JPS63207186A - Material for visible-light region optical element - Google Patents

Material for visible-light region optical element

Info

Publication number
JPS63207186A
JPS63207186A JP62039236A JP3923687A JPS63207186A JP S63207186 A JPS63207186 A JP S63207186A JP 62039236 A JP62039236 A JP 62039236A JP 3923687 A JP3923687 A JP 3923687A JP S63207186 A JPS63207186 A JP S63207186A
Authority
JP
Japan
Prior art keywords
superlattice
type semiconductor
transition type
gap
indirect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62039236A
Other languages
Japanese (ja)
Inventor
Masami Kumagai
熊谷 雅美
Toshihide Kokawara
高河原 俊秀
Eiichi Hanamura
榮一 花村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62039236A priority Critical patent/JPS63207186A/en
Publication of JPS63207186A publication Critical patent/JPS63207186A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase transition probability by shifting an indirect transition type semiconductor to a direct transition type semiconductor by introducing superlattice structure to the indirect transition type semiconductor or applying pressure to it. CONSTITUTION:An indirect transition type semiconductor is formed in superlattice structure. Or pressure is applied to the superlattice structure of the indirect transition type semiconductor. Consequently, the indirect transition type semiconductor is shifted to a direct transition type semiconductor. As a result, the band gap of a visible light region larger than a normal III-V direct transition type semiconductor is shaped while interaction with beams can be increased. Accordingly, an optical element having high efficiency is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可視光領域において効率の高い光素子用半導
体材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor material for optical devices that is highly efficient in the visible light region.

〔従来の技術〕[Conventional technology]

これまで、可視光領域の発光素子には、間接遷移型半導
体であるGaPに窒素を添加することによってアイソエ
レクトロニックトラップを形成し、これを介した光遷移
が利用されてきた。しかし、この過程においては遷移確
率はレーザ発振を起こし得る程大きくなることはない。
Until now, light-emitting devices in the visible light region have utilized an isoelectronic trap formed by adding nitrogen to GaP, which is an indirect transition type semiconductor, and optical transition via this trap. However, in this process, the transition probability does not become large enough to cause laser oscillation.

また、過去に、本発明と同種の材料からなる超格子を用
いた半導体装置が出願(特開昭59−197187)さ
れている。そこで主張されている超格子構造は、一超格
子周期中に含まれるGaP分子層数をm、AβP分子層
数をnとしたとき、2≦m≦7 2≦n≦7 n+m≦12 という条件を満足するというものである。
Furthermore, in the past, an application has been filed for a semiconductor device using a superlattice made of the same kind of material as the present invention (Japanese Patent Laid-Open No. 59-197187). The superlattice structure claimed there is based on the following conditions: 2≦m≦7 2≦n≦7 n+m≦12, where m is the number of GaP molecular layers included in one superlattice period and n is the number of AβP molecular layers. The goal is to satisfy the following.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この条件の意義は物理的には明確でなく
、実際に計算した結果、直接遷移型半導体になっていな
いものや、直接遷移型半導体ではあっても光との相互作
用が弱く量子効率の良い材料となりえない構造などを含
んでいることがわかった。特に、実施例として挙げられ
ているn=m=4という場合の発光効率は後述のように
著しく低い(直接遷移型半導体より3桁程度小)ことが
予測される(第2図参照)。従って、このような条件設
定は材料や素子の作製において参考とすることはできな
い。
However, the significance of this condition is not physically clear, and as a result of actual calculations, some semiconductors are not direct transition type semiconductors, and even if they are direct transition type semiconductors, the interaction with light is weak and the quantum efficiency is low. It was found that the material contained a structure that would not make it a good material. In particular, the luminous efficiency in the case of n=m=4, which is cited as an example, is expected to be extremely low (about 3 orders of magnitude lower than that of a direct transition type semiconductor) as described later (see FIG. 2). Therefore, such condition settings cannot be used as a reference in producing materials or devices.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、通常のI/V族直接遷移型半導
体より大きな可視光領域のバンドギャップを持ち、かつ
光との相互作用が大きい、従って高効率な光素子を実現
するための半導体材料を提供することにある。
The present invention has been made in view of these points, and its purpose is to have a band gap in the visible light region that is larger than that of ordinary I/V group direct transition type semiconductors, and which has a high interaction with light. The object of the present invention is to provide a semiconductor material for realizing an optical device with a large amount of energy and therefore high efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成するために本発明は、間接遷移型
半導体を超格子構造にすることにより又は間接遷移型半
導体の超格子構造に圧力を印加することにより間接遷移
型半導体を直接遷移型半導体に転移させるようにしたも
のである。
In order to achieve such an object, the present invention converts an indirect transition type semiconductor into a direct transition type semiconductor by making the indirect transition type semiconductor into a superlattice structure or by applying pressure to the superlattice structure of the indirect transition type semiconductor. It was designed so that it would be transferred to.

