JPS63206684A - Apparatus for measuring speed of projectile - Google Patents

Apparatus for measuring speed of projectile

Info

Publication number
JPS63206684A
JPS63206684A JP3937987A JP3937987A JPS63206684A JP S63206684 A JPS63206684 A JP S63206684A JP 3937987 A JP3937987 A JP 3937987A JP 3937987 A JP3937987 A JP 3937987A JP S63206684 A JPS63206684 A JP S63206684A
Authority
JP
Japan
Prior art keywords
light
projectile
laser
frequency
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3937987A
Other languages
Japanese (ja)
Inventor
Masami Sugano
菅野 昌美
Takeo Saito
斎藤 威雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3937987A priority Critical patent/JPS63206684A/en
Publication of JPS63206684A publication Critical patent/JPS63206684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To measure the flying speed of a projectile with high accuracy without receiving restriction of the Radio Law, by measuring the flying speed of the projectile by applying optical Doppler effect. CONSTITUTION:A beam expander 9 magnifies the laser beam emitted from a laser oscillator 8 in required magnifying power and a semipermeable mirror 10 splits said laser beam into reference beam R and sample beam S. Two total reflection mirrors 11a irradiate a projectile 2 with both beams R, S so as to cross said beams on the surface of the projectile 2. The total reflection mirror 11b is allowed to coincide with a reference axis at the center thereof and receives the scattering beams generated when both beams R, S are reflected from the projectile 2 at a required effective caliber to send the same to a beam detector 14. Subsequently, the output signal of the beam detector 14 is amplified by an amplifier 15 and a frequency memory device 16 instantaneously stores the frequency thereof. A frequency tracking device 17 calculates the flying speed of the projectile 2 on the basis of the signal from the frequency memory device 16. A voltage control oscillator 18 attains to shorten a searching time by manually setting the Doppler frequency corresponding to the preliminarily estimated speed of the projectile 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高射砲等から発射される弾丸の速度測定装
置に関するものである。一般に高射砲等においては射撃
の命中率を高めるために、高射砲等から発射される弾丸
の初速度を測定し射撃制御装置へフィードバックするこ
とが多い。この目的を達成するために、マイクロ波のド
プラー効果を利用した弾丸速度沖」定装置が開発され、
実用に供せられている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for measuring the velocity of a bullet fired from an anti-aircraft gun or the like. In general, in order to increase the accuracy of shots fired by anti-aircraft guns, the initial velocity of a bullet fired from an anti-aircraft gun is often measured and fed back to a fire control device. To achieve this purpose, a device for determining the velocity of a bullet using the Doppler effect of microwaves was developed.
It is put into practical use.

〔従来の技術〕[Conventional technology]

第2図は、上記マイクロ波のドプラー効果を利用した従
来の弾丸速度測定装置の概略構成図を示したもので、C
1)は他部、(2)は弾丸、(3Iはパラボラアンテナ
、(41は送受信器、(51は周波数測定器。
Figure 2 shows a schematic diagram of a conventional bullet velocity measuring device that utilizes the Doppler effect of microwaves.
1) is the other part, (2) is the bullet, (3I is the parabolic antenna, (41 is the transceiver, (51 is the frequency measuring device).

161は射撃制御装置である。第2図で得られるドプラ
ー周波数fdは周知のよう忙次式で表わされる。
161 is a firing control device. The Doppler frequency fd obtained in FIG. 2 is expressed by the well-known equation.

v fd ==−7−CO8θ       fl+ここに λ:マイクロ波の成長 θ:パラボラアンテナの中心軸と弾丸 の中心軸のなす角度 V二弾丸の速度 である。v fd ==-7-CO8θ fl+here λ: microwave growth θ: Center axis of parabolic antenna and bullet The angle formed by the central axis of V2 bullet speed It is.

(1)式から明らかなように、ドプラー周波数fdは定
数λと角度θで決定されるので、測定精度を高めるため
にはθの値を正確に知る必要がある。
As is clear from equation (1), the Doppler frequency fd is determined by the constant λ and the angle θ, so in order to improve measurement accuracy, it is necessary to accurately know the value of θ.

