JPS63207001A - Conducting composition - Google Patents

Conducting composition

Info

Publication number
JPS63207001A
JPS63207001A JP4116287A JP4116287A JPS63207001A JP S63207001 A JPS63207001 A JP S63207001A JP 4116287 A JP4116287 A JP 4116287A JP 4116287 A JP4116287 A JP 4116287A JP S63207001 A JPS63207001 A JP S63207001A
Authority
JP
Japan
Prior art keywords
weight
oxide
parts
glass
conductive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4116287A
Other languages
Japanese (ja)
Other versions
JPH0526284B2 (en
Inventor
栄一 浅田
哲也 田中
浜田 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP4116287A priority Critical patent/JPS63207001A/en
Publication of JPS63207001A publication Critical patent/JPS63207001A/en
Publication of JPH0526284B2 publication Critical patent/JPH0526284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、絶R基板上に厚膜導体を焼付形成するための
導電性組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrically conductive composition for baking thick film conductors onto an extremely curved substrate.

1見至旦j 従来より、導電性組成物をセラミックス、ガラスなどの
絶縁基板上にスクリーン印刷等の方法によって塗布し、
高温で焼成することにより電子回路の配線導体やコンデ
ンサ、抵抗等の電極を製造することが広く行われている
。この導電性組成物は主としてAg、Au 、Pd 、
Pt 、Cu 、Ni等の導電性粉末と、ガラス、金属
酸化物などの無機結合剤を有機ビヒクル中に分散させた
ものであり、一般に高導電性で、基板との接着強度が強
く、その熱による劣化が小さく繰返し焼成にも耐えるこ
と、半田濡れ性が良く、しかも半田への溶解性が小さい
ことなどの特性が要求される。
Conventionally, a conductive composition is applied onto an insulating substrate such as ceramics or glass by a method such as screen printing.
It is widely practiced to manufacture wiring conductors for electronic circuits, electrodes for capacitors, resistors, etc. by firing at high temperatures. This conductive composition mainly consists of Ag, Au, Pd,
It is made by dispersing conductive powder such as Pt, Cu, Ni, etc. and an inorganic binder such as glass or metal oxide in an organic vehicle.It is generally highly conductive, has strong adhesive strength with the substrate, and has high heat resistance. It is required to have characteristics such as low deterioration due to drying, resistance to repeated firing, good solder wettability, and low solubility in solder.

厚膜導体と基板との接着は無機結合剤により達成される
が、通常接着性と半田濡れ性は相反する特性であり、普
通強度を上げる目的で結合剤を多く配合すると、結合剤
が焼成体表面にも多く残存し半田濡れ性が阻害される。
Adhesion between the thick film conductor and the substrate is achieved using an inorganic binder, but adhesion and solder wettability are usually contradictory properties, and if a large amount of binder is added to increase the strength, the binder will cause the sintered product to A large amount remains on the surface and inhibits solder wettability.

半田濡れ性を損うことなく接着性の向上を図り、特に熱
エージングによる接着強度の低下を小さくするために従
来より種々のガラスや添加剤が試みられている。例えば
、特公昭61−51361号公報は導電性組成物にBi
 2esとZnOを添加することにより半田濡れ性、接
着強度を改善することが示されており、特開昭56−5
2805号公報にはAQ系導体に対して硼珪酸鉛亜鉛系
の特殊な組成のガラスを使用することが記載されている
。又本出願人の出願である特開昭58−87164号公
報には酸化亜鉛−酸化コバルト系の固溶体を添加するこ
とにより熱劣化を改善することが開示されている。
Various glasses and additives have been tried in the past in order to improve adhesion without impairing solder wettability, and in particular to reduce the decrease in adhesive strength due to thermal aging. For example, Japanese Patent Publication No. 61-51361 discloses that Bi is added to the conductive composition.
It has been shown that the addition of 2es and ZnO improves solder wettability and adhesive strength.
Publication No. 2805 describes the use of glass with a special composition of lead-zinc borosilicate for AQ-based conductors. Furthermore, Japanese Patent Application Laid-open No. 58-87164 filed by the present applicant discloses that thermal deterioration can be improved by adding a zinc oxide-cobalt oxide solid solution.