〔作用〕[Effect]

本発明に係わる可視光領域光素子用材料においては、遷
移確率が増強される。
In the material for optical devices in the visible light region according to the present invention, the transition probability is enhanced.

〔実施例〕〔Example〕

間接遷移型半導体が光遷移を起こすためには、フォノン
散乱などによる運動量供給が不可欠である。このため、
間接遷移過程は二次の過程で表わされ、その遷移確率は
通常小さな値を示す。一般に、II[/V族半導体にお
いて、可視光領域の光のエネルギーに対応するバンドギ
ャップを有する材料は間接遷移型半導体である。従って
、これまで可視光領域の発光素子には間接遷移型半導体
であるGaPに窒素を添加することによってアイソエレ
クトロニックトラップを形成し、これを介した光遷移が
利用されてきた。しかし、この過程においては遷移確率
はレーザ発振を起こし得る程大きくなることはない。
In order for indirect transition type semiconductors to cause optical transition, momentum supply through phonon scattering and the like is essential. For this reason,
An indirect transition process is represented by a quadratic process, and its transition probability usually exhibits a small value. Generally, among II[/V group semiconductors, a material having a band gap corresponding to the energy of light in the visible light region is an indirect transition type semiconductor. Therefore, until now, light-emitting devices in the visible light region have utilized an isoelectronic trap formed by adding nitrogen to GaP, which is an indirect transition type semiconductor, and optical transition via this trap. However, in this process, the transition probability does not become large enough to cause laser oscillation.

本発明は、可視光領域光素子用材料において、間接遷移
型半導体に対して超格子構造を導入したり、圧力を印加
したりすることにより、間接遷移型半導体を直接遷移型
半導体に転移させ、これにより遷移確率を増強するもの
である。
The present invention provides a material for an optical device in the visible light region, in which an indirect transition type semiconductor is transferred to a direct transition type semiconductor by introducing a superlattice structure into the indirect transition type semiconductor or applying pressure. This increases the transition probability.

まず、間接遷移型半導体に対して超格子構造を導入する
場合について説明する。超格子構造の形成は、共に間接
遷移型半導体であるGaPとARPを(001)方向に
成長させることにより行なう。
First, a case will be described in which a superlattice structure is introduced into an indirect transition type semiconductor. The superlattice structure is formed by growing GaP and ARP, both indirect transition type semiconductors, in the (001) direction.

すなわち、GaP/Aj2P(001)超格子の形成で
ある。ここで、これらの材料は共にX点に伝導帯の底を
持ち、バンドギャップはそれぞれ2635および2.5
0eVである。また、これらの材料は非常に近い格子定
数を有しており、はとんど格子整合した超格子の作製が
可能である。
That is, the formation of a GaP/Aj2P (001) superlattice. Here, both of these materials have conduction band bottoms at the X point, and the bandgaps are 2635 and 2.5, respectively.
It is 0eV. Furthermore, these materials have very similar lattice constants, making it possible to create a superlattice with almost lattice matching.

超格子等の構造の導入に基づく間接遷移/直接遷移間の
移転はバンドフォルディング効果およびバンドミキシン
グ効果によっておこされるが、従来の提案(前記特開昭
59−197187)は、このうちバンドミキシング効
果を全く無視しており、物理的には無意味な描像の下で
行なわれてきた。本発明は実際の理論計算に基づき全プ
リルアンゾーンにおけるバンド構造を確認した上での提
案である。
The transfer between indirect transition and direct transition based on the introduction of a structure such as a superlattice is caused by the band folding effect and the band mixing effect. It has been completely ignored, and has been carried out based on a physically meaningless image. The present invention was proposed after confirming the band structure in all Prillouin zones based on actual theoretical calculations.

超格子の解析の前提条件を次に示す。The preconditions for superlattice analysis are shown below.

