If signals are synchronously detected at a frequency of ±ω2, it becomes possible to eliminate the background, and also eliminate the effects of stray light, etc., making it possible to achieve high sensitivity.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。測定
対象の光ビーム1をビームスプリッタ2で2つに分け、
ミラー5により光を導き片方を光遅延部3により遅延を
かけた後、ビームミキサ4により再び重ね合わせる。こ
れを、レンズ6で、電極付非線形光学材料10に絞り込
む。ここで電極付非線形光学材料として、K D P 
(K HIP Oa)に銀を蒸着し電極としたものを用
いた。入射した光の強度に依存した電圧が誘起されるの
で、これをFET前置増幅器7、と電圧増幅器で、信号
増幅した後、積分器9により時間的平均をとり、X−Y
レコーダ11の縦軸に入力する。ここで横軸に光遅延量
をとり、これを掃引すると、光パルスの自己相関関数を
得る事ができる。モードロックNdδ+: YAGレー
ザについて測定した結果を第2図に示す。これより、光
パルスの時間幅を求めることができる。
An embodiment of the present invention will be described below with reference to FIG. The light beam 1 to be measured is divided into two by a beam splitter 2,
After guiding the light by a mirror 5 and delaying one side by an optical delay unit 3, the beam mixer 4 overlaps the two beams again. This is narrowed down to an electrode-attached nonlinear optical material 10 using a lens 6. Here, as a nonlinear optical material with electrodes, K D P
(K HIP Oa) was used as an electrode by vapor-depositing silver. Since a voltage dependent on the intensity of the incident light is induced, this signal is amplified by the FET preamplifier 7 and the voltage amplifier, and then the time average is taken by the integrator 9, and the X-Y
Input on the vertical axis of the recorder 11. Here, by taking the optical delay amount on the horizontal axis and sweeping it, it is possible to obtain the autocorrelation function of the optical pulse. Mode-locked Ndδ+: The results of measurements for YAG laser are shown in FIG. From this, the time width of the optical pulse can be determined.

つぎに、本発明の他の実施例を第3図により説明する。Next, another embodiment of the present invention will be described with reference to FIG.

測定対象である光パルス列のなすビーム31を、ビーム
スプリッタ32で2つに分け、ミラー33でそれぞれ導
き、チョッパ34.35でfx 、fzの周波数で強度
変調をかける。このとき、光パルスの繰返し周波数4 
M Hzに対し、jt=10kHz、 fz=12kH
zとした。その後、2つのビームを、非線形光学材料3
6の中央で重ね合わせる。レーザはNd8+:YAGの
基本波を用い、非線形光学材料としては有機色素ローダ
ミン6Gのエタノール溶液を用いた。ローダミンは、2
光子吸収により蛍光を出すので、それをフォトダイオー
ドアレイ7で検出する。差周波器39で、 ft−fz
=2kHzをとり、ロックインアンプ40の同期信号と
して入力する。フォトダイオードアレイは、チャネル掃
引をドライバ38で行なっており、1チヤネル毎に、同
期検波を行ない、その出力をコンピュータ41に入力す
る。
A beam 31 formed by an optical pulse train to be measured is divided into two by a beam splitter 32, each guided by a mirror 33, and intensity modulated by choppers 34 and 35 at frequencies fx and fz. At this time, the repetition frequency of the optical pulse is 4
For MHz, jt=10kHz, fz=12kHz
I made it z. Then, the two beams are transferred to the nonlinear optical material 3
Overlap in the center of 6. A fundamental wave of Nd8+:YAG was used as the laser, and an ethanol solution of the organic dye Rhodamine 6G was used as the nonlinear optical material. Rhodamine is 2
Fluorescence is emitted by photon absorption, which is detected by the photodiode array 7. With the difference frequency converter 39, ft-fz
=2kHz and input it as a synchronization signal to the lock-in amplifier 40. The photodiode array performs channel sweeping by a driver 38, performs synchronous detection for each channel, and inputs the output to the computer 41.