θを正確に設定するには、θ=θ°またはθ=90゜に
選定するのが望ましいが、θ=0°は実際上選定するこ
とは出来ず、θ=90°はCOSθ=0 となるためこ
れも選定できない。従って、実用上θは。
In order to set θ accurately, it is desirable to select θ = θ° or θ = 90°, but θ = 0° cannot be selected in practice, and θ = 90° will result in COS θ = 0. Therefore, this cannot be selected either. Therefore, in practice, θ is.

θ=0°にできるだけ近い値を選んで設定されることが
多いが、実際の戦場等で上記θの値を正確に設定するこ
とは困難であり、この方式の測定精度を低下させる大き
な要因となっている。
Although θ is often set to a value as close as possible to 0°, it is difficult to set the above value of θ accurately in actual battlefields, etc., and this is a major factor that reduces the measurement accuracy of this method. It has become.

〔発明が解決しようとする間和点〕[The balance that the invention attempts to solve]

従来の弾丸速度測定装置は以上のよ5&l成されている
が、マイクロ波に対して弾丸のクロス・セクショy (
Cross 5ection )は一般に小さいために
高いアンテナ利得が必要となり、装置が大型になる難点
もある。さらに、マイクロ波等の電磁波は電波法上の制
限を受けるために、精度向上および小型軽量化の観点か
ら望ましい波長域があっても任意に選定できない問題点
もある。
The conventional bullet velocity measuring device is constructed as shown above, but the cross section of the bullet y (
Cross 5ection) is generally small and therefore requires a high antenna gain, which also has the disadvantage of increasing the size of the device. Furthermore, since electromagnetic waves such as microwaves are subject to restrictions under the Radio Law, there is a problem that even if there is a desirable wavelength range from the viewpoint of improving accuracy and reducing size and weight, it is not possible to arbitrarily select it.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記のような問題点を解消するためになさ
れたもので、マイクロ波の代りにコヒーレントな光を発
生するレーザ装置を用いたものである。
This invention was made to solve the above-mentioned problems, and uses a laser device that generates coherent light instead of microwaves.

〔作用〕[Effect]

この発明における弾丸速度測定装置は、レーザ装置を用
いて、光ドプラー効果を応用し弾丸速度を測定するよう
にしたものである。
The bullet velocity measuring device according to the present invention uses a laser device and applies the optical Doppler effect to measure the bullet velocity.

〔実施例〕〔Example〕

以下、この発明の一実施例を図にもとすいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、(7)はレーザ装置、(81はレーザ
発振器、(91はビーム拡大器、 anは半透鏡。
In FIG. 1, (7) is a laser device, (81 is a laser oscillator, (91 is a beam expander, and an is a semi-transparent mirror.

(11a)、(11b)は全反射鏡、 aZは光学ガラ
ス窓、任3はアパーチャ、 (141は光検知器、 t
tSは増幅器、aeは8波数記憶器、anは周波数追跡
器、 aFjは電圧制御発振器、 +19は視準器であ
る。レーザ光はコヒーレントイが優れた光であるので、
レーザ発振器+81からのレーザビームを2つに分割〔
ここでは一方を参照光(以下R光)他方を試量光(以下
8元)と称することにする〕して、適当な手段で上記の
S光とR光を交差させると、光の干渉によりその交差部
分にフリンジ(Frjnge )が生ずることが知られ
ている。このフリンジの間隔gは2本ビームの等傾角の
干渉から次式で考えられる。
(11a) and (11b) are total reflection mirrors, aZ is an optical glass window, 3 is an aperture, (141 is a photodetector, t
tS is an amplifier, ae is an 8-wavenumber memory, an is a frequency tracker, aFj is a voltage controlled oscillator, and +19 is a collimator. Laser light has excellent coherent properties, so
Split the laser beam from laser oscillator +81 into two [
Here, one is called the reference light (hereinafter referred to as R light) and the other is referred to as sample light (hereinafter referred to as 8 elements)], and when the above S light and R light are crossed by an appropriate means, light interference occurs. It is known that fringes occur at the intersection. The distance g between the fringes can be calculated from the following equation based on the interference of the two beams at equal inclination angles.

ここに。Here.

λ:レーザ光の波長 y:R光とS光とのなす角度 である。λ: wavelength of laser light y: Angle between R light and S light It is.

被測定物が上記交差部分にあると、被測定物がフリンジ
の明部にあるときにはその散乱光は強く。
If the object to be measured is located at the intersection, the scattered light will be strong when the object is in the bright part of the fringe.