明が解決すべき間 しかし近年、回路の小形化及びコストダウンの要求が強
く、電極や導体パターンの面積をますます小さく、しか
も導体の膜厚を薄くすることが求められている。このた
め接着強度がより強く、又半田濡れ性もより一層良好な
ものが望まれており、前述の従来の導電性組成物を以て
しても未だ強度、半田濡れ性の双方を満足するものが得
られていない。
However, in recent years, there has been a strong demand for circuit miniaturization and cost reduction, and there is a demand for smaller and smaller areas of electrodes and conductor patterns, as well as thinner conductor films. For this reason, there is a desire for a material with stronger adhesive strength and better solder wettability, and even with the conventional conductive compositions described above, it is still difficult to find one that satisfies both strength and solder wettability. It has not been done.

又一般に厚膜導体の接着強度は焼成膜厚依存性があり、
膜厚が薄いと充分な強度を青ることができなくなる。例
えば現在回路導体として広く使用されているAg/Pd
系やA(J/Pt系導体は通常膜厚12〜20uで設計
されており、10μs以下では接着強度が極めて弱く実
用上問題があった。
In addition, the adhesive strength of thick film conductors generally depends on the fired film thickness.
If the film thickness is too thin, sufficient strength cannot be achieved. For example, Ag/Pd, which is currently widely used as a circuit conductor.
Type and A(J/Pt type conductors are usually designed to have a film thickness of 12 to 20 μs, and if the adhesive strength is less than 10 μs, the adhesive strength is extremely weak, which poses a practical problem.

更に焼成時間を矧縮しプロセスコストを下げるため、最
近では赤外線炉による高速焼成が行われるが、従来使用
されている11電性組成物を高速焼成すると、特に膜厚
が厚い場合に導体表面のガラス浮き、パターンからのガ
ラスのしみ出し、発泡等の現象が起こって半田濡れ性や
接着強度の低下を招き、良好な導体を形成することがで
きなかった。
Furthermore, in order to shorten the firing time and lower the process cost, high-speed firing using an infrared furnace has recently been carried out, but when the conventionally used 11-electroconductivity composition is fired at high speed, the conductor surface may be damaged, especially when the film is thick. Phenomena such as glass floating, glass seeping out from the pattern, and foaming occurred, leading to a decrease in solder wettability and adhesive strength, making it impossible to form a good conductor.

本発明は上記の要求に応えるべ(、半田濡れ性が優れて
おりかつ基板との接着強度、特に熱エージング後の接着
強度が更に改善され、薄膜化も可能な導電性組成物を提
供することを目的とする。
The present invention aims to meet the above-mentioned demands (to provide a conductive composition that has excellent solder wettability, further improves adhesive strength with a substrate, especially adhesive strength after heat aging, and can be made into a thin film. With the goal.

本発明の他の目的は、赤外線高速焼成炉でも焼成可能な
導電性組成物を提供することにある。
Another object of the present invention is to provide a conductive composition that can be fired even in an infrared high-speed firing furnace.

問 1を 決するための 段 本発明は、導電性金属粉末と無機結合剤とが有機ビヒク
ル中に分散されてなる導電性組成物において、無機結合
剤が (a) 8203 、Zn O及びPbOの合計100
重量%に対してMOO30,5〜5.01ffi%、M
nO20,5〜3.0重量%、TiO20,5〜3.0
重量%を添加してなるガラス1重量部と、 (b)酸化ビスマス1.0〜5.0重量部と、(c)酸
化マンガン0.10〜1 、00@量部と、(d)酸化
亜鉛−酸化コバルト系固溶体から選ばれる1種又は2種
以上0.10〜1.00重量部とからなることを特徴と
するものであり、又第2の発明は上記(a)〜(d)成
分に更に(e) R化りロム及び酸化チタンから選ばれ
る1種又は21a以上の酸化物0.02〜0.30重量
部と、(f)酸化鉛0.10〜1.00重量部とを添加
した無機結合剤を使用することを特徴とする導電性組成
物である。
Steps for solving Question 1 The present invention provides a conductive composition comprising a conductive metal powder and an inorganic binder dispersed in an organic vehicle, in which the inorganic binder is (a) the sum of 8203, ZnO and PbO. 100
MOO30.5-5.01ffi% based on weight%, M
nO20.5-3.0% by weight, TiO20.5-3.0
(b) 1.0 to 5.0 parts by weight of bismuth oxide, (c) 0.10 to 1.00 parts by weight of manganese oxide, and (d) oxidation. The second invention is characterized in that it consists of 0.10 to 1.00 parts by weight of one or more selected from zinc-cobalt oxide solid solutions, and the second invention is characterized by comprising the above (a) to (d). The ingredients further include (e) 0.02 to 0.30 parts by weight of one type or 21a or more oxide selected from R-chromium oxide and titanium oxide, and (f) 0.10 to 1.00 parts by weight of lead oxide. This is a conductive composition characterized by using an inorganic binder added with.