1つのチャネルを、このようにして測定した後、ドライ
バ38により、次のチャネルの測定を行ない、これを繰
返して、ローダミンの蛍光強度の空間分布を得ることが
できる。これが、光パルスの自己相関関数に対応してお
り、これより、パルスの時間幅が求まる。第4図は、こ
れにより求めた光パルスの自己相r!JX関数を示し、
バックグラウンドが生じていない、これに対し、同期検
波を用いない従来の方式による信号を第5図に示す。
After one channel has been measured in this manner, the driver 38 measures the next channel, and this can be repeated to obtain the spatial distribution of rhodamine fluorescence intensity. This corresponds to the autocorrelation function of the optical pulse, and from this the time width of the pulse can be determined. FIG. 4 shows the self-phase r! of the optical pulse determined using this method. Showing the JX function,
In contrast, FIG. 5 shows a signal obtained by a conventional method that does not use synchronous detection and in which no background occurs.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1位相整合の必要が無く、信号が、直接
電気信号として得られるので、装置の構成、並びにその
調整を極めて簡略化できる。
According to the present invention, there is no need for one-phase matching and the signal is directly obtained as an electrical signal, so the configuration of the device and its adjustment can be extremely simplified.

また、測定光の波長によらず、赤外光から紫外光まで、
光学系の変更等を伴なう事無く、測定可能となる。
In addition, regardless of the wavelength of the measurement light, from infrared light to ultraviolet light,
Measurement is possible without changing the optical system.

また、どんな非線形光学効果を利用しても、バックグラ
ウンドを除去することができる。又、外部の電燈等から
の迷光の影響も取除くことができる。よって高感度化が
可能となる。
Furthermore, the background can be removed using any nonlinear optical effect. Furthermore, the influence of stray light from external electric lights etc. can also be removed. Therefore, higher sensitivity is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のオートコリレータの構成
図、第2図は、これにより得られる。光の自己相関関数
を示す図、第3図は本発明の他の実施例のオートコリレ
ータの構成図、第4図はこれにより得ら九る光の自己相
関関数を示す図、第5図は従来方式によって得られる信
号を示す図である。 1・・・測定光、2・・・ビームスプリッタ、3・・・
光遅延部、4・・・ビームミキサ、7.8・・・増幅器
、10・・・電極付非線形光学材料、11・・・X−Y
レコーダ。 31・・・測定光、32・・・ビームスプリッタ、33
・・・ミラー、34.35・・・チョッパ、36・・・
非線形光学材料、37・・・フォトダイオード・アレイ
(PDA)、38・・・PDAドライバ、39・・・差
周波器、40・・・ロックインアンプ、41・・・コン
ピュータ。 不 1 図 4 ヒ゛゛−4ミ午ブ一 時Ifl(べ尤3L岨量) 第 3  図 jl /6フイ石ドアLイ   41 ツユと一一タ寒
 4 図 吟1旬(べPi)11+セフノリ 岨1司(!PF)Aチーネjす
FIG. 1 is a block diagram of an autocorrelator according to an embodiment of the present invention, and FIG. 2 is obtained thereby. FIG. 3 is a diagram showing the autocorrelation function of light, FIG. 3 is a diagram showing the configuration of an autocorrelator according to another embodiment of the present invention, FIG. 4 is a diagram showing the autocorrelation function of light obtained thereby, and FIG. FIG. 3 is a diagram showing a signal obtained by a conventional method. 1...Measuring light, 2...Beam splitter, 3...
Optical delay unit, 4... Beam mixer, 7.8... Amplifier, 10... Nonlinear optical material with electrode, 11... X-Y
recorder. 31...Measuring light, 32...Beam splitter, 33
...Mirror, 34.35...Chopper, 36...
Nonlinear optical material, 37... Photodiode array (PDA), 38... PDA driver, 39... Difference frequency generator, 40... Lock-in amplifier, 41... Computer. No 1 Figure 4 Hi-4 Mi no Ifl (been 3L volume) 3rd Figure jl /6 stone door L 41 Tsuyu and Ichita cold 4 Figure 1 Be Pi 11 + Sefunori 1 Tsukasa (!PF) Acinej

Claims (1)