■ 伝導帯再現の精度を向上させるため、通常のSP”
基底に励起S状態S″′を加えた5p3s”強結合法を
用いた。このことは、例えば「フォーグル、ヒャルマル
ソンおよびダウ著、物理化学固体誌、44巻、365頁
、 1983J (P、Vogl、11.tljarm
arson&J、D、Dow、 J、Phys、Che
m、5olids、 44. p、365.1983)
に記載されている。
■ To improve the accuracy of conduction band reproduction, normal SP”
A 5p3s'' strong coupling method was used in which an excited S state S'' was added to the basis. This can be seen, for example, in ``Vogl, Hjalmarsson and Dow, Journal of Physical Chemistry, Solid State Science, Vol. 44, p. 365, 1983J (P. Vogl, 11.tljarm
arson & J, D, Dow, J, Phys, Che.
m, 5olids, 44. p, 365.1983)
It is described in.

■ 従来の解析の精度を上げる目的で、第2近接相互作
用まで考慮した。
■ In order to improve the accuracy of conventional analysis, even second-proximity interactions were taken into account.

すなわち、超格子の解析は各分子層(陽イオンと陰イオ
ンの対の層、 cation−anion−pair)
に対応する二次元波動函数を基底として、 1ψ〉=Σr((2)1φ(m)〉+Σf (n) l
φ(n)〉・・・・(1)明細書の浄W(内容に変更な
し H= 吐 も  q 口二ン ぞく−シく暮k (町 (+1 ( なる波動函数を用いて次式(2)のハミルトニアン(H
amiltonian) Hを対角化することに相当す
る。ハミルトニアンのマトリクスエレメントは、(3)
〜(7)式に示す5×5のサブマトリクスを含んでいる
In other words, the analysis of the superlattice consists of each molecular layer (cation-anion-pair).
Based on the two-dimensional wave function corresponding to 1ψ〉=Σr((2)1φ(m)〉+Σf (n) l
φ(n)〉・・・(1) Purification W of the specification (no change in content H = vomit q mouth 2 zoku - shikugure k (machi (+1 () Using the wave function that becomes (2) Hamiltonian (H
amiltonian) This corresponds to diagonalizing H. The matrix elements of Hamiltonian are (3)
- Contains a 5×5 submatrix shown in equation (7).

(5)式は分子層内第2近接相互作用を表わし、(6)
式、(7)式は第1近接相互作用、(8)式は分子層間
第2近接相互作用を表わす。
Equation (5) represents the second neighbor interaction within the molecular layer, and (6)
Equation (7) represents the first proximity interaction, and equation (8) represents the second proximity interaction between molecular layers.

解析結果として、第1図に、この超格子の構造変化によ
る間接遷移/直接遷移間の転移のようすを示す。第1図
では、m+n≦10(m:GaP分子層数、n:Aj2
P分子層数)の範囲のすべての組合せのうちで直接遷移
型半導体になっている構造を○で示しである。従って、
第1図の○で示された構造の超格子だけが光素子(特に
発光素子)用材料として有効である。しかし、直接遷移
型半導体になっていることはこの材料が有効であるため
の必要条件にすぎず、加えてこの材料と光との相互作用
の大きさを評価しなければならない。
As an analysis result, FIG. 1 shows the transition between indirect transition and direct transition due to the structural change of this superlattice. In Figure 1, m+n≦10 (m: number of GaP molecular layers, n: Aj2
Structures that are direct transition type semiconductors among all combinations within the range of P molecular layer number are indicated by ○. Therefore,
Only the superlattice with the structure indicated by the circle in FIG. 1 is effective as a material for optical devices (particularly light emitting devices). However, being a direct-transition semiconductor is only a necessary condition for the material to be effective; in addition, the magnitude of the material's interaction with light must be evaluated.

第2図に、物質と光との相互作用の大きさを表わすパラ
メータである振動子強度fの超格子構造依存性を示す。
FIG. 2 shows the superlattice structure dependence of the oscillator strength f, which is a parameter representing the magnitude of the interaction between matter and light.

第2図において、横軸は超格子の周期m十n (原子層
)を示し、縦軸は振動子強度fを示し、点線Sはバルク
のGaPのrlsV〜rlcの振動子強度fを示す。ま
た、○、・はm+n=奇数の場合、△、ムはm+n−偶
数の場合を示し、○、△は、m+n=Nのとき、m、n
のすべての組合せのうち最大の振動子強度fを与える組
合せの値を示す。・、ムは、同様に、最小の振動子強度
fを与える組合せの値を示す。第2図から、m、nがそ
れぞれ奇数でかつm+nが小さい程、振動子強度fが大
きく、従って、光との相互作用が大きく光素子用材料と
して有効であることがわかる。
In FIG. 2, the horizontal axis shows the period mn (atomic layers) of the superlattice, the vertical axis shows the oscillator strength f, and the dotted line S shows the oscillator strength f of rlsV to rlc of bulk GaP. In addition, ○,・ indicate the case where m+n=odd number, △,mu indicate the case where m+n-even number, ○, △ indicate the case where m+n=N, m, n
The value of the combination that gives the maximum oscillator strength f among all combinations of is shown. Similarly, .mu. and .mu.indicate the value of the combination that gives the minimum oscillator strength f. From FIG. 2, it can be seen that the more odd numbers m and n are, and the smaller m+n, the greater the vibrator strength f, and therefore the greater the interaction with light, making it more effective as a material for optical devices.