1皿 本発明は特定の新規な組成のガラスと特定の添加剤とを
組合わせた無目結合剤を用いることにより、接着強度、
エージング強度及び半田濡れ性を著しく改善するもので
ある。又第2の発明は、更に赤外線高速焼成を可能にす
る。
1 Dish The present invention uses a solid bonding agent that combines glass with a specific new composition and specific additives to improve adhesive strength and
This significantly improves aging strength and solder wettability. Moreover, the second invention further enables high-speed infrared firing.

本発明者等は導電性組成物の設計に際し、厚膜導体の膜
構造として次のようなものを理想的な形と考えた。
When designing a conductive composition, the present inventors considered the following film structure to be an ideal form for a thick film conductor.

(1)結合剤であるガラス質が焼成膜表面付近には極め
て少なく、基板側になるべく多く分布していること。
(1) There is very little vitreous material as a binder near the surface of the fired film, and it is distributed as much as possible on the substrate side.

(2)導体膜の金B層と、基板付近のガラス層の間の部
分では、焼結した金属粉末の間にガラス質が緻密に食込
んだ金属−ガラスマトリクス構造が形成され、ガラス層
と金a層の接触面積が大きくなっており、両者が強固に
接着していること。
(2) In the area between the gold B layer of the conductor film and the glass layer near the substrate, a metal-glass matrix structure is formed in which glass is densely embedded between the sintered metal powders, and the glass layer and The contact area of the gold a layer is large, and the two are firmly adhered.

(3)更に形成された金属−ガラスマトリクス構造が熱
によって変化しにくいこと。
(3) Furthermore, the formed metal-glass matrix structure is difficult to change due to heat.

これらの条件を兼備えた導体膜構造であれば、膜表面で
はガラスがほとんど存在しないために半田の濡れが良く
、又基板との接着強度及び膜の強度が非常に強い導体と
なり、焼成後に熱履歴を受けても強度の劣化が起こりに
くいことが予想される。そのためこのような膜II4造
を作るべく検討を重ねた結果、本発明の新規なガラス組
成を見出した。
A conductor film structure that meets these conditions will have good solder wettability because there is almost no glass on the film surface, and the film will have a very strong adhesion strength to the substrate and the film will become a conductor, and will resist heat after firing. It is expected that the strength will not deteriorate easily even after being exposed to history. Therefore, as a result of repeated studies to create such a membrane II4 structure, a novel glass composition of the present invention was discovered.

本発明で使用するガラス(a)は軟化点近傍での粘性流
動が大きいため焼成時ガラスが基板側へ速やかに移動し
ていくが、同時に軟化点と結晶化温度の差が小さく軟化
俊速やかに結晶化が起こるので、ガラスが全部移動せず
一部が膜中に固定されて前述の金属−ガラスマトリクス
を作り易いという特徴がある。
The glass (a) used in the present invention has a large viscous flow near the softening point, so the glass quickly moves toward the substrate during firing, but at the same time, the difference between the softening point and the crystallization temperature is small, and the glass softens quickly. Since crystallization occurs, the glass does not move entirely, but a portion is fixed in the film, making it easy to form the metal-glass matrix described above.

ガラスの主成分はPb O,8203及びZnOであり
、Si 02を含まないため軟化点付近での流動性が大
きい。好ましい組成範囲は、この三成分の合計を101
1ffi%としたとき820322〜35fi1%、Z
n 020〜50重量%、Pb 013〜57m!1%
である。B2O3が22重量%未満ではガラス化しにク
ク35重量%を越えると結晶化しない。znoが20重
量%未満では結晶化しにくく、50重量%を越えるとガ
ラス化しない。PbOが13重量%未満では軟化点が高
すぎ、57重量%を越えると低すぎる。添加成分として
のMOO3はガラスの流動性を増すことにより金属を充
分に濡らし、ガラスを基板側へ速やかに移動させる作用
を有し、上記主成分100重量%に対し0.5〜5.0
重量%配合される。  0.5重量%未満では半田の濡
れが悪く、5゜0重量%を越えるとガラス化しにくい。
The main components of the glass are Pb 2 O, 8203 and ZnO, and because it does not contain Si 0 2 , it has high fluidity near its softening point. The preferred composition range is that the total of these three components is 101
When 1ffi%, 820322~35fi1%, Z
n 020-50% by weight, Pb 013-57m! 1%
It is. If B2O3 is less than 22% by weight, it becomes vitrified, but if it exceeds 35% by weight, it does not crystallize. When zno is less than 20% by weight, it is difficult to crystallize, and when it exceeds 50% by weight, it is not vitrified. If PbO is less than 13% by weight, the softening point is too high, and if it exceeds 57% by weight, it is too low. MOO3 as an additive component has the effect of sufficiently wetting the metal by increasing the fluidity of the glass and quickly moving the glass to the substrate side, and has a content of 0.5 to 5.0% relative to 100% by weight of the main component.
% by weight is added. If it is less than 0.5% by weight, solder wetting is poor, and if it exceeds 5.0% by weight, it is difficult to vitrify.