またフリンジの暗部にあるときにはその散乱光は弱い。Furthermore, the scattered light is weak when it is in the dark part of the fringe.

従って、今、簡単化のために、被測定物が速度Vでフリ
ンジを垂直に横切ったとすると散乱光は9次式で示1周
波数fdの信号となり、これが光のドプラー周波数fd
である。
Therefore, for the sake of simplicity, if the object to be measured vertically crosses the fringe at a velocity V, the scattered light becomes a signal with a frequency fd expressed by the ninth order equation, and this is the Doppler frequency fd of the light.
It is.

fd=ヱ= ”’s in L131 g  λ   2 (31式から明らかなように、  fdは定数λと光学
的な配置で決定される。R光とS光の交差角yのみによ
って決定されることが判る。また、λはマイクロ波の波
長に比べて非常に短いので、ドプラー周波数fd/d大
きくなり、積1)定精度上有利である。レーザ発振器+
81は例えば、λ==0.6328mμのHe−Neガ
スレーザである。ビーム拡大器+91は例えば倍率nの
逆望遠鏡で、レーザ発振器(8)から発生する直径Dd
のレーザビームをnDdの直径の平行ビームに拡大する
。半透鏡帥は一点鎖線で示した基準軸に平行Vc1かれ
、上記拡大されたレーザ光をR光とS光に分割する。2
枚の全反射鏡(11a)は、上記基準軸に軸対称の位置
に置かれ、R光とS光の交差部分の中心が基準軸上で2
枚の全反射鏡(Ha)の中心から距離!の所にくるよう
に設定されている。
fd=ヱ= ”'s in L131 g λ 2 (As is clear from equation 31, fd is determined by the constant λ and the optical arrangement. It is determined only by the intersection angle y of the R light and the S light. In addition, since λ is very short compared to the microwave wavelength, the Doppler frequency fd/d becomes large, which is advantageous in terms of product 1) accuracy.Laser oscillator +
81 is, for example, a He-Ne gas laser with λ==0.6328 mμ. The beam expander +91 is, for example, an inverted telescope with a magnification of n, and the diameter Dd generated from the laser oscillator (8)
The laser beam is expanded into a parallel beam with a diameter of nDd. The semi-transparent mirror shaft is parallel to the reference axis indicated by the dashed line Vc1, and divides the expanded laser beam into R light and S light. 2
The total reflection mirrors (11a) are placed in axially symmetrical positions with respect to the reference axis, and the center of the intersection of the R light and the S light is 2 on the reference axis.
Distance from the center of the total reflection mirrors (Ha)! It is set to appear at

つまり、2枚の全反射鏡(11a)の中心間の距離をa
として。
In other words, the distance between the centers of the two total reflection mirrors (11a) is a
As.

ヱ= tan−1(−)        (41となっ
ている。
ヱ = tan-1(-) (41).

全反射d(11b)は上記基準軸にその中心を合致させ
R光とS光が弾丸(21で反射されたときの各々の散乱
光を所要の有効口径で受光し光検知器a4へ送る。アパ
ーチャαJは光検知器Iの出力信号fd O8/Nが最
適になるように光検知器(141の前面に挿入されるが
、その径は一般に実験的に選定されるものである。光検
知器a4は例えば光電子増倍管で受信光を電気信号に変
換する。光学ガラス窓側は上記基準軸忙垂直に押入され
ており、信号のS/NおよびQ値が所要の値であり、か
つ上記距離lが規定の±Δ!の変動をしても上記信号の
周波数の偏位1±ΔfdとS/NおよびQ値が所要の値
を維持するような関係をもたせている。増幅器a9は光
検知器a4の出力信号を所要の増幅度で増幅するもので
ある。周波数記憶器Weは、上記周波数を瞬時に記憶す
る。周波数追跡器([71は上記8波数記憶器+161
の信号にて(31式のfdを追跡し1弾丸(2)の速度
Vを算出するものである。電圧制御発振器6秒は。
Total reflection d (11b) has its center aligned with the reference axis, and each scattered light when the R light and S light are reflected by the bullet (21) is received with a required effective aperture and sent to the photodetector a4. The aperture αJ is inserted into the front surface of the photodetector (141) so that the output signal fdO8/N of the photodetector I is optimized, but its diameter is generally selected experimentally. A4 converts the received light into an electrical signal using, for example, a photomultiplier tube.The optical glass window side is pushed in perpendicularly to the reference axis, and the S/N and Q values of the signal are the required values, and the distance is as described above. Even if l fluctuates by a prescribed ±Δ!, the frequency deviation 1±Δfd of the above-mentioned signal has a relationship such that the S/N and Q values maintain the required values.Amplifier a9 is a photodetector. The output signal of the device a4 is amplified by the required amplification degree.The frequency storage device We instantly stores the above frequency.The frequency tracker ([71 is the above 8 wave number storage device + 161
The velocity V of one bullet (2) is calculated by tracking the fd of formula 31 using the signal.The voltage controlled oscillator is 6 seconds long.