次に、これらの超格子のバンドギャップの構造依存性を
第3図に示す。第3図において、横軸は一超格子周期中
に含まれるAβP原子層の数nを示し、縦軸はバンドギ
ャップを示す。また、○はm + n = 4の場合、
ムはm+n=sの場合、×はm+n=1Qの場合、Δは
m+n=20の場合、Oはm+n=30の場合を示す。
Next, the structure dependence of the band gap of these superlattices is shown in FIG. In FIG. 3, the horizontal axis indicates the number n of AβP atomic layers included in one superlattice period, and the vertical axis indicates the band gap. Also, if ○ is m + n = 4,
Symbol indicates the case where m+n=s, × indicates the case where m+n=1Q, Δ indicates the case where m+n=20, and O indicates the case where m+n=30.

第3図から、Ga P / A I P超格子のバンド
ギャップはGaPのバンドギャップ2.35eVとAj
2Pのバンドギヤ・ツブ2.50の間にあり、おおよそ
緑色領域に属することがわかる。結局、上の事柄から、
(m、n)が(LL)、(1、3L(L5L(3,3)
、(5,1)、(L7)、(3,5)、(5,3L(7
,1)という構造のG a P / A j2 P (
001)超格子が可視光領域光素子用材料として有効で
ある。
From Figure 3, the bandgap of the GaP/AIP superlattice is the bandgap of GaP, 2.35eV, and Aj
It can be seen that the band gear knob of 2P is between 2.50 and approximately belongs to the green area. Finally, from the above,
(m, n) is (LL), (1, 3L (L5L(3, 3)
, (5,1), (L7), (3,5), (5,3L(7
, 1) with the structure G a P / A j2 P (
001) Superlattices are effective as materials for optical devices in the visible light region.

次に、間接遷移型半導体の超格子構造に圧力を加えて直
接遷移型半導体に転移させる場合について説明する。半
導体に圧力を加えたときバンド構造は変化するが、その
変化の仕方はプリルアンゾーンの位置に依存する。特に
、超格子のように、それ自体が異方性を持っている場合
、印加する圧力の方向によってハンド構造をある程度人
為的に変化させることができる。
Next, a case will be described in which pressure is applied to the superlattice structure of an indirect transition type semiconductor to transform it into a direct transition type semiconductor. When pressure is applied to a semiconductor, the band structure changes, but the way the band structure changes depends on the position of the Prillouin zone. In particular, when the hand structure itself has anisotropy, such as a superlattice, the hand structure can be artificially changed to some extent depending on the direction of the applied pressure.

第4図〜第6図に、GaP/AffiP(001)超格
子に、超格子軸方向、静水的又は超格子面内方向にl 
Q k b a rの圧力を印加したときの間接遷移/
直接遷移間の転移の様子を示す。第4図〜第6図におい
て、○は直接遷移型の構造を示し、◎は、第1図と第4
図〜第6図の比較から明らかなように、圧力印加により
間接遷移型から直接遷移型に転移する構造を示す。また
、◎は、−1格子周期中に含まれる(GaP分子層数、
A/!P分子層数)の組合せとして、m、nが奇数で、
かつm+n<12であり、超格子面内に平行な方向又は
静水的に圧力を印加した場合の構造を示す。
Figures 4 to 6 show that the GaP/AffiP (001) superlattice has l
Indirect transition when a pressure of Q k b a r is applied /
The transition between direct transitions is shown. In Figures 4 to 6, ○ indicates a direct transition type structure, and ◎ indicates the structure in Figures 1 and 4.
As is clear from the comparison of FIGS. 6 to 6, the structure shows a transition from an indirect transition type to a direct transition type upon application of pressure. ◎ is included in -1 lattice period (number of GaP molecular layers,
A/! As a combination of P molecular layer number), m and n are odd numbers,
and m+n<12, and the structure is shown when pressure is applied in a direction parallel to the superlattice plane or hydrostatically.