MnO2とTi 02はいずれも過度の粘性流動を抑え
る目的で配合されるもので、強度アップ、赤外線焼成時
のガラス浮き防止、更に繰返し焼成時のガラスの軟化流
動防止の効果がある。どちらもガラスの主成分100重
量%に対して0.5重量%より少ないと効果がなく、又
3.0重量%を越えるとガラス化しにくくなる。
Both MnO2 and Ti02 are blended for the purpose of suppressing excessive viscous flow, and have the effect of increasing strength, preventing glass from floating during infrared firing, and further preventing softening and flow of glass during repeated firing. In either case, if the amount is less than 0.5% by weight based on 100% by weight of the main component of the glass, there is no effect, and if it exceeds 3.0% by weight, vitrification becomes difficult.

このガラスを使用することにより、前述の望ましい11
9M4造を作り、優れた特性の導体膜を形成し得る。し
かしながらガラス単独では接着強度、半田付は性等の性
能に関してまだやや不満な点かありた。
By using this glass, the above-mentioned desirable 11
It is possible to make a 9M4 structure and form a conductive film with excellent characteristics. However, with glass alone, there were still some dissatisfaction with performance such as adhesive strength and solderability.

本発明において、ガラスに加えて更に配合される無機添
加剤としての酸化マンガン及び酸化亜鉛−酸化コバルト
系固溶体は、ガラスの作用を補い、増強する働きをする
。酸化マンガンは金属−ガラスマトリクス411造を強
化して緻密な構造とするもので、強度向上と共に繰返し
焼成時のガラスの軟化流動を防止する効果を有しており
、ガラス1重量部に対して0.10〜1.00重量部配
合される。0.10重量部より少ないと接着強度が充分
でなく、1.00重8部を越えると緻密な膜が形成でき
ず強度及び耐半田溶解性が悪化する。酸化亜鉛−酸化コ
バルト系固溶体は基板と反応して基板と導体膜中のガラ
ス質との接着強度を改善するもので、特開昭58−87
161公報に記載されている酸化亜鉛−酸化コバルト固
溶体、酸化亜鉛−酸化コバルト−酸化マグネシウム固溶
体、酸化亜鉛−酸化コバルト−酸化ニッケル−酸化チタ
ン固澄体からなる群から選ばれる1種又は2種以上の固
溶体が使用できる。配合量はガラヌク重吊部に対して0
.10〜1.00重量部で、0810重量部未満では強
度改善効果がなく、又1.00重量部を越えるとガラス
のにじみが生ずるので好ましくない。
In the present invention, manganese oxide and zinc oxide-cobalt oxide solid solution as inorganic additives added to glass serve to supplement and enhance the effects of glass. Manganese oxide strengthens the metal-glass matrix 411 to create a dense structure, and has the effect of improving strength and preventing the glass from softening and flowing during repeated firing. .10 to 1.00 parts by weight is blended. If it is less than 0.10 parts by weight, the adhesive strength will not be sufficient, and if it exceeds 1.00 parts by weight, it will not be possible to form a dense film and the strength and solder melting resistance will deteriorate. The zinc oxide-cobalt oxide solid solution reacts with the substrate to improve the adhesive strength between the substrate and the glass in the conductor film, and is disclosed in Japanese Patent Application Laid-Open No. 58-87.
One or more selected from the group consisting of zinc oxide-cobalt oxide solid solution, zinc oxide-cobalt oxide-magnesium oxide solid solution, and zinc oxide-cobalt oxide-nickel oxide-titanium oxide solid solution described in Publication No. 161. A solid solution of can be used. The blending amount is 0 for Garanuku heavy lifting part.
.. The amount is 10 to 1.00 parts by weight, and if it is less than 0.810 parts by weight, there is no strength improvement effect, and if it exceeds 1.00 parts by weight, bleeding of the glass occurs, which is not preferable.