周波数追跡器+171の一構成部分であるが、この発明
においては1次の機能を有している。つまり、一般にド
プラー周波数を0速度に対応する部分から追跡(サーチ
)しようとすると、系の応答時間に101]ms オー
ダの時間を要するため、あらかじめ子側される弾丸(2
1の速度に対応するドプラー周波数fdoを手動で設定
するととにより、上記追跡(サーチ)時間の短縮を図っ
ている。視準器a9は弾丸(21の中心軸と上記の基準
軸を所要の角度9例えば90°に設定する場合に使用さ
れる。
Although it is a component of the frequency tracker +171, it has a primary function in this invention. In other words, in general, when trying to track (search) the Doppler frequency from the part corresponding to zero velocity, the system response time requires a time on the order of 101] ms.
By manually setting the Doppler frequency fdo corresponding to the speed of 1, the above-mentioned tracking (search) time is reduced. The collimator a9 is used to set the central axis of the bullet (21) and the above-mentioned reference axis at a required angle 9, for example 90°.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば1弾丸(2)の速度を
測定する際に、小型計量な装置となり、また電波法上の
制約をうけず、精度よく測定することができ、その効果
は大きい。
As described above, according to the present invention, when measuring the velocity of one bullet (2), it is possible to use a compact and weighing device, and it is not subject to restrictions under the Radio Law, and it is possible to measure with high accuracy, and its effects are as follows. big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の概略構成図。 第2図は、マイクロ波のドプラー効果を利用した従来の
弾丸速度測定装置の概略構成図を示したものである。 0)はi箇、 (21は弾丸、(3)はパラボラアンテ
ナ。 14)は送受信器、(5)は周波数測定器、(6)は射
撃制御装置、17)はレーザ装置、(8Iはレーザ発振
器、(9)はビーム拡大器、 noは半透鏡e  (1
1a)、 (11b)は全反射鏡a3は光学ガラス窓、
α3はアパーチャ、 aaは光検知器、 (Isは増幅
器、 tteは周波数記憶器、αDは周波数追跡器、賭
は電圧制御発振器、 +19は視準器である。 図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a schematic diagram of an embodiment of the present invention. FIG. 2 shows a schematic diagram of a conventional bullet velocity measuring device that utilizes the Doppler effect of microwaves. 0) is i item, (21 is bullet, (3) is parabolic antenna, 14) is transceiver, (5) is frequency measuring device, (6) is fire control device, 17) is laser device, (8I is laser Oscillator, (9) is beam expander, no is semi-transparent mirror e (1
1a), (11b), the total reflection mirror a3 is an optical glass window,
α3 is an aperture, aa is a photodetector, (Is is an amplifier, tte is a frequency storage device, αD is a frequency tracker, ``Gate'' is a voltage controlled oscillator, +19 is a collimator. In the figures, the same symbols are the same or A considerable portion is shown.