第4図〜第6図から、超格子軸方向に圧力を印加した場
合は間接遷移型になるものが多く、静水的又は超格子面
内方向に圧力を印加した場合には直接遷移型になるもの
が多くなることがわかる。
From Figures 4 to 6, when pressure is applied in the direction of the superlattice axis, most cases become indirect transition type, and when pressure is applied hydrostatically or in the superlattice in-plane direction, it becomes direct transition type. You can see that there will be a lot of things.

このように、Ga P/AA P(001)超格子では
、静水的又は超格子面内方向に圧力を印加することによ
り、有効な構造の自由度を増すことができる。
Thus, in the Ga P/AA P(001) superlattice, the effective structural freedom can be increased by applying pressure hydrostatically or in the superlattice in-plane direction.

上記実施例では、G a P / A 7IP超格子に
限定した解析をもとにして、光素子用材料として有効な
超格子構造を提案したが、一般に井戸層に間接遷移型半
扉体を用いた超格子においても基本的には同様な振舞が
見られる。例えば、G a P / Z n5Se、A
EP/ZnSSe、、Si/GaP、A1 A s /
 Z n S eのような半導体材料の組合せによる超
格子が光素子用材料として有用である。
In the above example, we proposed a superlattice structure that is effective as a material for optical devices based on analysis limited to the G a P / A 7IP superlattice. Basically, similar behavior can be seen in the superlattice. For example, G a P / Z n5Se, A
EP/ZnSSe, , Si/GaP, A1 A s /
A superlattice formed by a combination of semiconductor materials such as ZnSe is useful as a material for optical devices.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、間接遷移型半導体を超格
子構造にすることにより又は間接遷移型半導体の超格子
構造に圧力を印加することにより間接遷移型半導体を直
接遷移型半導体に転移させたことにより、通常のI[[
/V族直接遷移型半導体よりも大きな可視光領域のバン
ドギャップを有すると共に光との相互作用を大きくでき
るので、高効率な光素子を実現することができる効果が
ある。
As explained above, the present invention transforms an indirect transition type semiconductor into a direct transition type semiconductor by making the indirect transition type semiconductor into a superlattice structure or by applying pressure to the superlattice structure of the indirect transition type semiconductor. By this, the normal I[[
It has a larger bandgap in the visible light region than the /V group direct transition type semiconductor and can increase interaction with light, so it has the effect of realizing a highly efficient optical device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はGa P/Aj2 P(001)超格子の構造
変化による間接遷移/直接遷移間の転移の様子を示す説
明図、第2図はGaP/AIP超格子のr点における振
動子強度の構造依存性を示すグラフ、第3図はGa P
/A/! P(001)超格子の直接ギャップの大きさ
の構造依存性を示すグラフ、第4図〜第6図はGa P
/A6 P(001)超格子に超格子軸方向、静水的又
は超格子面内方向に10kbarの圧力を印加したとき
の間接遷移/直接遷移間の転移の様子についての解析結
果を示す説明図である。
Figure 1 is an explanatory diagram showing the transition between indirect transition and direct transition due to structural changes in the GaP/Aj2P(001) superlattice, and Figure 2 is an illustration of the oscillator strength at point r of the GaP/AIP superlattice. Graph showing structural dependence, Figure 3 is GaP
/A/! Graphs showing the structure dependence of the direct gap size of P(001) superlattice, Figures 4 to 6 are for Ga P
/A6 P(001) An explanatory diagram showing the analysis results of the transition between indirect transition/direct transition when a pressure of 10 kbar is applied to the superlattice in the superlattice axis direction, hydrostatically, or in the superlattice in-plane direction. be.

Claims (3)