酸化ビスマスは無償結合剤の流動性を増加させ、又基板
との接着性を向上させるために添加されるものであり、
1.0重量部未満では半田濡れ性、耐半田性、接着強度
が悪く、又5゜0重量部を越えるとガラス浮きの状態と
なり、半田濡れ性が悪くなる。
Bismuth oxide is added to increase the fluidity of the free binder and improve its adhesion to the substrate.
If it is less than 1.0 parts by weight, the solder wettability, solder resistance, and adhesive strength will be poor, and if it exceeds 5.0 parts by weight, the glass will float, resulting in poor solder wettability.

本発明ではこれらの添加剤と前記のガラスとの作用によ
り、ガラス質が膜表面に極めて少なく、大部分が基板側
に分布して基板との接着に寄与し、しかも内部では強固
な全屈−ガラスマトリクス構造を作っていると考えられ
、半田濡れ性が極めて良好でしかも接着強度が大きく改
善され、特に熱エージング後の強度が従来に比して非常
に優れている。又膜厚が薄い場合もこのような+ll造
を容易に作るので接着強度の大きい導体を形成すること
ができる。
In the present invention, due to the action of these additives and the above-mentioned glass, there is very little vitreous material on the film surface, most of which is distributed on the substrate side and contributes to adhesion with the substrate. It is thought that it has a glass matrix structure, and has extremely good solder wettability and greatly improved adhesive strength, especially the strength after heat aging, which is much superior to conventional products. Further, even when the film thickness is thin, such a +ll structure can be easily formed, so that a conductor with high adhesive strength can be formed.

更に第2の発明において配合される他の添加剤即ち酸化
クロム、酸化チタン、酸化鉛は赤外線高速焼成を行う際
に効果を発揮する。即ち酸化クロム及び酸化チタンはガ
ラスの過度の流動を抑え、酸化鉛はガラス中のガス化成
分を放出させる作用があるため、これらを配合すること
によって高速焼成時ガラスの浮きやにじみ、発泡が防止
される。
Furthermore, other additives blended in the second invention, namely chromium oxide, titanium oxide, and lead oxide, are effective when performing infrared high-speed firing. In other words, chromium oxide and titanium oxide suppress the excessive flow of the glass, and lead oxide has the effect of releasing gasifying components in the glass, so by combining these, the lifting, bleeding, and foaming of the glass can be prevented during high-speed firing. be done.

これらの添加剤は焼成を通常のマツフル炉で行う場合は
必ずしも配合する必要はないが、赤外線高速焼成炉で行
う場合はガラス1部に対して酸化クロム及び酸化チタン
は合計で0.02〜0,30重量部、酸化鉛は0,10
〜1.00重量部配合するのが望ましい。
These additives do not necessarily need to be added when firing is performed in a normal Matsufuru furnace, but when firing is performed in an infrared high-speed firing furnace, the total amount of chromium oxide and titanium oxide is 0.02 to 0 per part of glass. , 30 parts by weight, lead oxide is 0.10
It is desirable to blend 1.00 parts by weight.

酸化クロム及び酸化チタンは合計で0.30重量部を越
えると半田濡れ性が悪化し、酸化鉛は1.00重量部を
越えて添加した場合、ガラスの流動性が大きくなりすぎ
るので好ましくない。
If the total amount of chromium oxide and titanium oxide exceeds 0.30 parts by weight, solder wettability deteriorates, and if more than 1.00 parts by weight of lead oxide is added, the fluidity of the glass becomes too high, which is not preferable.

導電性金属粉末としては、従来から一般に使用されてい
るAQ 、ALI 、Pd 、Pt等ノ貴金属、Qu、
Ni等の卑金属などいずれも使用できる。
Examples of conductive metal powders include noble metals such as AQ, ALI, Pd, and Pt, Qu,
Any base metal such as Ni can be used.

導電性組成物において無償結合剤は導電性金属粉末10
0重量部−に対して5〜20重量部重量部会される。
In the conductive composition, the free binder is conductive metal powder 10
0 parts by weight to 5 to 20 parts by weight.

有機ビヒクルは、この種の厚膜′4導電性成物に通常使
用されているものであれば特に制限はない。
The organic vehicle is not particularly limited as long as it is commonly used in thick film conductive compositions of this type.

友血旦 次に、実施例をあげて本発明を具体的に説明する。Yuketsudan Next, the present invention will be specifically explained with reference to Examples.