Claims (1)

【特許請求の範囲】[Claims]  コヒーレントな光を発生するレーザ発振器と、上記レ
ーザ発振器から照射されるレーザビームを所要の倍率で
拡大する拡大手段と、上記拡大手段により拡大されたレ
ーザビームを参照光と試料光に分割する分割手段と、上
記参照光と試料光を被測定物面上で交差するように照射
する照射手段と、上記参照光の光軸と試料光の光軸を別
に設けた基準軸に対して対称な所要の角度に可変設定す
る可変設定手段と、上記参照光と試料光が被測定物で反
射されたときの各々の散乱光を上記基準軸で所要の開口
径で受光する受光手段と、上記受光手段の後方の光路で
有効受光立体角または有効受光面積を設定する設定手段
と、上記基準軸に垂直な配置で上記光学系と外気を遮断
する光学ガラス窓と、上記被測定物の速度に比例した周
波数信号を処理して速度を算出する算出手段と、上記周
波数信号を瞬時に記憶する記憶手段と、あらかじめ予測
される被測定物の速度に対応する周波数信号を設定する
設定手段を保有しているレーザ装置と、上記レーザ装置
の基準軸を上記被測定物の進行方向の中心軸に所要の角
度で視準する視準器とを備えることを特徴とする弾丸速
度測定装置。
a laser oscillator that generates coherent light; an enlarging means for enlarging the laser beam irradiated from the laser oscillator by a required magnification; and a dividing means for dividing the laser beam enlarged by the enlarging means into a reference beam and a sample beam. , an irradiation means for irradiating the reference light and the sample light so as to intersect on the surface of the object to be measured; a variable setting means for variably setting the angle; a light receiving means for receiving each scattered light when the reference light and the sample light are reflected by the object to be measured with a required aperture diameter on the reference axis; a setting means for setting an effective light-receiving solid angle or an effective light-receiving area in a rear optical path; an optical glass window arranged perpendicular to the reference axis to isolate the optical system from outside air; and a frequency proportional to the speed of the object to be measured. A laser having a calculation means for processing a signal to calculate the speed, a storage means for instantly storing the frequency signal, and a setting means for setting a frequency signal corresponding to the predicted speed of the object to be measured. 1. A bullet velocity measuring device comprising: a device; and a collimator that collimates a reference axis of the laser device to a central axis in the traveling direction of the object to be measured at a predetermined angle.
JP3937987A 1987-02-23 1987-02-23 Apparatus for measuring speed of projectile Pending JPS63206684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3937987A JPS63206684A (en) 1987-02-23 1987-02-23 Apparatus for measuring speed of projectile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3937987A JPS63206684A (en) 1987-02-23 1987-02-23 Apparatus for measuring speed of projectile

Publications (1)

Publication Number Publication Date
JPS63206684A true JPS63206684A (en) 1988-08-25

Family

ID=12551387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3937987A Pending JPS63206684A (en) 1987-02-23 1987-02-23 Apparatus for measuring speed of projectile

Country Status (1)

Country Link
JP (1) JPS63206684A (en)

Similar Documents

Publication Publication Date Title
USRE40927E1 (en) Optical detection system
US5434668A (en) Laser vibrometer identification friend-or-foe (IFF) system
US4259009A (en) Far field target designators
GB2292280A (en) Missile guidance system
US3547540A (en) Laser fluid velocity detector
CN105509817B (en) A kind of THz wave Doppler difference measuring instrument and method
Cook et al. Measurement of Detonation Velocity by Doppler Effect at Three‐Centimeter Wavelength
US3895872A (en) Optical speed-measuring devices and methods for maximizing their accuracies
US5914785A (en) Method and apparatus for making absolute range measurements
US3323411A (en) Apparatus for measuring angular velocity having phase and amplitude control means
RU2516205C2 (en) Method of charge fall point coordinates determination
JPS63206684A (en) Apparatus for measuring speed of projectile
US5040891A (en) Laser-warning method and apparatus
JPS63206683A (en) Apparatus for measuring speed of projectile
US3164725A (en) Optical range finder
US3320424A (en) Photosensitive optical angle tracker
Dunn et al. The effects of automatic gain control performance on the tracking accuracy of monopulse radar systems
JPH0220933B2 (en)
Zhou et al. Design and achievement of hardware-in-the-loop simulation system for strapdown semi-active laser seeker
RU2801294C1 (en) Method of aiming guided ammunition
Jin et al. Effects of Cooperative Target on Laser Rangefinder’s Ranging Performance
RU2589763C2 (en) Method for guiding pulsed electromagnetic radiation to remote object
RU2781592C1 (en) Non-contact ammunition target sensor
RU2697868C1 (en) Method of protecting laser ranging facilities from optical interference with fixed time delay
Goosman et al. Fabry-Perot Velocimetry Techniques: Is Doppler Shift Affected By Surface Normal Direction?