【特許請求の範囲】[Claims] (1)間接遷移型半導体を超格子構造にすることにより
又は間接遷移型半導体の超格子構造に圧力を印加するこ
とにより前記間接遷移型半導体を直接遷移型半導体に転
移させたことを特徴とする可視光領域光素子用材料。
(1) The indirect transition semiconductor is transformed into a direct transition semiconductor by forming the indirect transition semiconductor into a superlattice structure or by applying pressure to the superlattice structure of the indirect transition semiconductor. Materials for optical devices in the visible light region.
(2)超格子はGaP/AlP(001)の超格子であ
り、一超格子周期中に含まれるGaP分子層数mとAl
P分子層数nとの組合せ(m、n)が(1、1)(1、
3)、(1、5)、(3、3)、(5、1)、(1、7
)、(3、5)、(5、3)、(7、1)であることを
特徴とする特許請求の範囲第1項記載の可視光領域光素
子用材料。
(2) The superlattice is a GaP/AlP (001) superlattice, and the number m of GaP molecular layers included in one superlattice period and the Al
The combination (m, n) with the number n of P molecular layers is (1, 1) (1,
3), (1, 5), (3, 3), (5, 1), (1, 7
), (3,5), (5,3), (7,1), the material for a visible light region optical device according to claim 1.
(3)超格子はGaP/AlP(001)の超格子であ
り、一超格子周期中に含まれるGaP分子層数mとAl
P分子層数nとの組合せとして、m、nが奇数であり、
m+n≦12であることを特徴とする特許請求の範囲第
1項記載の可視光領域光素子用材料。
(3) The superlattice is a GaP/AlP (001) superlattice, and the number m of GaP molecular layers included in one superlattice period is
As a combination with the number n of P molecular layers, m and n are odd numbers,
The material for a visible light region optical device according to claim 1, characterized in that m+n≦12.
JP62039236A 1987-02-24 1987-02-24 Material for visible-light region optical element Pending JPS63207186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039236A JPS63207186A (en) 1987-02-24 1987-02-24 Material for visible-light region optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039236A JPS63207186A (en) 1987-02-24 1987-02-24 Material for visible-light region optical element

Publications (1)

Publication Number Publication Date
JPS63207186A true JPS63207186A (en) 1988-08-26

Family

ID=12547494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039236A Pending JPS63207186A (en) 1987-02-24 1987-02-24 Material for visible-light region optical element

Country Status (1)

Country Link
JP (1) JPS63207186A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187986A (en) * 1981-05-15 1982-11-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element
JPS59197187A (en) * 1983-04-07 1984-11-08 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Semiconductor device
JPS61244086A (en) * 1985-04-22 1986-10-30 Sharp Corp Semiconductor laser element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187986A (en) * 1981-05-15 1982-11-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element
JPS59197187A (en) * 1983-04-07 1984-11-08 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Semiconductor device
JPS61244086A (en) * 1985-04-22 1986-10-30 Sharp Corp Semiconductor laser element

Similar Documents

Publication Publication Date Title
Solinas et al. Semiconductor-based geometrical quantum gates
Li et al. InAs/GaAs single-electron quantum dot qubit
Westwood Materials for advanced studies and devices
Braun et al. Nonlinear dynamics of the Frenkel–Kontorova model
Feddi et al. Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot
Spiller et al. Entanglement distribution for a practical quantum-dot-based quantum processor architecture
Andrade et al. Topological origin of flat bands as pseudo-Landau levels in uniaxial strained graphene nanoribbons and induced magnetic ordering due to electron-electron interactions
JPS6178189A (en) Semiconductor superlattice structure
JPS63207186A (en) Material for visible-light region optical element
Sato et al. Hyperfine interactions and magnetism of 3d transition-metal-impurities in II–VI and III–V compound-based diluted magnetic semiconductors
Kuroda et al. Self-organized quantum dots of zinc-blende MnTe grown by molecular beam epitaxy
Scott Self-assembly and switching in ferroelectrics and multiferroics
Lee et al. Density of states of quantum dots and crossover from 3D to Q0D electron gas
Nojima Excitonic polaritons in one-dimensional photonic crystals
Chaves et al. Topologically protected moiré exciton at a twist-boundary in a van der Waals heterostructure
Kim et al. Anomalous luminescence peak shift of SiGe/Si quantum well induced by self-assembled Ge islands
Kłos et al. Conditions of coexistence of Tamm and Shockley states in a superlattice with a perturbed surface
JPS6353914A (en) Manufacture of semiconductor device
Wang et al. Single crystal growth of relaxor ferroelectric Ba2PrFeNb4O15 by the optical floating zone method
Yahiro et al. Growth mode of (111) oriented spinel type ZnFe2O4 thin film by laser-molecular beam epitaxy technique
GREENE et al. Frontiers of Materials Research: A Decadal Survey
De Rinaldis et al. Intrinsic dipole–dipole excitonic coupling in GaN quantum dots: application to quantum information processing
Matsuura et al. Topologically linked crystals
Dugaev et al. Electron Energy Spectrum and Wave Functions in Quantum Wells on the Base ofIV‐VI Narrow‐Gap Semiconductors
Ihm et al. Investigation of localization in an infinite superlattice