各実施例及び比較例で使用したガラスの組成は、表1に
示す通りである。尚、X、Yは本発明の範囲外のもので
ある。
The composition of the glass used in each Example and Comparative Example is as shown in Table 1. Note that X and Y are outside the scope of the present invention.

表1 実施例1〜14 導電性金属としてAC+及びPdの混合粉末(重量化8
5:15)を用い、これに表1のガラスA−Dと他の添
加剤を表2に示す割合で添加混合し、有機ビヒクル中に
分散させてペースト状の導電性組成物を得た。尚表2の
添加剤中Zn/CO固溶体と表示されているのは酸化亜
鉛−酸化コバルト系固溶体であり、酸化亜鉛81〜86
重量%、酸化コバルト5〜6重量%、酸化マグネシウム
9〜11重量%からなる固溶体を用いた。
Table 1 Examples 1 to 14 Mixed powder of AC+ and Pd as conductive metal (weighted 8
Glasses A to D shown in Table 1 and other additives were added and mixed in the proportions shown in Table 2, and the mixture was dispersed in an organic vehicle to obtain a paste-like conductive composition. In addition, the Zn/CO solid solution in the additives in Table 2 is a zinc oxide-cobalt oxide solid solution, and zinc oxide 81-86
A solid solution consisting of 5-6% by weight of cobalt oxide and 9-11% by weight of magnesium oxide was used.

それぞれのペーストをアルミナ基板上に焼成膜厚が12
1JInとなるように1.5aaX  L5rnmのパ
ターンにスクリーン印刷し、150℃で10分間乾燥し
た後通常のマツフル炉においてピーク温度850℃10
分間保持、60分サイクルで焼成して厚膜導体を形成し
、次の試験を行った。結果を表2に併せて示した。
Each paste was fired on an alumina substrate to a film thickness of 12 mm.
A pattern of 1.5aaX L5rnm was screen printed to give 1JIn, and after drying at 150℃ for 10 minutes, the peak temperature was 850℃10 in a normal Matsufuru furnace.
A thick film conductor was formed by holding for 60 minutes and firing at a cycle of 60 minutes, and the following tests were conducted. The results are also shown in Table 2.

半田濡れ性:導体膜上に直径1.5rRrnの半田ポー
ルを載せ、230℃の半田槽に30秒間放置した後の半
田ボールの拡がり率を調べた。
Solder wettability: A solder pole with a diameter of 1.5 rRrn was placed on the conductor film, and the spread rate of the solder ball was examined after leaving it in a solder bath at 230° C. for 30 seconds.

初期接着強度:4体膜に直径o、saiの半田めっき!
Ii4線を錫−鉛半田で半田付けした後このリード線を
基板に対して垂直に引張り、導体が基板から剥離したと
きの強度を測定した。
Initial adhesive strength: Solder plating with diameter o and sai on 4-body film!
After the Ii4 wire was soldered with tin-lead solder, the lead wire was pulled perpendicularly to the board, and the strength when the conductor was peeled off from the board was measured.

熱エージング後の接着強度:150℃で100時間エー
ジングした後の接着強度を初期強度と同様にして測定し
た。
Adhesive strength after heat aging: The adhesive strength after aging at 150° C. for 100 hours was measured in the same manner as the initial strength.

比較例1〜6 実施例と同様の1−Pd fi合粉末、表1のガラス及
び添加剤を表3に示す割合で添加混合し、有はビヒクル
中に分散させてペースト状の導電性組成物を得た。各々
について同様にアルミナ基板上に焼付けして半田濡れ性
及び強度を測定した。結果を表3に示す。
Comparative Examples 1 to 6 The same 1-Pd fi composite powder as in the example, the glass and additives in Table 1 were added and mixed in the proportions shown in Table 3, and dispersed in a vehicle to form a paste-like conductive composition. I got it. Each was similarly baked onto an alumina substrate and its solder wettability and strength were measured. The results are shown in Table 3.

(以下余白) [薄い膜厚での接着強度試験1 次に実施例1.10.比較例2の各ペーストを、アルミ
ナ基板上に焼成膜厚が8岬となるよう 1.5闇x  
1.5rRmのパターンにスクリーン印刷し、150℃
で10分間乾燥した後通常のマツフル炉においてピーク
温度850℃10分間保持、60分サイクルで焼成して
厚膜導体を形成した。それぞれの導体について半田濡れ
性及び接着強度を測定し、結果を表4に示した。表2の
結果と比較すると、本発明では膜厚依存性が小さく、薄
膜化しても充分な接着強度が青られることがわかる。
(Left below) [Adhesive strength test 1 with thin film thickness Next, Example 1.10. Each paste of Comparative Example 2 was fired on an alumina substrate so that the film thickness was 8 caps.
Screen printed a pattern of 1.5 rRm and heated at 150°C.
After drying for 10 minutes, a thick film conductor was formed by holding the peak temperature at 850° C. for 10 minutes and firing in a 60-minute cycle in a regular Matsufuru furnace. The solder wettability and adhesive strength of each conductor were measured, and the results are shown in Table 4. Comparison with the results in Table 2 shows that the film thickness dependence is small in the present invention, and sufficient adhesive strength is maintained even when the film is made thinner.