【特許請求の範囲】 1、光を2つに分離するビームスプリッタと、非線形光
学材料と、電気信号増幅系、及び光学系より成るオート
コリレータにおいて、非線形光学効果として光整流を用
いるため上記非線形光学材料を光の重なり部を検出する
電極付非線形光学材料とした事を特徴とするオートコリ
レータ。 2、光を2つに分けるビームスプリッタと、非線形光学
材料と、信号処理系より成るオートコリレータにおいて
、2つに分けたビームのそれぞれを、光パルスの繰返し
周波数より充分低い別別の周波数で強度変調するための
装置と、その差或は和に相当する周波数で、自己相関関
数に比例した強度を持つ信号を同期検波するための装置
を有することを特徴とするオートコリレータ。
[Claims] 1. In an autocorrelator consisting of a beam splitter that separates light into two, a nonlinear optical material, an electric signal amplification system, and an optical system, the nonlinear optical system uses optical rectification as a nonlinear optical effect. An autocorrelator characterized in that the material is a nonlinear optical material with electrodes that detects overlapping parts of light. 2. In an autocorrelator consisting of a beam splitter that splits light into two, a nonlinear optical material, and a signal processing system, each of the two split beams is divided into two beams with an intensity at a different frequency that is sufficiently lower than the repetition frequency of the optical pulse. An autocorrelator characterized by having a device for modulating, and a device for synchronously detecting a signal having an intensity proportional to an autocorrelation function at a frequency corresponding to the difference or sum thereof.
JP4022887A 1987-02-25 1987-02-25 Autocorrelator Pending JPS63208729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4022887A JPS63208729A (en) 1987-02-25 1987-02-25 Autocorrelator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4022887A JPS63208729A (en) 1987-02-25 1987-02-25 Autocorrelator

Publications (1)

Publication Number Publication Date
JPS63208729A true JPS63208729A (en) 1988-08-30

Family

ID=12574885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4022887A Pending JPS63208729A (en) 1987-02-25 1987-02-25 Autocorrelator

Country Status (1)

Country Link
JP (1) JPS63208729A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819924A2 (en) * 1996-07-16 1998-01-21 Japan Science and Technology Corporation Apparatus and method for measuring characteristics of optical pulses
JP2008535018A (en) * 2005-03-30 2008-08-28 ザ・プロヴォースト・フェローズ・アンド・スカラーズ・オブ・ザ・カレッジ・オブ・ザ・ホーリー・アンド・アンディヴァイディド・トリニティー・オブ・クイーン・エリザベス・ニア・ダブリン Method and apparatus for detecting very short light pulses of a repetitive light pulse signal and determining the pulse width of those light pulses

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819924A2 (en) * 1996-07-16 1998-01-21 Japan Science and Technology Corporation Apparatus and method for measuring characteristics of optical pulses
EP0819924A3 (en) * 1996-07-16 1999-02-10 Japan Science and Technology Corporation Apparatus and method for measuring characteristics of optical pulses
JP2008535018A (en) * 2005-03-30 2008-08-28 ザ・プロヴォースト・フェローズ・アンド・スカラーズ・オブ・ザ・カレッジ・オブ・ザ・ホーリー・アンド・アンディヴァイディド・トリニティー・オブ・クイーン・エリザベス・ニア・ダブリン Method and apparatus for detecting very short light pulses of a repetitive light pulse signal and determining the pulse width of those light pulses

Similar Documents

Publication Publication Date Title
US6504612B2 (en) Electromagnetic wave analyzer
US6008899A (en) Apparatus and method for optical pulse measurement
JP6654948B2 (en) Method and apparatus for measuring pulse light waveform
US10488259B2 (en) Apparatus and method for measurement of optical frequency shifts
US20090238222A1 (en) Laser system employing harmonic generation
US20040196660A1 (en) Terahertz light apparatus
CN108539573A (en) A kind of time domain data compression device and method of ultrashort laser pulse
Beck et al. Joint quantum measurement using unbalanced array detection
US6108085A (en) Interferometric auto-correlator using third-order nonlinearity
CN115241725B (en) Terahertz balance detection system and method based on laser-air effect
JPS63208729A (en) Autocorrelator
CN115542629A (en) Phase amplification method, system and test method based on nonlinear optical harmonic
CN210774362U (en) Vortex topological charge state measuring system based on terahertz time-domain spectroscopy
CN110579280B (en) Vortex wave measurement system and method based on terahertz time-domain spectroscopy technology
CN110514308B (en) Low-noise cross-correlation instrument for laser pulse contrast measurement
JP3378502B2 (en) Optical signal waveform measurement method
RU2687513C1 (en) Device for adaptive time profiling of ultrashort laser pulses
Zürch et al. Characterization of a broadband interferometric autocorrelator for visible light with ultrashort blue laser pulses
Kwiek Interaction of two-photon NOON state with ultrasonic wave
Oksanen et al. A femtosecond autocorrelator with internal calibration
JPH0427843A (en) Low noise pulse light source using laser diode and voltage detector using the light source
Ludmirsky et al. Electro-optical measurements of high potentials in laser produced plasmas with fast time resolution
JP2970667B1 (en) Optical pulse response measurement device
JP3011763U (en) Four-wave mixing pulse measuring device
Hussain et al. Sub-attosecond-precision optical-waveform stability measurements using electro-optic sampling