表4 [赤外線高速焼成試験] 次に実施例、比較例の各ペーストを、焼成後の膜厚が約
20Mとなるようアルミナ基板上にスクリーン印刷し、
赤外線焼成炉においてピーク温度880℃、20分サイ
クルで焼成し、外観を調べた。結果は表面にガラス浮き
やにじみがみられたり発泡が起こったものについては×
1これらの現象が生じなかったものについてはOとして
表2及び表3中に表示した。この試験により、酸化クロ
ム及び/又は酸化チタンと酸化鉛とを添加すると赤外線
高速焼成が可能となることが明らかである。
Table 4 [Infrared high-speed firing test] Next, each paste of the example and comparative example was screen printed on an alumina substrate so that the film thickness after firing was about 20M,
It was fired in an infrared firing furnace at a peak temperature of 880°C for a 20 minute cycle, and its appearance was examined. The results are × for those with glass floating, bleeding, or foaming on the surface.
1 Those in which these phenomena did not occur are indicated as O in Tables 2 and 3. This test clearly shows that the addition of chromium oxide and/or titanium oxide and lead oxide enables high-speed infrared firing.

欣里 以上の通り、本発明の導電性組成物は、半田濡れ性、基
板との接着強度、特に熱エージング後の接着強度が従来
に比べて非常に優れているのみならず、膜厚が薄くても
極めて接着強度が大きいので導体を薄膜化することがで
き、高密度回路用導体材料として極めて好適である。更
に酸化クロム、酸化チタン、酸化鉛を含む導電性組成物
は赤外線炉で高速焼成もできるので、焼成時間を大巾に
短縮できるという利点を有する。
KinriAs mentioned above, the conductive composition of the present invention not only has excellent solder wettability and adhesive strength with a substrate, especially adhesive strength after heat aging, compared to conventional ones, but also has a thin film thickness. However, since it has extremely high adhesive strength, the conductor can be made into a thin film, making it extremely suitable as a conductor material for high-density circuits. Furthermore, since the conductive composition containing chromium oxide, titanium oxide, and lead oxide can be fired at high speed in an infrared furnace, it has the advantage that the firing time can be greatly shortened.

Claims (1)

【特許請求の範囲】 1 導電性金属粉末と無機結合剤とが有機ビヒクル中に
分散されてなる導電性組成物において、無機結合剤が (a)B_2O_3、ZnO及びPbOの合計100重
量%に対してMoO_30.5〜5.0重量%、MnO
_20.5〜3.0重量%、TiO_20.5〜3.0
重量%を添加してなるガラス1重量部と、 (b)酸化ビスマス1.0〜5.0重量部と、 (c)酸化マンガン0.10〜1.00重量部と、(d
)酸化亜鉛−酸化コバルト系固溶体から選ばれる1種又
は2種以上0.10〜1.00重量部とからなることを
特徴とする導電性組成物。 2 導電性金属粉末と無機結合剤とが有機ビヒクル中に
分散されてなる導電性組成物において、無機結合剤が (a)B_2O_3、ZnO及びPbOの合計100重
量%に対してMoO_30.5〜5.0重量%、MnO
_20.5〜3.0重量%、TiO_20.5〜3.0
重量%を添加してなるガラス1重量部と、 (b)酸化ビスマス1.0〜5.0重量部と、 (c)酸化マンガン0.10〜1.00重量部と、 (d)酸化亜鉛−酸化コバルト系固溶体から選ばれる1
種又は2種以上0.10〜1.00重量部と、 (e)酸化クロム及び酸化チタンから選ばれる1種又は
2種以上の酸化物0.02〜0.30重量部と、 (f)酸化鉛0.10〜1.00重量部 とからなることを特徴とする導電性組成物。 3 酸化亜鉛−酸化コバルト系固溶体が酸化亜鉛−酸化
コバルト固溶体、酸化亜鉛−酸化コバルト−酸化マグネ
シウム固溶体又は酸化亜鉛−酸化コバルト−酸化ニッケ
ル−酸化チタン固溶体である特許請求の範囲第1項又は
第2項記載の導電性組成物。
[Claims] 1. A conductive composition comprising a conductive metal powder and an inorganic binder dispersed in an organic vehicle, wherein the inorganic binder is (a) based on 100% by weight of the total of B_2O_3, ZnO and PbO. MoO_30.5-5.0% by weight, MnO
_20.5-3.0% by weight, TiO_20.5-3.0
(b) 1.0 to 5.0 parts by weight of bismuth oxide, (c) 0.10 to 1.00 parts by weight of manganese oxide, and (d
) A conductive composition comprising 0.10 to 1.00 parts by weight of one or more selected from zinc oxide-cobalt oxide solid solutions. 2. In a conductive composition in which a conductive metal powder and an inorganic binder are dispersed in an organic vehicle, the inorganic binder is (a) MoO_30.5 to 5 with respect to the total 100% by weight of B_2O_3, ZnO and PbO. .0% by weight, MnO
_20.5-3.0% by weight, TiO_20.5-3.0
(b) 1.0 to 5.0 parts by weight of bismuth oxide, (c) 0.10 to 1.00 parts by weight of manganese oxide, and (d) zinc oxide. -1 selected from cobalt oxide solid solutions
(e) 0.02 to 0.30 parts by weight of one or more oxides selected from chromium oxide and titanium oxide; (f) An electrically conductive composition comprising 0.10 to 1.00 parts by weight of lead oxide. 3. Claim 1 or 2, wherein the zinc oxide-cobalt oxide solid solution is a zinc oxide-cobalt oxide solid solution, a zinc oxide-cobalt oxide-magnesium oxide solid solution, or a zinc oxide-cobalt oxide-nickel oxide-titanium oxide solid solution. The conductive composition described in .
JP4116287A 1987-02-24 1987-02-24 Conducting composition Granted JPS63207001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116287A JPS63207001A (en) 1987-02-24 1987-02-24 Conducting composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116287A JPS63207001A (en) 1987-02-24 1987-02-24 Conducting composition

Publications (2)

Publication Number Publication Date
JPS63207001A true JPS63207001A (en) 1988-08-26
JPH0526284B2 JPH0526284B2 (en) 1993-04-15

Family

ID=12600725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116287A Granted JPS63207001A (en) 1987-02-24 1987-02-24 Conducting composition

Country Status (1)

Country Link
JP (1) JPS63207001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294667A (en) * 1988-09-30 1990-04-05 Kyocera Corp Photoelectric conversion device
JPH0322306A (en) * 1989-06-19 1991-01-30 Dai Ichi Kogyo Seiyaku Co Ltd Metallic paste with satisfactory adhesive property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294667A (en) * 1988-09-30 1990-04-05 Kyocera Corp Photoelectric conversion device
JPH0322306A (en) * 1989-06-19 1991-01-30 Dai Ichi Kogyo Seiyaku Co Ltd Metallic paste with satisfactory adhesive property

Also Published As

Publication number Publication date
JPH0526284B2 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
US5645765A (en) Lead-free conductive paste
US4070518A (en) Copper metallizations
KR100828892B1 (en) Overcoat glass paste and thick film resistor element
US6841495B2 (en) Glass and conductive paste using the same
US4400214A (en) Conductive paste
US5781402A (en) Conducting thick film composition, thick film electrode, ceramic electronic component and laminated ceramic capacitor
US7147804B2 (en) Terminal electrode compositions for multilayer ceramic capacitors
KR101786722B1 (en) Conductive paste
JP4291146B2 (en) Silver conductor composition
JP2000048642A (en) Conductive paste and glass circuit substrate
JP4423832B2 (en) Glass composition and thick film paste using the same
JPH0817671A (en) Conductive paste
JP3257036B2 (en) Conductive paste for chip-type electronic components
JPS63207001A (en) Conducting composition
JPH0239410A (en) Conductive composed material for ceramic capacitor terminal electrode
JPS626284B2 (en)
JPS621662B2 (en)
JPS62259302A (en) Conductive paste composition
JP2003267750A (en) Glass composition for coating resistive element
JP2941002B2 (en) Conductor composition
JPH08298018A (en) Conductive paste
JPS6232562B2 (en)
JPH0440803B2 (en)
JPH0239411A (en) Conductive composed material for ceramic capacitor terminal electrode
JPH0548225A (en) Conductive paste

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term